
Feed Forward Non-Pinhole 
Rendering

Tion Thomas
Voicu Popescu

Submitted to Graphics Hardware 2008



Motivation
Graphics, visualization, and vision almost exclusively 
use pinholes

Pinhole restriction is limiting

Recent work shows that non-pinholes can provide 
support for graphics and visualization.
Misconception about non-pinholes

“Rendering is slow, ray tracing is needed”

We argue that one can render with non-pinholes 
efficiently, in feed-forward fashion, with hardware 
support



Talk Outline

• Overview of prior non-pinhole cameras by others
• Overview of prior non-pinhole cameras by 

Purdue CVGLAB
• Discuss 3 major challenges of feed-forward non-

pinhole rendering 
• Describe general solutions to the challenges



Prior non-pinholes by Others

Light field & lumigraph
2-D array of pinhole cameras

Multiple center of projection images
Vertical slit moving along user designed path

Layered depth images
Planar pinhole camera with more than one sample on a ray

All of these non-pinholes are inefficient as they require rendering the 
scene multiple times



Prior non-pinholes by CGVLAB

Sample-based camera (SBC)
A set of binary space partitioning (BSP) trees storing planar 
pinhole cameras at their leaves
Used to render high quality reflections at interactive rates

Sample Based camera model Sample SBC image



Prior non-pinholes by CGVLAB

Graph camera (GC)
A graph of non-pinholes 
producing a single-layer 
image
Frusta are split, bent, and 
merged to sample entire 
scene 

Graph camera model

Sample Graph camera image



Prior non-pinholes by CGVLAB

Single-pole occlusion camera
A planar pinhole with a 3-D radial distortion

SPOC camera model Sample SPOC image



Prior non-pinholes by CGVLAB

Depth discontinuity 
occlusion camera

A planar pinhole with 
3-D distortion specified 
per pixel

Sample DDOC image

DDOC camera model



Prior non-pinholes by CGVLAB

Epipolar occlusion 
camera

Generalizes viewpoint to 
viewsegment

Samples captured by EOC

EOC rays on a row with 4 occluders

Sample EOC image



Challenge 1: complex 
projection

Problem: given a 3-D point, find frustum 
(frusta) that contain(s) it

Sample Based Camera Graph Camera



Challenge 2: footprint 
estimation

Problem: given a triangle & a non-linear 
projection, find projected triangle footprint 
defining pixels where to rasterize

Problem: Bounding box does 
not encapsulate entirety of 
pixels inside of distrorted
triangles



Challenge 3: non-linear 
rasterization

Problem: Given a non-pinhole camera, a 
triangle, and a pixel p, find rasterization
parameter value p



Solution: Multi-pinhole Approach

Addresses the complex projection challenge
Use your favorite space partitioning scheme (e.g. grid, 
octree, BSP trees, etc.) to find non-pinhole frustum that 
contains 3-D point
Examples: SBC, GC

No footprint or non-linear rasterization problems since individual 
cameras are pinholes
Each pinhole camera is rendered with a traditional feed-forward 
pipeline



Solution: Subdivision Approach

Addresses footprint estimation and non-
linear rasterization challenges
Subdivide triangle sufficiently to make 
linear rasterization an acceptable 
approximation

Takes advantage of programmability at 
primitive level exposed by recent hardware



Solution: Subdivision Approach

Our implementation uses a geometry shader to perform 
a user specified number of subdivisions per triangle
Geometry Shader Outline:

Given triangle
Find subdivision factor k
Subdivide into k2 subtriangles
For each subtriangle

Project triangle
Issue projected triangle



Solution: Subdivision Approach Images

K=1 K=3 K=5

Reference SPOC 
Image of Cube



Solution: Non-linear 
Rasterization Approach

Addresses footprint estimation 
and non-linear rasterization
challenges
Rasterization is performed 
directly in non-pinhole image 
domain
A bounding triangle is 
calculated using a vertex 
shader for the curved edges of 
the distorted triangle
Size of the bounding triangle 
determined by user defined 
extension factor

