

Motivation

- Capturing and modeling 3D scenes is an important goal for several applications in computer graphics, computer vision, and geometric modeling
 - e.g., telepresence, gaming and simulations, and several forms of virtual reality

Approaches

- Single viewpoint acquisition
 - Time-of-flight (TOF) systems
 - Advantages
 - Simplicity: external (relative) information to other devices/cameras is not needed nor exists
 - Disadvantages
 - Only sees surfaces visible from one viewpoint

Approaches

- (Traditional) Multi-viewpoint acquisition
- TOF or triangulation systems
- Advantages
 - Can acquire surfaces visible from more than one viewpoint
- Disadvantages
 - For TOF and triangulation
 - All captures must be relatively calibrated
 - For triangulation
 - Low error requires large baseline
 - Large baseline reduces amount of mutually visible surfaces (to less than that visible from a single viewpoint)
 - Reduction of mutually visible surfaces necessitates more captures (to "fill in the gaps")

Challenge

- We would like the simplicity of single viewpoint acquisition but also the additionally visible surfaces of multi-viewpoint acquisition
- So what can we do?

Observation

- The structure of the 3D scene is inherent to it and does not depend on from where the triangulation or TOF system acquired information
- Thus, let's make the capture process independent of the relative locations of the acquisition device

Our Approach

- We introduce a new multi-viewpoint acquisition method for 3D scenes of arbitrary size where we can combine captures without having to know the relative positions of the capture device within the scene
 - Acquisition consists of merely "taking a set of pictures"

 - Multiple captures can be easily refined and combined
 This also enables triangulation systems to use wide-baselines

Our Approach

- Acquisition consists of an alternating sequence of taking pictures and establishing correspondences
 - We take pictures using an internally calibrated camera pair
 - We establish correspondences using an uncalibrated projector
 - (note: using feature tracking is an option too)
- We sample and reconstruct the scene surfaces by creating a network of views and correspondences without any knowledge of the location of the camera-pair or of the projector

Scene

Scene

Scene

