

Finite Element Analysis The WTC North Tower

Paul Rosen Mete A. Sozen Ayhan Irfanoglu Christoph M. Hoffmann

Department of Computer Science

Overview

What is FEA?

Computational method to analyze problems of displacements, stresses, and interactions between objects

What does this mean to us?

Physics engine that is physically "accurate"

Who uses this stuff?

- Auto Industry
- Aviation Industry
- Semiconductor industry
- □ ...

Finite Element Model

- Nodes
- Elements
 - □ Shells
 - Beams
 - Solids
 - □ Fluid (SPH or ALE)
- Materials
- Contacts

Converting From Graphics to Finite Elements

UNITED AIRLIN

The Task

- Graphics models need no connection between parts, they only look good.
- So, we need to:
 - Remesh the skins and connect them
 - Add structural elements
 - Add floors, tanks, etc.

Geometric Considerations

Element shape

 Quadrilateral vs. Triangular Elements
 Regular Sized Elements

 Features to Avoid

 Long and Thin Elements
 Small Internal Angles
 T-Junctions

Boeing 767-200 Wing Skin

Boeing 767-200 Fuselage & Empennage

Boeing 767-200 Landing Gear & Engine

Boeing 767-200 Internal Structure

Boeing 767-200 Wings and Empennage

Boeing 767-200 Fuselage

Boeing 767-200

Model Summary

- Statistics:
 - 14341 nodes
 - 11244 shell elements
 - 9001 beam elements
 - 674 solid elements
- Many parts of the process can automated
- Many issues require human interaction
 - No good tools exist for this process

Modeling Jet Fuel

2 systems for modeling fluid
 ALE (Arbitrary Lagrange Eulerian)
 Regular grid
 Fluid is represented as percentage of volume filled
 SPH (Smoothed Particle Hydrodynamics)
 Discrete set of particles
 Each one has a mass associate with it

SPH Elements

- 9118 Gallons of Fuel
- Use regular gird of points
- Test if each point is inside of the tanks

Fluid Structure Interaction SPH Test

- Test to verify physical accuracy of SPH elements
- Can shot at 80m/s toward target

SPH Test

- Force vs. Time Measurement
- Used to calibrate the entire aircraft model
- F4 Phantom on rocket sled

- Riera's calculation requires velocity and mass of individual slices of the aircraft
- Slicing the aircraft is simple geometry problem

WTC North Tower

- Model by members of CE in application called SAP2000
- Conversion into LS-Dyna format
 - Both text based formats
 - Conversion of structural elements trivial
 - One exception: Orientation of beam elements
 - Part and material definitions more difficult

Bringing It All Together

- Airplane model built by us
 Units in millimeters...
- Tower built by members of CE
 Units in feet...
- Estimation of fuel from NIST 9/11 Report
 Units in gallons...
- All of these discrepancies must be addressed

Latest Results – Side View

Latest Results – Core Only

Latest Results – Core, No Fuel

Latest Results – Oblique View

Latest Results – Facade Damage

Damage Diagram (FEMA Report)

CHAPTER 2: WTC 1 and WTC 2

Computational Results

Simulation	Time Required
SPH "Beer Can" Simulation	0.011 real time
	99 hours dual opteron
Riera Calculation	0.2 sec. real time
	99 hours dual opteron
WTC Run 11	0.5 sec. real time
	100 hours nano regatta (8 cpus)
WTC Run 12	0.37 sec. real time
	30 hours nano regatta (16 cpus)

Larger List of Contributors

- Mete Sozen, Civil Engineering
- Christoph Hoffmann, Computer Science, CRI
- Ayhan Irfanoglu, Civil Engineering
- Oscar Ardila-Giraldo, Civil Engineering
- Ingo Brachmann, Civil Engineering
- Paul Rosen, Computer Science
- Santiago Pujol, Civil Engineering
- Voicu Popescu, Computer Science
- Tyler Krahn, Civil Engineering

Questions?

