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1 Introduction

Computers are now extensively used throughout science, engineering, and
medicine. Advances in computational geometric modeling, imaging, and sim-
ulation allow researchers to build and test models of increasing complexity
and thus to generate unprecedented amounts of data. As noted in the NIH-
NSF Visualization Research Challenges report [1], to effectively understand
and make use of the vast amounts of information being produced is one of
the greatest scientific challenges of the 21st Century. Visualization, namely
helping researchers explore measured or simulated data to gain insight into
structures and relationships within the data, will be critical in achieving this
goal and is fundamental to understanding models of complex phenomena. In
this chapter, we give an overview of recent research in visualization as ap-
plied to biomedical applications, focusing on the work by researchers at the
Scientific Computing and Imaging (SCI) Institute [2].

Schroeder, Martin, and Lorensen have offered the following useful definition
of visualization [3]:

Scientific visualization is the formal name given to the field in computer
science that encompasses user interface, data representation and processing
algorithms, visual representations, and other sensory presentation such as
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sound or touch. The term data visualization is another phrase to describe
visualization. Data visualization is generally interpreted to be more gen-
eral than scientific visualization, since it implies treatment of data sources
beyond the sciences and engineering.... Another recently emerging term is
information visualization. This field endeavors to visualize abstract informa-
tion such as hyper-text documents on the World Wide Web, directory/file
structures on a computer, or abstract data structures.

The field of visualization is focused on creating images that convey salient
information about underlying data and processes. In the past three decades,
there has been unprecedented growth in computational and acquisition tech-
nologies, a growth that has resulted in an increased ability both to sense the
physical world in precise detail and to model and simulate complex physical
phenomena. As such, visualization plays a crucial role in our ability to com-
prehend such large and complex data – data which, in two, three, or more
dimensions, convey insight into such diverse biomedical applications as under-
standing the bioelectric currents within the heart, characterizing white matter
tracts by diffusion tensor imaging, and understanding morphology differences
between different genetic mice phenotypes, among many others.

Fig. 1. The Visualization Pipeline.

Shown in Figure 1, the “visualization pipeline” is one method of describing the
process of visualization. The filtering step in the pipeline involves processing
raw data and includes operations such as resampling, compression, and other
image processing algorithms such as feature-preserving noise suppression. In
what can be considered the core of the visualization process, the mapping stage
transforms the pre-processed filtered data into geometric primitives along with
additional visual attributes, such as color or opacity, determining the visual
representation of the data. Rendering utilizes computer graphics techniques
to generate the final image using the geometric primitives from the mapping
process.

While the range of different biomedical visualization applications is vast, the
scientific visualization research community has found it useful to character-
ize scientific visualization techniques using a taxonomy associated with the
dimensionality of the (bio)physical field to visualize:

• Scalar fields (temperature, voltage, density, magnitudes of vector fields,
most image data),

• Vector fields (pressure, velocity, electric field, magnetic field), and
• Tensor fields (diffusion, electrical and thermal conductivity, stress, strain,

diffusion tensor image data).
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We use this taxonomy to discuss the biomedical visualization techniques through-
out this chapter.

2 Scalar Field Visualization

Scalar data is prevalent in biomedical simulation and imaging. In biomedical
computing, scalar fields represent a quantity associated with a single (scalar)
number, such as voltage, temperature, the magnitude of velocity, etc. Scalar
fields are among the most common datasets in scientific visualization, and thus
they have received the most research attention (see [4] for an overview of scalar
field visualization research). Biomedical scalar data, whether derived from
simulations or gathered experimentally, often have both spatial and temporal
components. These components have traditionally been visualized through
different software structures. However, handling both spatial and temporal
components of data within a single, unified software structure is not only
convenient but will tend to strengthen the underlying visualization software
by providing the same results whether the data is measured or computed.

2.1 Direct volume rendering

Direct volume rendering is a method of displaying three-dimensional volumet-
ric scalar data as two-dimensional images and is probably one of the simplest
ways to visualize volume data. The individual values in the dataset are made
visible by the choice of a transfer function that maps the data to optical prop-
erties, like color and opacity, which are then projected and composited to form
an image. As a tool for scientific visualization, the appeal of direct volume ren-
dering is that no intermediate geometric information need be calculated, so the
process maps from the dataset “directly” to an image. This is in contrast to
other rendering techniques such as isosurfacing or segmentation, in which one
must first extract elements from the data before rendering them. To create an
effective visualization with direct volume rendering, the researcher must find
the right transfer function to highlight regions and features of interest.

A common visualization goal in volume rendering is the depiction of the inter-
face between two different materials in a volume dataset. The material surface
can usually be seen with a simple transfer function which assigns opacity only
to a narrow range of values between the data values associated with each of
the two materials. In datasets characterized by noise or a more complicated
relationship among multiple materials, statistical analysis of the dataset val-
ues can help to guide the transfer function design process. Moreover, in cases
where datasets and associated volume rendering methods are more complex

3



(such as volumetric fields of vector or tensor values), methods for guiding the
user toward useful parameter settings, based on information about the goals
of the visualization, become necessary to generate informative scientific vi-
sualizations. Figure 2 shows a maximum intensity projection (MIP) of MRA
data of the cerebral vasculature. The maximum intensity projection volume
rendering method is the most simple form of volume rendering and is the one
most often used by radiologists for viewing volume image data.

Fig. 2. A maximum intensity volume rendering of magnetic resonance angiography
(MRA) data showing a large fusiform aneurysm.

The MIP algorithm works by projecting parallel rays (ray casting) through
the volume from the viewpoint of the user. For each ray, the algorithm selects
the maximum scalar value and uses that value to determine the color of the
corresponding pixel on the two-dimensional image plane. Volume rendering
using MIP yields what look like “three-dimensional x-rays” in gray scales of

4



the scalar volume data. Full volume rendering, on the other hand, traverses
the rays and accumulates (integrates) color and opacity contributions along
the ray. Volume rendering using full volume rendering techniques yields an
image that looks much more like what you might expect a three-dimensional
volume projection to look like in color. The differences are evident as shown
below in Figure 3.

