Freehand acquisition
of unstructured scenes

Presented by Mihal Mudure
September 2006




Goals

m Acquire interactively approximate models of
unstructured scenes

= Inside looking out case

= Freehand




Unstructured scenes

m Scenes that contain many small surfaces
= Leafy plants, messy desks, coats on a rack




Unstructured scenes

m Detailed modeling requires

= Huge time investment

= Expensive acquisition hardware




Challenges

m Data acquisition
= Acquire depth information from many viewpoints

= Interactivity

= The operator must be able to get feedback during
data acquisition and guide the scanning




Challenges

m Tracking the acquisition device

= Modeling




Our solution

m Use the ModelCamera for acquisition

= Acquires color frames enhanced with 45 depth
samples

= Evolving model Is a colored point cloud

= Point cloud displayed as we scan




Our solution

m Tracking
= Previous approach: we used calibrated features
(checkers)

= Not very robust for long sequences
m Operator had to concentrate on maintaining registration

= ModelCamera mounted on a mechanical tracking
arm




Our Solution

= Modeling

= Disconnected representation
m Splatting

= Connected representation (triangle mesh)
m Create an approximate mesh for each desired view
m Color the mesh by projective texture mapping




Our solution

= Mesh generation
= project points onto the desired view
= Splat to determine visibility
= Triangulate in 2D

= Unproject each pixel covered by a splat into 3D,
each such point will be a vertex of the 3D mesh

= Advantages
m Reduces the size of the skins In the desired view




Mesh generation

\V/

Desired View




Mesh generation

Desired View







Mesh example







Coloring

= Which reference images to use ?

= Project reference COPs onto a sphere centered around the
object

= Triangulate projections

= When rendering, project the desired view COP onto the
sphere, find the triangle and color using the corresponding
reference cameras

m Assumption : the entire object is visible in the reference
Images
= Enforced during preprocessing




Coloring

R1

Desired View




@)

=
-
=

O
O




Coloring

= Order reference cameras by the distance between the
desired view COP projection and the reference camera
COP projections onto the sphere

m For each desired view pixel find the pixel in the
reference image where the corresponding 3D point
projects

m Compare the depth of the point with the depth In the
reference image (zbuffers for reference images are pre-
computed)

= |f the point Is visible in the reference image, assign
color




Coloring

N\

Reference camera

v

Desired View




Coloring skins

= No good solution

m SKIns are approximations of the surface

= They will get incorrect color from the reference
cameras




Coloring skins

m Current solution

= Simply fill in the missing color by averaging the
neighbors

= Works well as long as skin size remains relatively
small (a few pixels wide)




7
S
e

n

@)

n
—
o

@)
O




Coloring

= Another problem : popping

= When the desired view changes from one set of 3 reference
cameras to another we get very annoying popping

= This is due to the approximate geometry + skins

= Solution ; render image 3 times using each of the 3 reference
cameras as the first in the list, then blend




No Blending




Blending

Triangle (49,48,50), weights (1.000,-0.000,-0.000)




Results




Inside looking out

m Mesh generation works for this case as presented
= Splat size must be changed according to the desired view

= Coloring :
= Which set of images to use to guarantee coverage of the entire scene
= Current solution :
m keep a list k of cameras that see a particular point (preprocessing step)
m |f a point is visible in the 3D mesh, use one of the cameras in its list to color

m We are looking at determining a set of cameras, as small as possible, that
cover the scene

m Coherence from using one reference image to color a large part of the scene
m Blending

= How to blend to avoid the popping artifacts




Inside looking out

= Speed

= An entire room can have a lot of 3D points => slow
mesh generation

= [f many images are needed to cover the whole
desired view == slow coloring of the scene




D
o«
D
O
7p)
-
O
e
©
-
=
)




Simulator scene

s
Yo







Thank you




