Feed Forward Non-Pinhole
Rendering

Tion Thomas
Voicu Popescu

Submitted to Graphics Hardware 2008

Motivation

Graphics, visualization, and vision almost exclusively
use pinholes
Pinhole restriction is limiting

Recent work shows that non-pinholes can provide
support for graphics and visualization.

Misconception about non-pinholes

“Rendering is slow, ray tracing is needed”
We argue that one can render with non-pinholes
efficiently, in feed-forward fashion, with hardware
support

Talk Outline

Overview of prior non-pinhole cameras by others

Overview of prior non-pinhole cameras by
Purdue CVGLAB

Discuss 3 major challenges of feed-forward non-
ninhole rendering

Describe general solutions to the challenges

Prior non-pinholes by Others

m Light field & lumigraph

2-D array of pinhole cameras

m Multiple center of projection images
Vertical slit moving along user designed path

m Layered depth images
Planar pinhole camera with more than one sample on a ray

m All of these non-pinholes are inefficient as they require rendering the
scene multiple times

Prior non-pinholes by CGVLAB

m Sample-based camera (SBC)

1 A set of binary space partitioning (BSP) trees storing planar
pinhole cameras at their leaves

1 Used to render high quality reflections at interactive rates

Sample Based camera model Sample SBC image

m Graph camera (GC)

1 A graph of non-pinholes
producing a single-layer
Image

0 Frusta are split, bent, and
merged to sample entire
scene

Sample Graph camera image

Prior non-pinholes by CGVLAB

m Single-pole occlusion camera
A planar pinhole with a 3-D radial distortion

SPOC camera model

COP

Sample SPOC image

Prior non-pinholes by CGVLAB

m Depth discontinuity
occlusion camera

A planar pinhole with
3-D distortion specified

per pixel

DDOC camera model

......................... As E A occluded A

LA A
mage plane bject A\ | [|
NV
S
dd \'I | ‘I,IJE
: e £ ocoluder {4
Tw e Wl
ad/ e a . *,-_-."-l
1l'. ":f-]i ‘mage pjane aﬁ *' ar)
) \
occluder PPHC,

Sample DDOC image

Prior non-pinholes by CGVLAB

EOC rays on arow with 4 occluders

m Epipolar occlusion
camera

Generalizes viewpoint to
viewsegment

Samples captured by EOC

o =
Challenge 1: complex

projection

m Problem: given a 3-D point, find frustum
(frusta) that contain(s) it

Sample Based Camera Graph Camera

%/ o

//’//’W//"

Challenge 2: footprint
estimation

m Problem: given a triangle & a non-linear
projection, find projected triangle footprint
defining pixels where to rasterize

Problem: Bounding box does

not encapsulate entirety of
/ pixels inside of distrorted
triangles

Challenge 3: non-linear
rasterization

m Problem: Given a non-pinhole camera, a
triangle, and a pixel p, find rasterization
parameter value p

47

Solution: Multi-pinhole Approach

<

m Addresses the complex projection challenge

m Use your favorite space partitioning scheme (e.g. grid,
octree, BSP trees, etc.) to find non-pinhole frustum that
contains 3-D point

m Examples: SBC, GC

No footprint or non-linear rasterization problems since individual
cameras are pinholes

Each pinhole camera is rendered with a traditional feed-forward
pipeline

=\

y/

Solution: Subdivision Approach

m Addresses footprint estimation and non-
linear rasterization challenges

m Subdivide triangle sufficiently to make
linear rasterization an acceptable
approximation

Takes advantage of programmabillity at
primitive level exposed by recent hardware

47
L

m Our implementation uses a geometry shader to perform
a user specified number of subdivisions per triangle

m Geometry Shader Outline:

Given triangle
Find subdivision factor k
Subdivide into k? subtriangles

For each subtriangle
Project triangle
Issue projected triangle

Solution: Subdivision Approach

Reference SPOC
Image of Cube

Solution: Non-linear
Rasterization Approach

Addresses footprint estimation
and non-linear rasterization
challenges

Rasterization is performed
directly in non-pinhole image
domain

A bounding triangle is
calculated using a vertex
shader for the curved edges of
the distorted triangle

Size of the bounding triangle
determined by user defined
extension factor

“——__ Extended

Bounding
Triangle

Algorithm overview

m For each pixel in footprint
~ind non-pinhole camera ray
ntersect ray with 3-D triangle

f inside triangle & visible
Shade on triangle plane

Visualization of triangle

: PURTE
extension
No Extended Triangles Extension Factor of 3.0 Zoom View

Visualization of triangle

extension SR

Overdrawn pixels
No Extended Triangles Extension Factor of 1.0 highlighted in green

..