(a) (b)

Fig. 3. (a) Maximum intensity projection (MIP) volume rendering of a tooth from
CT data, and (b) a full volume rendering of the same data using multi-dimensional
transfer functions with SCIRun (section 7.1).

The full volume-rendered image contains more information than the MIP-
rendered image and is usually more useful for understanding the three-dimensional
volume data or image. If this is true, why do most biomedical scientists use
MIP and not full volume rendering? The answer is twofold. First, the MIP
algorithm, since it only uses one value per voxel, is much less costly to com-
pute than full volume rendering, which requires several values per voxel. This
was the case especially before 2003, when graphics cards were not sufficiently
powerful to generate fast full volume renderings. Second, full volume render-
ing is more difficult than the MIP algorithm to use. In particular, researchers
find it difficult to relate the so-called transfer function to the scalar data val-
ues. This difficulty arose because most full volume rendering was originally
done using one-dimensional transfer functions that involved manipulating the
transfer function as a sort of ramp function, as shown in Figure 4. The method
provided no intuitive way to choose the transfer function that might enable
the user to see a particular feature in the data volume.

Fig. 4. Traditional one-dimensional ramp transfer function.
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In some cases, volume visualization is more intimately tied to the imaging
process. For instance, in electron microscope tomography (EMT) the config-
urations of the sample and electron beam limit the range of angles for which
projections (i.e., the sinogram) are acquired. This creates reconstruction arti-
facts that adversely affect the quality of virtually any direct rendering or vi-
sualization strategy. By using volume rendering to fit a surface to the data[5],
we are able to estimate missing parts of the sinogram and create better three-
dimensional reconstructions.

(a) (b)

Fig. 5. Maximum intensity projection (MIP) renderings of electron microscope to-
mography volumes: (a) an image based on the raw data that exhibits reconstruction
artifacts obfuscating the boundaries of this spiney dendrite, and (b) an image based
on a data set that includes estimates of the missing views which reveals a more
coherent picture of the structure.

Finding a good transfer function is critical to producing an informative ren-
dering, but this is a difficult task even if the only variable to set is opacity.
Looking through slices of the volume dataset allows the researcher to spatially
locate features of interest, and the researcher may employ a means of read-
ing off data values from a user-specified point on the slice to help in setting
an opacity function to highlight those features. However, there is no way for
the researcher to know how representative of the whole three-dimensional fea-
ture these individually sampled values are. User interfaces for opacity function
specification typically allow the user to alter the opacity function by directly
editing its graph, usually as a series of linear ramps joining adjustable control
points. This interface does not itself guide the user toward a useful setting,
as the movement of the control points is unconstrained and unrelated to the
underlying data. Thus, finding a good opacity function tends to be a slow and
frustrating trial-and-error process, in which apparently minor changes in an
opacity function may lead to drastic changes in the rendered image. When
the interaction of other rendering parameters, such as shading, lighting, and
viewing angle, enters the picture, the process becomes even more confusing.

6



SCI Institute researchers have done substantial new research in volume ren-
dering [6–15]. For example, Kindlmann and Kniss [15] have recently devel-
oped a method for the semi-automatic generation of transfer functions. In
this method, the researcher creates a data structure, which we call the “his-
togram volume structure,” that captures information about the boundaries
present in the volume and facilitates a high-level interface-to-opacity function
creation. The user can determine which portions of the boundary will be made
opaque without knowing the data values that occur in the boundary. Figure 6
illustrates an approach we have developed that is “semi-automated” in that it
usefully constrains the user to a subspace of all possible transfer function while
still allowing flexible depiction of surface features and characteristics[15].

Multi-dimensional transfer functions are sensitive to more than one aspect
of the volume data, including, for example, both the intensity and one or
more spatial gradients or other derived parameters. Such transfer functions
have wide applicability in volume rendering for biomedical imaging and vi-
sualization. Even scalar datasets can benefit from multi-dimensional transfer
functions. By incorporating edge-detection measures such as the first- and
second-order spatial derivatives, we can easily discriminate between data val-
ues that represent material boundaries and those that represent the materials
themselves. For instance, in a volume visualization of the Visible Male using
CT data with the gradient magnitude and the second directional derivative
in the gradient direction, we can accurately identify (classify) the sinuses, as
seen in the right-hand panel of Figure 7. A method that uses only the CT data
as the sole domain variable in a one-dimensional transfer function (shown in
the left-hand panel of Figure 7 cannot produce a visualization with the same
specificity[6].

Multi-dimensional transfer functions are also valuable for more general cases
in which the data comes from multiple variables in a physical simulation or
multiple medical imaging modalities. In such a case, the transfer function al-
lows one to identify phenomena or features that can be described or classified
based only on the basis of unique combinations of data values. Medical imag-
ing can also benefit from multi-dimensional transfer functions when features
of interest are not adequately described by any one imaging modality. For
instance, CT imaging captures variations in bone structure but does not dif-
ferentiate soft tissues well, whereas MR imaging differentiates soft tissue well
and bone very poorly. By visualizing a co-registered CT and MRI dataset
simultaneously, one can visualize features of interest in the soft tissue along
with important bone landmarks.

To resolve the complexities inherent in a user interface for multi-dimensional
transfer functions, we introduced a set of direct manipulation widgets that
make finding and experimenting with transfer functions an intuitive, effi-
cient, and informative process. To achieve interactive response, we exploited
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Fig. 6. Exploration of a CT dataset (Visible Human project, feet of the visible
woman) with semi-automatically generated multi-dimensional transfer functions.
The inset black-and- white images show the opacity assignment as a function of
CT data value (horizontal axis) and gradient magnitude. The image in the upper
left was created through the use of default settings in the semi-automatic method.
A researcher familiar with the data can identify the obscuring structures as being
associated with the bag in which the specimen was placed prior to freezing and
scanning. When the corresponding region is eliminated from the transfer function
domain (upper right), the skin structure is clearly visible. The remaining features
in the transfer function domain can be identified as the surface of the registration
cord (lower left) and the bone surface (lower right). Such specificity is not possible
with standard one-dimensional transfer functions.

the fast rendering capabilities of modern graphics hardware, especially three-
dimensional texture memory and pixel texturing operations. Together, the
widgets and the hardware form the basis for new interaction modes that guide
the user toward transfer function settings appropriate for their visualization
and data exploration interests [16,10,17].

