

Single Viewpoint Symmetry-Based Model Completion for Efficient 3D Acquisition

> Alvin Law Daniel Aliaga Purdue University

Motivation

■ Goal:

Capture a complete model from a single viewpoint

Problem:

- No information about occluded regions of an object
- Need many images to obtain a complete model

Observation

- Discovering and using the symmetry can help capture complete object models
 - □ Fill-in interior holes
 - □ Extend the object "border"
 - Complete the backside

Model Completion

Steps

- □ Input: initial capture from single viewpoint
- Discovery symmetry of object
- □ Use symmetry to add geometry to unseen regions of model
- □ Zip/watertight added regions of model

Symmetry

- Three cases supported
 - Bilateral
 - Radial
 - □ Surface-of-Revolution

Bilateral Symmetry Detection

Compute symmetry plane

 (s_x, s_y, theta, phi)
 Minimize: total symmetric distance between (p, q) pairs

$$\sum_{i} \left| q_{i} - (p_{i} + 2\left(\begin{bmatrix} \cos\theta \sin\phi\\ \sin\theta \sin\phi\\ \cos\phi \end{bmatrix} \cdot \left(\left(\begin{bmatrix} s_{b_{x}}\\ s_{b_{y}}\\ 0 \end{bmatrix} - p_{i} \right) \right) \begin{bmatrix} \cos\theta \sin\phi\\ \sin\theta \sin\phi\\ \cos\phi \end{bmatrix} \right) \right| \to 0$$

Radial Symmetry Detection

- Compute axis of rotation
 (s, t, u, v)
 - Minimize: total distance between original point and replicated point on proposed model

$$\sum_{i}\sum_{j}\left\|q_{ij}-R_{j\theta_n}(u,v)(p_i-\left[s,t,0\right]\right)\right|\to 0$$

SOR Symmetry Detection

- Compute axis of rotation and disc radii
- Minimize: radial distance error between disc and points on disc

$$\sum_{i} \sum_{j} \left(\frac{\left\| (s_{2} - s_{1}) \times (s_{1} - p_{ij}) \right\|}{\|s_{2} - s_{1}\|} - r_{j} \right)^{2} \to 0$$

Adding Geometry

Bilateral

- Interior patches
- Extending borders
- Radial
 - □ Repeat face n times
- Surface of Revolution
 - Create synthetic object

Zipping

- Merge together patches and model
 - Classify all patch triangles
 - Inside
 - Outside
 - Split
 - □ Add zipping triangles
 - Minimize gap distance

Watertight

Resulting Models