Conclusions R

*.
_

m Modern GPUs are sophisticated and fast
enough to render with non-pinholes

m Just make sure the non-pinhole model has
a fast projection function

m Build your own non-pinholes

References

[PSMO6] Popescu V., Sacks E., Mei C.: Sample-Based Cameras for
Feed-Forward Reflection Rendering, IEEE Transactions on
Visualization and Computer Graphics, 2006

[RPAO8] Rosen P., Popescu V., Adamo-Villani N.: The Graph
Camera, Purdue University Technical Report CSD TR #08-005,
2008

'RP0O8] Rosen P., Popescu V.: The Epipolar Occlusion Camera, In
Proc. of ACM Symp.I3D and Gaming, 2008

PAOG6] POPESCU, V. and D. ALIAGA: Depth Discontinuity
Occlusion Camera, In Proc. of ACM Symp.I3D and Gaming, 2006.

MPS05] Mei C., Popescu V., Sacks E.: The Occlusion Camera,
Computer Graphics Forum, Eurographics 2005.

Geometry Shader

TRIANGLE void SPOCConstructionM2GS(AttribArray<VertexDataOutput> vo,
uniform PHCamera phc, uniform SPOCParameters spocParameters) {
/I figure out the subdivision factor
int k = FindSubdivisionFactor(vo, spocParameters, phc);
int kmax = 5;
k = clamp(k, 1, kmax);

float3 bcs[3]; // barycentric coordinates

int n = k*(k+1); n /= 2;

int nmax = kmax*(kmax+1); nmax /= 2;

inti=0;

intj=0;

for (int h = 0; h < nmax && h < n; h++) {
bcs[0] = GetBCS(i, j, K);
bes[1] = GetBCS(i+1, j, k);
bcs[2] = GetBCS(i+1, j+1, k);
emitVertex(InterpolateVertexDataThenDistort(vo, bcs[0], spocParameters, phc));
emitVertex(InterpolateVertexDataThenDistort(vo, bcs[1], spocParameters, phc));
emitVertex(InterpolateVertexDataThenDistort(vo, bcs[2], spocParameters, phc));

restartStrip();
if <i){
bcs[0] = GetBCS(j, j, k);
bcs[1] = GetBCS(i+1, j+1, k);
bcs[2] = GetBCS(j, j+1, k);
emitVertex(InterpolateVertexDataThenDistort(vo, bcs[0], spocParameters, phc));
emitVertex(InterpolateVertexDataThenDistort(vo, bcs[1], spocParameters, phc));
emitVertex(InterpolateVertexDataThenDistort(vo, bcs[2], spocParameters, phc));
restartStrip();
j++
}
else {
i++;
i=0;
}

	Feed Forward Non-Pinhole Rendering
	Motivation
	Talk Outline
	Prior non-pinholes by Others
	Prior non-pinholes by CGVLAB
	Prior non-pinholes by CGVLAB
	Prior non-pinholes by CGVLAB
	Prior non-pinholes by CGVLAB
	Prior non-pinholes by CGVLAB
	Challenge 1: complex projection
	Challenge 2: footprint estimation
	Challenge 3: non-linear rasterization
	Solution: Multi-pinhole Approach
	Solution: Subdivision Approach
	Solution: Subdivision Approach
	Solution: Subdivision Approach Images
	Solution: Non-linear Rasterization Approach
	Algorithm overview
	Visualization of triangle extension
	Visualization of triangle extension
	Conclusions
	References
	Geometry Shader