The generalization of direct volume rendering to multi-valued fields presents
at least two research challenges on which future work can focus, the first in-
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Fig. 7. A comparison of scalar (left) and multi-field (right) volume renderings of the
Visible Male CT data.

volving surface shading and the second involving the efficient evaluation of
multi-dimensional transfer functions. Crucial to successful volume rendering
is the calculation from the original data of the spatial gradients with which
shading and surface rendering will be performed. In scalar data, the gradient
has a simple mathematical definition and computation. In multi-valued fields,
however, the generalization of the gradient is matrix-valued, and the surface
orientation is represented as an eigenvector of this matrix. Current volume
rendering methods make little use this information because it is computation-
ally expensive, although advances in the abilities of GPUs increasingly support
these calculations at interactive rates.

As described above, multi-dimensional transfer functions permit the visual-
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ization of structure based on combinations of values within the constituent
fields. As the number of fields increases, simple implementations of multi-
dimensional transfer functions become unwieldy. This observation motivated
us to investigate analytic expressions for transfer function representation [7].
We have introduced a flexible framework for classifying and rendering multi-
field datasets using transfer functions based on Gaussian primitives. We show
in the paper that Gaussian transfer functions have a number of key features:
they allow for selective classification of narrow features, can be efficiently com-
puted on the graphics hardware, and their integral along a line segment has,
under very limited assumptions, a closed-form analytic solution. Hence, they
obviate the need for large precomputed lookup tables and are very memory
efficient.

We expect this approach to have a large impact on the qualitative and quanti-
tative value of volume rendering and become a significant tool for biomedical
researchers. An example is shown in Figure 8.

Example volume rendering applications The power of volume render-
ing for the interactive investigation of complex medical datasets was demon-
strated in the BioPSE software system with the BioImage PowerApp[18], de-
veloped at the SCI Institute. As an example of BioImage’s utility, we have
used BioImage’s volume rendering tools to investigate the angiogenesis sur-
rounding tumors in transgenic mice, as shown in Figure 9. The mouse vas-
culature, so clearly visible in this three-dimensional volume rendering, could
only be clearly visualized using a tool with the powerful specificity of multi-
dimensional transfer functions. In addition, the BioImage tool that provides
the interactive rendering also allows the user to crop and filter their data; it
allows the user to simultaneously view slices and volume renderings of their
data; and it provides the user with a set of quantitative tools for directly
probing values within his data.

The same volume rendering techniques can be used to on thoracic CT datasets
to investigate lung tumors, as shown in Figure 10. With the BioImage volume
rendering tools we can interactively explore the size and shape of lung tumors
without compromising the fidelity of the original high-resolution CT data.

2.2 Isosurface extraction

Isosurface extraction is a powerful tool for investigating volumetric scalar
fields. An isosurface in a scalar volume is a surface on which the data value is
constant, separating regions of higher and lower value. Given the physical or
biological significance of the data value (i.e., radio-opacity, dye concentration,
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Fig. 8. Example of 4D multi-field volume classified using a gaussian transfer func-
tion. The dataset is the Visible Male Color Cryosection, courtesy of the NLM NIH.
The analytical integration of the transfer function along rays creates a high-qual-
ity representation. In particular muscles and boundaries between white and gray
matter can be precisely isolated. Image courtesy of Joe Kniss [7]

fluorescence level), the position of an isosurface, as well as its relation to other
neighboring isosurfaces, can provide clues to the underlying structure of the
scalar field. In biomedical imaging applications, isosurfaces permit the extrac-
tion of particular anatomical structures and tissues; however, these isosurfaces
are typically static in nature. A more dynamic use of isosurfaces can provide
better visualization of complex space- or time-dependent behaviors in many
scientific applications.

Within the last 15 years, isosurface extraction methods have advanced sig-
nificantly, from an off-line, single-surface extraction process into an interac-
tive, exploratory visualization tool. Interactivity is especially important in
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Fig. 9. Mouse data visualized with BioImage’s multi-dimensional transfer function
volume rendering. Data courtesy of Charles Keller.

Fig. 10. A volume rendered image using multi-dimensional transfer functions. This
view highlights the detailed vasculature of the lungs. Data courtesy of George Chen,
MGH.

exploratory visualization where the user has no a priori knowledge of any
underlying structures in the data. A typical data exploration session therefore
requires the researcher to make many isovalue changes in search of interesting
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features. In addition, it is helpful to provide global views (to place an isosur-
face in the context of the entire dataset) and detailed views of small sections
of interest. Maintaining interactivity while meeting these visualization goals
is especially challenging for large datasets and complex isosurface geometry.

The Marching Cubes [19,20] method, introduced in 1986, was the first practical
and most successful isosurface extraction algorithm. Its simplicity has made
it the de facto standard extraction method even to this date. The Marching
Cubes algorithm demonstrated that isosurface extraction can be reduced, us-
ing a divide and conquer approach, to solving a local triangulation problem. In
addition, the marching cubes method proposed a simple and efficient local tri-
angulation scheme that uses a lookup table. Subsequently, researchers created
methods for accelerating the search phase for isosurface extraction [21–25] all
of which have a complexity of O(n), where n is the number of voxels in the
volume. We introduced the span space [26] as a means for mapping the search
onto a two-dimensional space and then used it to create a near optimal isosur-
face extraction (NOISE) algorithm that has a time complexity of O(

√
n + k),

where k is the size of the isosurface. Cignoni et al. [27] employed another de-
composition of the span space leading to a search method with optimal time
complexity of O(log n+k), albeit with larger storage requirements. In addition,
Bajaj et al. introduced the contour spectrum, which provides a fast isosurface
algorithm and a user interface component that improves qualitative user in-
teraction and provides real-time exact quantification in the visualization of
isocontours [28,29].

