A Vision-based Affective Computing System

Jieyu Zhao Ningbo University, China

Outline

Affective Computing
A Dynamic 3D Morphable Model
Facial Expression Recognition
Probabilistic Graphical Models
Some related topics
Conclusions and future work

What is Affective Computing?

- affective producing emotional response,
 Affective Computing ability for the
 computer to recognize and express emotions
 as humans do
 - a. Recognize emotions
 - **b.** Express emotions
 - c. 'Have' emotions
 - (Rosalind Picard, MIT, 1997)

Recognize Emotions

Facial expression Polygraph, Multimodal skin response, heartbeat, blood pressure... • Which emotion: happiness, angry, fear, surprise, sadness... Person dependent Person independent

Express Emotions

- Emotional expression for communication and social co-ordination
- Emotion for organisation of behaviour (action selection, attention and learning)

Emotion conveys information,

"Hello!" 🕲

Kismet: www.ai.mit.edu/projects/humanoidrobotics-group/kismet/kismet.html

Computer Graphics, 3D face model (FaceGen)

Having Emotions

Emotions are Physical and Cognitive

- Emergent Emotions and Emotional Behavior
- ♦ Fast Primary Emotions
- Cognitively Generated Emotions
- Emotional Experience
- Body-Mind Interactions
- Emotional Intelligence?
- Can machines feel?
- How would we know?

Why Affective Computing?

- Humans naturally communicate affectively, expression identified 50% of the time
- Human-Computer Interaction Frustration, mouse clicking behaviour, slow, debugging...
 We need more friendly HCI
- Applications: Hands-free computing, Social interfaces, Virtual sales agent, Internet banking, Distance education

Why vision based interface?

- Visual cues are important in communication! Useful visual cues
- Presence
- Identity (and age, sex, nationality, etc.)
- Facial expression
- Attention (gaze direction)
- Lip movement
- Gestures, Body language
- Location, Activity

Elements

- Hand tracking, Hand gestures
- Arm gestures
- Body tracking
- Activity analysis
- We focus on:
- Head tracking
- Face recognition
- Facial expression
- Lip movement
- Gaze

A System Developed

- Facial expression player based on FaceGen
- Moving object tracking system, gaze
- Running in real-time, interactive
- Face recognition and expression recognition
- Foreground/background discrimination

Demo

த TrueEye 1										
File Devices Edit View Help										
, 💌 ● 🚰 ▶ ■ K 44 4 ⊅ ≫ > 🚩 ᅷ 🖆 🛞 🕀 🔚 🕲 🐇 🛧 🕅 🕅 🚓 🗛 🕄										
	ExpPlayer Open Frame Interval: 70 Play Reset									
发现 3 号目标! (X=173,Y=101)	27.60 fps 320 X 240									
	Generate View Camera Shape Texture Genetic Tween Morph PhotoFit									
	1. Expression: Anger									
	2. Expression: Disgust									
	4. Expression: Sad									
	5. Expression: SmileClosed									
	6. Expression: SmileOpen									
	7. Expression: Surprise									
	8. Modifier: Blink Left									
Viewport Help	9. Modifier: Blink Right									
Detail Texture Detail Texture Modulation	10. Malifar BrauDaura Leff									
0.0 1.6 Texture Gamma Correction										
1.5 2.0 2.5	11. Modifier: BrowDown Right									
Change Polys There are 6602 polys and 6762 vertices	12. Modifier: Browln Left									

How we did it

 Programming in VC++.net and Direct X SDK
 A facial expression player, designed to play back facial expression files
 Moving object tracking in real time directShow, live video capture, moving object recognition, image pyramids
 Eye blink and movement control

Facial Expression Recognition

Challenges:

- Large variability
 - rotation, scaling, illumination change,...
- Complex nonlinear manifold
 - distance measure
- High dimensionality
 - 80x100 image, but relatively small sample size

Possible solutions:

- Geometric feature based approaches
 2D & 3D face model
- Statistical approaches

 PCA (Principal Component Analysis),
 ICA (Independent Component Analysis),
 LDA (Linear Discriminant Analysis)
 Kernel methods
 Bayesian methods
 Probabilistic Graphical models

Probabilistic Graphical Model

Probability Theory + Graph Theory a natural tool for image representation, learning and inference

Various models:

• HMM

• MRF and GRF

Bayesian Network

• Kalman Filter, ICA, Factor Analysis

Facial Expression Recognition with Embedded HMM

An Embedded HMM

Small Database: 9 people, 6 expressions $\times 3$, 256×256

Person-dependent

Expression	Anger	Disgust	Fear	Happiness	Sad	Surprise
Anger	85.19	7.40	3.70	0	3.70	0
Disgust	0	88.89	7.40	0	3.70	0
Fear	0	7.40	93.60	0	0	0
Happiness	0	3.70	7.40	88.89	0	0
Sad	0	3.70	11.11	0	85.19	0
Surprise	0	0	0	0	0	96.30

Person-independent

Expression	Anger	Disgust	Fear	Happiness	Sad	Surprise
Anger	77.78	22.22	0	0	0	0
Disgust	14.81	62.97	11.11	0	0	11.11
Fear	11.11	7.40	51.85	3.70	11.11	14.81
Happiness	0	0	14.81	77.78	7.40	0
Sad	7.40	7.40	18.51	0	62.96	0
Surprise	0	0	0	3.70	0	96.30