Extended 
Bounding 
Triangle



Algorithm overview

For each pixel in footprint
Find non-pinhole camera ray
Intersect ray with 3-D triangle
If inside triangle & visible

Shade on triangle plane



Visualization of triangle 
extension

No Extended Triangles Extension Factor of 3.0 Zoom View



Visualization of triangle 
extension

No Extended Triangles Extension Factor of 1.0
Overdrawn pixels 

highlighted in green



Conclusions

Modern GPUs are sophisticated and fast 
enough to render with non-pinholes
Just make sure the non-pinhole model has 
a fast projection function
Build your own non-pinholes



References
[PSM06] Popescu V., Sacks E., Mei C.: Sample-Based Cameras for 
Feed-Forward Reflection Rendering, IEEE Transactions on 
Visualization and Computer Graphics, 2006
[RPA08] Rosen P., Popescu V., Adamo-Villani N.: The Graph 
Camera, Purdue University Technical Report CSD TR #08-005, 
2008
[RP08] Rosen P., Popescu V.: The Epipolar Occlusion Camera, In 
Proc. of ACM Symp.I3D and Gaming, 2008
[PA06] POPESCU, V. and D. ALIAGA: Depth Discontinuity 
Occlusion Camera, In Proc. of ACM Symp.I3D and Gaming, 2006.
[MPS05] Mei C., Popescu V., Sacks E.: The Occlusion Camera, 
Computer Graphics Forum, Eurographics 2005.



Geometry Shader
TRIANGLE void SPOCConstructionM2GS(AttribArray<VertexDataOutput> vo, 

uniform PHCamera phc, uniform SPOCParameters spocParameters) {
// figure out the subdivision factor
int k = FindSubdivisionFactor(vo, spocParameters, phc);
int kmax = 5;
k = clamp(k, 1, kmax);

float3 bcs[3]; // barycentric coordinates
int n = k*(k+1); n /= 2;
int nmax = kmax*(kmax+1); nmax /= 2;
int i = 0;
int j = 0;
for (int h = 0; h < nmax && h < n; h++) {

bcs[0] = GetBCS(i, j, k);
bcs[1] = GetBCS(i+1, j, k);
bcs[2] = GetBCS(i+1, j+1, k);
emitVertex(InterpolateVertexDataThenDistort(vo, bcs[0], spocParameters, phc));
emitVertex(InterpolateVertexDataThenDistort(vo, bcs[1], spocParameters, phc));
emitVertex(InterpolateVertexDataThenDistort(vo, bcs[2], spocParameters, phc));
restartStrip();
if (j < i) {

bcs[0] = GetBCS(i, j, k);
bcs[1] = GetBCS(i+1, j+1, k);
bcs[2] = GetBCS(i, j+1, k);
emitVertex(InterpolateVertexDataThenDistort(vo, bcs[0], spocParameters, phc));
emitVertex(InterpolateVertexDataThenDistort(vo, bcs[1], spocParameters, phc));
emitVertex(InterpolateVertexDataThenDistort(vo, bcs[2], spocParameters, phc));
restartStrip();
j++;

}
else {

i++;
j = 0;

}


	Feed Forward Non-Pinhole Rendering
	Motivation
	Talk Outline
	Prior non-pinholes by Others
	Prior non-pinholes by CGVLAB
	Prior non-pinholes by CGVLAB
	Prior non-pinholes by CGVLAB
	Prior non-pinholes by CGVLAB
	Prior non-pinholes by CGVLAB
	Challenge 1: complex projection
	Challenge 2: footprint estimation
	Challenge 3: non-linear rasterization
	Solution: Multi-pinhole Approach
	Solution: Subdivision Approach
	Solution: Subdivision Approach
	Solution: Subdivision Approach Images
	Solution: Non-linear Rasterization Approach
	Algorithm overview
	Visualization of triangle extension
	Visualization of triangle extension
	Conclusions
	References
	Geometry Shader