We improved further on these isosurface extraction methods by using a dif-
ferent visibility testing approach and virtual buffer rendering to achieve a
real-time, view-dependent isosurface extraction [30–33]. We also presented
a progressive hardware assisted isosurface extraction (PHASE) that is suit-
able for remote visualization i.e., when the data and display device reside on
separate computers. This approach works by reusing, when a view point is
changed, the information and triangles that were extracted from the previous
view point [32]. Using this approach, we can extract only newly visible sections
of the isosurface and thus improve visualization performance.

Following the same view-dependent approach we have recently proposed a
novel point-based approach to isosurface extraction [33]. The basic idea of
our method is to address the challenge posed by the geometric complexity of
very large isosurfaces by a point-based representation of sub-pixel triangles.
Combined with a new fast visibility query and a robust normal estimation
scheme, our method allows for the interactive interrogation of large data sets
(e.g. the full NIH NLM Visible Female dataset (1GB)) at up to 15 frames per
second on a single desktop computer. We also presented an extension of that
algorithm that enhances the isosurface visualization by computing shadows.
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Fig. 11. Isosurface extraction of the full CT data (512 x 512 x 1734, 1mm spacing)
of the NIH NLM Visible Female. Left: A section of the skeleton extracted by the
PISA algorithm [33]. Right: A closeup view of the extracted points. Point shad-
ing is determined by an image-based normal computation technique that ensures
high-quality results.

Isosurface applications As described above, isosurface extraction is a ubiq-
uitous tool for exploring scalar volume datasets. The isosurface module in
SCIRun software system (see the description in the Visualization Software
section 7 below) supports the standard Marching Cubes algorithm as well as
the high-performance NOISE algorithm. These tools are used for a variety
of SCIRun applications, including isochrone visualization, isopotential surface
visualization, and cutting plane synthesis, among others.

For example, SCIRun employs the isosurface extraction algorithm to produce
and visualize isochrone surfaces, as demonstrated in Figure 12. In this applica-
tion, the user can interactively step through different moments in time during
cardiac activation to visualize how the activation wavefront passes through
the heart tissue. By animating the isochrone value (time step), the electro-
physiologist can investigate the specific processes and mechanisms involved in
cardiac arrhythmia.

SCIRun also employs isosurface visualization to render and investigate how
electrical activity on the cortical surface creates isopotential contours on the
surface of the scalp. In Figure 13, we again illustrates how SCIRun can be
used to visualize this data.
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Fig. 12. BioPSE visualization of the isochrones for a cardiac activation simulation.
The front of the heart has been clipped away to reveal the transmural activation
times.

Fig. 13. Visualization of the potential distribution through the cranium due to a
dipolar source simulation. Potentials are color-mapped onto a stream-surface within
the head volume, and evenly spaced isopotential contours are plotted on the scalp
surface. Data courtesy of Scott Makeig, UCSD and Greg Worrell, Mayo Clinic.

2.3 Time-dependent scalar field visualization

Temporal information can be incorporated and readily understood within vol-
ume rendering through the use of sequences of volume images generated across
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a range of time steps. The use of such sequences allows one to effectively in-
vestigate a data set’s temporal dynamics, such as wave propagation effects
through a three-dimensional scalar field. We have developed an algorithm
that significantly reduces the time required to create flow animations of scalar
fields while also reducing the storage requirements. This algorithm, called dif-
ferential volume rendering[34], utilizes temporal and spatial coherence between
consecutive time steps of simulation data to both accelerate the volume ani-
mation and to compress the volume data. The method may be used with all
volume rendering techniques and can be adapted into a variety of ray casting
paradigms that can be used to further accelerate the visualization process[35–
37]. Additionally direct volume-rendering techniques have been proposed as a
methodology to visualize scalar features in a dynamic time-dependent field[38–
42].

3 Vector Field Visualization

Vector fields are a fundamental biophysical quantity that describe the un-
derlying continuous flow structures of physiological processes. Examples of
important biophysical vector fields include bioelectric fields, current densities,
biomagnetic fields, as well the velocities and pressures of biofluids, and the
forces associated with biomechanics. Vector-valued quantities also appear in
biomedical data in the form of derivatives of scalar fields.

Common clinical examples of scalar fields associated with vector fields in-
clude electrocardiography (ECG) in cardiology, and electroencephalography
(EEG) or magnetoancephalography (MEG) in neurology. Such measured clin-
ical data is often sparse and noisy. In order to accurately approximate the
associated vector fields of interest, a preprocessing stage is often needed that
involves applying appropriate filtering and interpolation schemes. The deriva-
tives of the resulting smooth quantities can then be computed to yield the
vector fields. High-resolution vector fields are also directly obtained through
computer simulations, including forward and inverse problems that rely on
numerical approximation methods ranging from Finite Elements, Finite Dif-
ferences, Finite Volumes and Boundary Elements. In these cases the vector
field data naturally lends itself to scientific visualization techniques that re-
spect the numerical models used in the computation.

3.1 Vector field methods in scientific visualization

Visualizing vector field data is challenging because no existing natural repre-
sentation can visually convey large amounts of three-dimensional directional
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information. Visualization methods for three-dimensional vector fields must
balance the conflicting goals of displaying large amounts of directional infor-
mation while maintaining an informative and uncluttered display.

The methods used to visualize vector field data sets take their inspiration in
real world experiments where a wealth of physical flow visualization techniques
have been designed to gain insight into complex natural flow phenomena. To
this end external materials such as dye, hydrogen bubbles, or heat energy can
be injected into the flow. As these external materials are carried through the
flow, an observer can track them visually and thus infer the underlying flow
structure.