Gibbs Random Fields:

Gibbs distribution:

$$P(f) = \frac{e^{-E(f)/T}}{\sum_{f \in F} e^{-E(f)/T}}$$

where *E* is the energy function, *T* is the temperature. A Random field: $E = \{E \in E\}$

$$F = \{F_1, ..., F_m\}$$

Configuration: a value assignment

$$f = \{f_1, ..., f_m\}$$

Only consider the discrete case

Define a neighborhood system N and energy function

$$E(f) = \sum_{c \in C} Vc(f)$$

The energy is a sum of clique potentials over all possible cliques CClique: a subset in which every pair are neighbors of each other.

Markov random fields

Positive: $P(f) > 0, \forall f \in F$

Markovian: state only depends on neighbors

$$P(f_i \mid f_{S-\{i\}}) = P(f_i \mid f_{N_i})$$

Homogenious: probability independent of positions of sites

Markov-Gibbs Equivalence

GRF -- global property (the Gibbs distribution) **MRF** -- local property (the Markovianity)

The Hammersley-Clifford theorem [1971] establishes the equivalence of these two:

F is an MRF on S with respect to N if and only if F is a GRF on S with respect to N.

Bayesian Interpretation

• the Bayes risk $R(f^*) = \int_{f \in F} C(f^*, f) P(f \mid d) df$ • the Bayesian rule $P(f \mid d) = \frac{p(d \mid f) P(f)}{p(d)}$

• define a cost function $C(f^*, f) = \begin{cases} 0 & \text{if } | f^* - f | \le \delta \\ 1 & \text{otherwise} \end{cases}$

 minimizing the risk is equivalent to maximizing the posterior

 $f^* = \arg \max_{f \in F} P(f \mid d)$

(a) maximization of the posterior probability in the Bayesian framework
←→ (b) minimization of the posterior energy function of a MRF
←→ (c) minimization of the energy in a stochastic recurrent network

image restoration using MRF (S. Geman and D. Geman, 1984)
Bayesian labeling problem (Stan Z. Li, 2001)

A Recurrent Network

A binary network

A recurrent stochastic binary network B(V,W,U) is a pseudo-graph with vertex set V having state $S \in \{-1,+1\}^n$, edge set W of real value, a neighborhood structure N, and a dynamic updating mechanism U.

The state changes with updating rule $S_i = F(\sum_{j \in N} w_{ij}S_j)$

where *F* is a random activation function.

Why a recurrent network?

 auto-associative memory can recall a memory with a corrupt or incomplete input
 sound theoretical basis in physics and math Ising model, Markov Random Fields,...

powerful learning algorithms

Foreground/Background Discrimination

A recurrent binary network can be used to implement foreground/background discrimination

Find a right mapping: Segmentation ←→ Energy Minimization by appropriately setting connection weights,

Energy minimization with SA or BP

🔏 D:\Video\sea11.AVI [151] - Backgrd1

<u>Eile Devices E</u>dit <u>V</u>iew <u>H</u>elp

💌 🔹 🎥 🕨 🖬 📢 🍽 🕅 🚩 🕀 😵 M

Other Related Topics

Computer vision – Generative model or discriminative model ?

Human vision – How we see?
 "perceptual filling-in"

Generative Model

- Given a problem domain with variables X₁,.., X_T system is specified with a joint pdf P(X_I,..,X_T)
- Called generative model since we can generate more samples artificially
 - Given a full joint pdf we can

Marginalize
$$P(X_j) = \sum_{\forall X_{i,i\neq j}} P(X_1,...,X_n)$$

Condition $P(X_j | X_k) = \frac{P(X_j, X_k)}{P(X_k)}$

By conditioning a joint pdf we can easily form – Classifiers, regressors, predictors

Discriminative Model

- Make no attempt to model underlying distributions
- Only interested in optimizing a mapping from inputs to desired outputs
- Focuses model and computational resources on given task and provides better performance

Examples:

– logistic regression, sigmoid P()
– SVMs

$$P(y=1 | X) = \frac{1}{(1 + \exp(-\theta^T X))}$$

SVM finds hyperplane with maximum distance from nearest training patterns

Computer vision - generative or discriminative

Generative classifiers:

 learn the joint probability p(x,y), x-inputs, y-label
 calculate p(y|x), predict and pick the most likely
 Pros: powerful; can handle missing data; better performance with few data
 Cons: complex, time consuming

Discriminative classifiers
model the posterior p(y|x) directly.
Pros: efficient, higher accuracy
Cons: cannot handle missing data

A hybrid model could be better

Human vision

 Perceptual Filling-in a famous visual illusion, the brain fills in the missing information across the physiological blind spot

So what we see is **not strictly a reflection** of the physical inputs (to the retina),

but instead it is highly dependent on the processes by which our brain attempts to interpret the scene.

Our brain is a very powerful generative model !

Conclusions and Future Work

A platform developed
Robust Facial Expression Recognition in real time is hard
A powerful graphical model needed
Applications

Thank You !