Analogues to these experimental techniques have been adopted by scientific
visualization researchers, particularly in the computational fluid dynamics
(CFD) field. CFD practioners have used numerical methods and three-dimensional
computer graphics techniques to produce graphical icons such as arrows, mo-
tion particles, and other representations that highlight different aspects of the
flow.

Among existing flow visualization methods, the techniques relevant to the
visual analysis of biomedical vector fields can be categorized as follows.

(1) The simplest techniques correspond to an intuitive, straightforward map-
ping of the discrete vector information to so-called glyphs. Glyphs are
graphical primitives that range from mere arrows to fairly complex graph-
ical icons that display directional information, magnitude, as well as, ad-
ditional derived quantities such as the curl and divergence altogether.

(2) The second category corresponds to the set of techniques that are based
on the integration of streamlines. Streamlines are fast to compute and
offer an intuitive illustration of the local flow behavior.

(3) Stream surfaces constitute a significant improvement over individual stream-
lines for the exploration of three-dimensional flows since they provide a
better understanding of depth and spatial relationships. Conceptually
they correspond to the surface spanned by an arbitrary starting curve
advected along the flow.

(4) Textures and other dense representations offer a complete picture of the
flow, thus avoiding the shortcomings of discrete samples. Their major
application is the visualization of flows defined over a plane or a curved
surface.

(5) The last type of flow visualization techniques are based on the notion
of flow topology. Topology offers an abstract representation of the flow
and its global structure. Sinks and sources are the basic ingredients of a
segmentation of the volume into regions connecting the same spots along
the flow.

17



Next we describe how each of these different approaches can be applied to the
visualization of biomedical vector fields. Because of their lack of scalability and
the strong occlusion issues that characterize them in practical applications we
do not consider glyph-based techniques in further detail.

3.2 Streamline-based techniques

Streamlines offer a natural way to interrogate a vector data set. Given a start-
ing position selected by the user, numerical integration over the continuous
representation of the vector field yields a curve that can be readily visualized.
The numerical schemes commonly used for the integration range from the
first-order Euler scheme with fixed step size to Runge-Kutta methods with
higher-order precision and adaptive step size [43]. The choice of the appropri-
ate method requires to take into account the complexity of the structures at
play and the smoothness of the flow.

Since streamlines are unable to fill the space without visual clutter the task of
selecting an appropriate set of starting points (commonly called seed points)
is critical to obtaining an effective visualization. A variety of solutions have
been proposed over the years to address this problem. A simple interactive
solution consists in letting the user place a rack in the data volume over which
seed points are evenly distributed. The orientation and spatial extent of the
rack, as well as the number of seed points can be adjusted to allow for the
selective exploration of a particular region of interest, as shown in Figure 14.

Another class of methods aim at automatically placing seed points through-
out the domain in order to achieve an even distribution of the correspond-
ing streamlines [44–48]. Following this approach, Sachse et al. devised a new
streamline seeding technique, specifically designed for the visualization of the
electrical current, that distributes streamlines in the volume based on the lo-
cal value of the current density [49,50]. As a result, streamline and current
densities are proportional, which produce images that engineers can easily
interpret. Examples are shown in Figure 15.

An additional limitation of flow visualizations based upon streamline tech-
niques concerns the difficult interpretation of the depth and relative position
of curves in a three-dimensional space. A solution consists in creating ar-
tificial lighting effects that emphasize curvature and assist the user in her
perception of depth [51–53]. An alternative method that can be implemented
on the graphics hardware, assigns a non-zero volume to individual stream-
lines. These streamlines are then depicted as tubes and filled with 3D textures
to create expressive images in which various visual cues are used to enhance
perception [54]. Refer to Figure 16.
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Fig. 14. Applications of streamlines to Finite Element biomedical data sets. Left:
The bioelectric field in the torso visualized through streamlines seeded randomly
around the epicardium. Right: Use of a circular rack to seed streamlines regularly
around a dipolar source in the brain.

3.3 Stream surfaces

The intuitive representations offered by stream surfaces make them a very
valuable tool in the exploration of three-dimensional flows. The standard
method for stream surface integration is Hultquist’s advancing front algo-
rithm [55]. The basic idea is to propagate a polygonal front along the flow,
while accounting for possible divergence and convergence by adapting the front
resolution. Yet, this method yields triangulated surfaces of poor quality when
the flow exhibits complex structures. We recently proposed a modified stream
surface algorithm that improves on Hultquist’s original scheme by allowing for
an accurate control of the front curvature [56]. This method creates smooth,
high-quality surfaces, even for very intricate flow patterns. We applied stream
surfaces to the visualization of the cardiothoracic current obtained through a
Finite Elements simulation [57]. Specifically, stream surfaces were shown to
permit insight into the interconnection of different regions of the epicardium
through the bioelectric current inside the thorax. An illustration is shown in
Figure 17.

A similar approach was used to visualize the return current in a high-resolution
simulation of a realistic head model. In this case stream surfaces proved in-
strumental in assessing the impact of various models of the white matter
anisotropy on the current pattern and its interconnection with anatomical
structures, see Figure 18 and section 5.1.
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Fig. 15. Streamline visualization of electrical current flow in a cube. A conductivity
of of 0.02 and and 0.2 S/m were assigned to the lower and upper half, respectively,
of the cube. (a) 10, (b) 20, (c) 50, (d) 100, (e) 150, and (f) 200 streamlines were
drawn. Two Dirichlet boundary conditions were assigned representing an electrical
source and sink. A raster cube consisting of 32 x 32 x 32 cubic voxels constituted
the spatial domain. Images courtesy of Frank Sachse [49]

Despite their esthetic appeal and the effective visualizations they yield, stream
surfaces share with streamlines the limitation induced by their reliance on a
careful seeding. Here, the seeding task consists in selecting a starting curve
such that the resulting surface will exhibit the characteristic patterns of im-
portant flow structures. As with streamlines, this task can be tedious. In the
case of the bioelectric current, flow structures can be defined in terms of inter-
connections between zones of inflow and outflow on a surface enclosing dipolar
sources. This is the solution that we applied in Figures 17 and 18. To visualize
the cardiothoracic current isocontours of either the electric potential or electric
flux are used as seed curves on the epicardium, see Figure 17. In the case of
the return current in the brain, however, no such obvious surface exists that
encloses the source. A possible solution consists in introducing an artificial
spherical surface surrounding the known source position. Refer to Figure 18,
top left. Observe that culling is helpful to address the occlusion caused by the
intricate shape of the stream surface.

Another solution to the seeding problem that we investigated consists in ex-
ploring the dependency of stream surfaces on a parameterization of their seed-
ing curves. As the seeding curve changes according to some predefined mecha-
nism the corresponding evolution of the stream surface can then be visualized
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Fig. 16. An extension of streamline-based Flow Visualization. The image shows a
combination of streamlines and 3D textures in the visualization of a tornado data
set. Textures permit to embed additional information and ease the interpretation
of the spatial context. From [54]

as an animation. For example this technique can be used to allow for a bet-
ter understanding of the three-dimensional structure of the return current in
the brain. Specifically, a circle of increasing radius centered around the dipo-
lar source and lying in the transverse plane orthogonal to the dipole axis is
regarded as a parameterized seeding curve. An analysis of the differences be-
tween isotropic and anisotropic conductivity of the white matter can then be
made in a side by side comparison of the corresponding animations. Results
are shown in Fig. 19.

3.4 Texture representations

Texture-based flow visualization methods provide a unique means to address
the limitations of depictions based on a limited set of streamlines. They yield
an effective, dense representation which conveys essential patterns of the vec-
tor field and does not require the tedious seeding of individual streamlines
to capture all the structure of interest [58]. Arguably the most prominent of
those methods is Line Integral Convolution (LIC ) proposed by Cabral and
Leedom [59]. The basic idea is to apply a one-dimensional low-pass filter to
a white noise texture covering the two-dimensional flow domain. The filter
kernel at each pixel is aligned with streamlines of the underlying flow. Con-
sequently the resulting image exhibits a high correlation of the color values
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Fig. 17. Visualization of the bioelectric field in the direct vicinity of epicardium with
high-quality stream surfaces. The image shows the technique applied to the cardio-
thoracic current in a Finite Element forward computation. The surfaces capture
the geometry of the current induced by the dipole equivalent cardiac source. They
also provide an effective representation of the interconnections that exist between
different regions on the epicardium. The seeding curves correspond to isocontours
of the electric potential selected close to local extrema. A rainbow color map is used
along each seeding curve to visualize flow stretch.

along the flow and little or no correlation across the flow. Hence this method
produces a dense set of streamline-type patterns that fill the domain and re-
veal all the flow structures that are large enough to be captured by the fixed
resolution of the texture. This seminal work has inspired a number of other
methods. In particular, improvements were proposed to permit the texture-
based visualization of time-dependent flows [60–62], flows defined over arbi-
trary surfaces [63–65], and dye advection [66]. Some attempts were made to
extend this visual metaphor to three-dimensional flows [67,68].

An alternative to LIC-like visualization methods uses reaction-diffusion simu-
lations to generate textures with shapes, sizes, and orientations driven by the
underlying vector field[69]. Note that this approach to flow visualization is
in fact an extension of a visualization method previously developed for diffu-
sion tensors [14]. The human visual system naturally follows spatio-temporal
patterns and can easily perceive very subtle changes affecting them. This al-
lows the orientation and magnitude of the local vector field to be conveyed
with an appropriately tuned pattern of elliptical spots. This method of visu-
alization is based on mapping two of the vector field components, orientation
and magnitude, to the diffusion kinetics in the reaction-diffusion system. Our
method also supports mapping orientation uncertainty to the diffusion ki-
netics. This is further discussed in section 5.2. The principal advantage of
the reaction-diffusion model over existing flow field visualization techniques
is that the pattern size and density that naturally arises from the reaction-
diffusion model accurately represents the underlying vector field, based on a
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Fig. 18. Stream surface visualization of bioelectric field induced by a dipolar source
in left thalamus. Left top. Stream surfaces seeded along isocontour of electric flux
on sphere enclosing the source. Culling is used to address occlusion. White matter
has anisotropic conductivity. Left bottom. Stream surface started along circle
contained in coronal slice and centered around source location. White matter is
assumed isotropic. Color coding corresponds to magnitude of electric field. Right.
Similar image obtained for anisotropic white matter. Glyphs visualize major eigen-
vector of conductivity tensor. Color coding shows magnitude of return current.

flexible mapping from multiple field characteristics to parameters of the diffu-
sion kinetics. Figures 20 and 21 show the anisotropic diffusion applied to the
Turing[70] and Gray-Scott[71,72] reaction-diffusion models for a vector field
at 45 degrees with a random variation in the magnitude.

From the point of view of their application to biomedical vector data texture
representations can be seen as the natural vector counterpart of color plots
for scalar potentials. Indeed, this type of technique is best suited for the vi-
sualization of flow data defined over a plane or a curved surface. Moreover,
texture-based visualizations can be combined with the color coding of a scalar
quantity associated with the vector field to enrich the pictures.

An important property of bioelectric fields is their homogeneous Neumann
boundary condition which imposes that the current cannot leave the conduc-
tive volume and therefore must be tangent to its boundary. In particular, the
current is tangential to the torso and the scalp. In contrast the epicardium
surface is crossed by the current originating at sources locations contained in
the cardiac tissue. As a consequence, the visualization of the restriction of the
current to the heart surface by means of textures requires to first project it
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Fig. 19. Evolution of a stream surface integrated along the return current with
respect to the increasing radius of its seeding circle. Top row. Frames from an
animation corresponding to isotropic white matter. Bottom row. Frames of the
animation obtained for anisotropic white matter.

Fig. 20. Turing model visualization of a vector field with a) random magnitude b)
constant orientation c) magnitude and orientation.

onto the corresponding geometry. Examples are proposed in Figure 22, left,
and Figure 25.

Similar to color plots, an obvious way to address the occlusion problems en-
countered when applying texture visualizations to volume data is to restrict
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Fig. 21. Gray-Scott model visualization of a vector field with a) random magnitude
b) constant orientation c) magnitude and orientation.

Fig. 22. Left. LIC representation of the current on the boundary of a Finite Element
grid used in forward computation. The color coded electric potential (negative values
in blue, positive values in red) are superimposed on the texture. Right. Two LIC
textures computed over cutting planes combined by transparency. The geometry of
the heart remains opaque for context.

the representation to a cutting plane. To be meaningful the choice of this plane
must be made based on the symmetry of the geometry and on the known po-
sition of a bioelectric source, see Figure 22, left and Figure 23. However, a
single plane is typically unable to convey an informative picture of the three-
dimensional current. This problem is emphasized when the conductivity of the
tissue is anisotropic which breaks the symmetry of the dipolar current flow
pattern and increases its geometric complexity. A simple solution consists in
displaying two or more such planes in combination. Additionally transparency
allows the user to see the spatial relationship between the patterns exhibited
by each texture. An example is shown in Figure 22, right.

3.5 Topology

The topological approach provides a powerful framework for flow visualization
in a broad range of applications [73]. For planar vector fields, as well as vector
fields defined over curved surfaces, it has established itself as a method of ref-
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Fig. 23. LIC applied to coronal and sagittal clipping planes reveals details of the
dipolar source and its interaction with the surrounding anisotropic tissue. Rather
than a typical smooth, symmetric dipolar pattern, the electric current is clearly
diverted by the presence of white matter tracts that lie close to the source. The
field also changes direction very rapidly as it approaches the skull just beneath the
surface of the head.

erence to characterize and visualize flow structures. The excessive complexity
of the topology of intricate flows can be addressed by simplifying the resulting
graphs while preserving essential properties in order to facilitate the analysis
of large-scale flow patterns [74,75]. Refer to Figure 24.

Fig. 24. Topology simplification. The left image shows the original topology obtained
for a CFD simulation of a streaming jet with inflow into a steady medium. Numerous
small-scale structures lead to a cluttered depiction. The right image shows the same
data set after topology simplification.

Topology-based methods prove interesting in the visualization of the bioelec-
tric current on the epicardium. In this case, the automatically extracted topo-
logical features are believed to be related to what is known in cardiac elec-
trophysiology as epicardial breakthroughs. This phenomenon occurs when an
activation wave in the cardiac tissue breaks through the surface, generating a
local potential minimum in the epicardial surface. Refer to Figure 25.

The usability of three-dimensional topology for the characterization of salient
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Fig. 25. Topology of bioelectric field on epicardium. The images show a LIC repre-
sentation of the potential gradient on the surface enhanced by the depiction of the
associated topological graph. Green points correspond to potential minima, blue
points mark potentials maxima. Left and middle images show an anterior view of
the epicardium. Right image shows a view of the torso from the left.

patterns of the bioelectric current remains limited. The explanation comes
from the structure of a bioelectric field. Indeed, bioelectric sources typically
behave as dipoles, which do not exhibit an intrinsic separation surface and
therefore do not allow for a natural topological segmentation of their sur-
rounding medium. However the application of the topological framework to
the visualization of bioelectric activity is at a very early stage and future
research will be necessary to determine the full potential of this approach.

Beyond its application to bioelectric data, the topological approach shows
great promise to be instrumental in the structural investigation of flows in
other biophysical fields as well. For instance, topology is known to permit the
characterization of flow recirculation patterns in fluid dynamics [76] and can
therefore provide powerful tools to analyze blood recirculation in hemodynam-
ics. Topology could also be used to study and visualize the structures of forces
in biomechanics.

4 Tensor Field Visualization

Tensors provide the language necessary to describe the intrinsic material prop-
erties of biological systems. Electrical conductivity and molecular diffusivity
are examples of material properties that describe the ability of particles (such
as electrons and water molecules) to pass through a given material. Strain and
stress tensors on the other hand, characterize the mechanical properties of soft
tissues. Material properties are often inhomogeneous, that is they vary as a
function of the position within the material. Thus, proper modeling of their
characteristics requires a field of tensor values sampled in three dimensions.
Hence gaining insight in the structure of three-dimensional tensor fields is a
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significant and ongoing challenge in biomedical visualization.

The need for tensor visualization arises in the modeling of the material con-
ductivity of tissue, such as in the brain or heart. Conductivity is a tensor
quantity because the fiber structure of the tissue results in anisotropic con-
duction [77,78]; setting accurate values of fiber structure is a crucial component
of a model of the cardiac propagation [79,80], or the localization of an epilep-
tic seizure from an inverse EEG computation, tasks that require tensor field
visualization capabilities.

Another application that has drawn increasing interest is diffusion tensor imag-
ing. Diffusion tensor MRI (DT-MRI or DTI) is an imaging modality that
permits, through its influence on the local diffusion of water molecules[81],
the non-invasive measurement of tissue physical microstructure. In regions
where the tissue has a linear organization, such as in myelinated axon bun-
dles comprising the white matter in the brain or in muscle tissue, diffusion is
preferentially directed along the fiber direction, and this phenomenon can be
measured with DT-MRI. Creating meaningful images or models from diffu-
sion tensor data is challenging because each sample point has six independent
degrees of freedom.

The deformation of the heart muscle (myocardium), namely its successive con-
traction and expansion are described by a different tensor, the strain tensor.
For clinical purposes the analysis of the strain tensor field in the left ventri-
cle is of great significance in the efficient screening of cardiac patients since
abnormal properties of the myocardial strain can be identified before the first
symptoms of a heart attack [82]. An imaging technique used to acquire the
corresponding tensor data is called Tagged MRI. It consists in using radiofre-
quency pulses in a MR scanner to create dark lines in the MR image. Because
these lines deform with the tissue, the motion of material points can be tracked
over time to compute the strain tensor [83]. Measures obtained through MRI
can be coupled with Finite Element models of the mechanics of the tissue [84]
or deformable image registration [85]. The visualization of the resulting ten-
sor data is then instrumental in producing diagnostic information for cardiac
conditions.

The remainder of this section provides an overview of the different visual-
ization techniques that have been devised to help clinicians and researchers
explore and analyze the rich structural information contained in large biomed-
ical tensor data sets.
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4.1 Anisotropy and tensor invariants

The examples of tensor fields mentioned previously share the property that
they correspond to real symmetric maps between vector fields. Real symmetric
tensors have real eigenvalues λi and the associated eigenvectors ~ei are mutually
orthogonal:

T~ei = λi~ei, λi ∈ IR, ∀i 6= j ~ei.~ej = 0.

A standard notation consists in classifying the 3 eigenvectors in major, medium,
and minor eigenvectors with respect to the corresponding eigenvalue: λ1 ≥
λ2 ≥ λ3.

A tensor is called isotropic if it maps every vector direction uniformly. In
the case of a diffusion tensor, for example, this corresponds to an equal pas-
sage of molecules through the material in every direction. An isotropic strain
tensor indicates that the material deforms uniformly in all directions. This
property implies that all eigenvalues are equal and individual eigenvectors
in the previous definition cannot be characterized (the eigenspace is three-
dimensional). When there exists a preferred direction, the tensor is called
anisotropic. Two different anisotropic behaviors exist for three-dimensional
tensors. Linear anisotropy corresponds to one large and two small eigenval-
ues: λ1 � λ2 ≈ λ3. In this case a single preferred direction exists. Planar
anisotropy corresponds to two large and equal eigenvalues and a small third
eigenvalue: λ1 = λ2 � λ3. In this case, the restriction of the tensor to its two-
dimensional eigenspace is isotropic. To characterize the anisotropy of a tensor
several measures have been devised that find direct applications in biomedical
tensor visualization. Basser and Pierpaoli introduced the notion of fractional
anisotropy [86] defined as:

FA =

√
3

2

||T − µ1I3||
||T ||

,

where µ1 = 1
3

∑
i λi is the mean of the eigenvalues, I3 is the identity map, and

||.|| designates the Frobenius norm. The term T − µ1I3 is obtained by sub-
tracting the isotropic part of tensor T and is called its deviator. FA measures
the anisotropy of a given tensor but does not differentiate between linear and
planar anisotropy. To address this limitation Westin proposed three metrics
that quantify linear and planar anisotropy, as well as isotropic behavior [87].

cl =
λ1 − λ2

λ1 + λ2 + λ2

, cp =
2(λ2 − λ3)

λ1 + λ2 + λ3

, cs =
3λ3

λ1 + λ2 + λ3

29



Observe that eigenvalues as well as quantities derived from them are invariant
under changes of the reference frame. As such they correspond to intrinsic
properties of the tensor and are of primary interest for visualization purposes.

4.2 Color coding of major eigenvector orientation

A solution to visualize the directional information associated with the major
eigenvector consists in using a spherical color map. The coordinates of the
major eigenvector in the reference frame of the laboratory are mapped to red,
green, and blue color values. Because of the indeterminacy of an eigenvector’s
direction, both e1 and -e1 are mapped to the same color. Additionally, the
orientation of the major eigenvector is poorly defined when the eigenvalues
approach planar anisotropy. Therefore the saturation of the color is set with
respect to the value of the linear anisotropy metric cl, which measures the
significance of the major eigenvector as a means to assess the anisotropy of
the tensor. Pajevic and Pierpaoli analyzed the perception issues associated
with different color maps following this basic principle [88].

4.3 Tensor glyphs

At the small scale, glyphs are a staple of tensor visualization because they pro-
vide an intuitive display of individual tensor samples by mapping the eigenval-
ues and eigenvectors of each tensor to the shape and orientation of a geometric
element such as a box or ellipsoid [3]. Observe that as opposed to diffusion or
conductivity tensors whose eigenvalues are positive by definition, strain ten-
sors can have both positive and negative eigenvalues, corresponding to stretch
and compression respectively. Therefore Wünsche and Young [84] suggested to
alternate between a red and a blue color coding mapped onto ellipsoid glyphs
to disambiguate the sign of the eigenvalues. Data inspection with glyph-based
methods represents the first phase of understanding structures in a tensor field.
The use of traditional glyphs for diffusion tensor visualization has a number of
drawbacks. While ellipsoidal glyphs are mathematically simplest because their
symmetry can directly convey a tensor eigensystem, their round shape may
not effectively indicate vital shape and orientation cues, a problem that may
lead to ambiguous displays of disparate tensor values. Cuboid glyphs, with
their sharp edges, avoid this problem, but, in the case of eigensystem sym-
metry (eigenvectors are not unique when two or more eigenvalues are nearly
equal), they often depict an arbitrary directional information, which is easily
influenced by noise.

Westin et al. proposed to address that limitation by mapping the metrics cl, cp,
and cs introduced previously to a line, a disk, and a sphere primitive combined
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in the same glyph [89]. Kindlmann recently presented an alternative strategy
employing a glyph geometry that changes according to the tensor eigensystem,
emphasizing directional information only where it is numerically well-defined
and otherwise reverting to symmetrical configurations [90]. A technique of
solid modeling called superquadrics allows him to represent cuboids, ellipsoids,
cylinders, and all intermediate shapes. Figure 26 demonstrates the palette of
super quadric glyphs, in which the extremes of spherical, linear, and planar
anisotropy occur at the corners of the triangle.

Fig. 26. Superquadric tensor glyphs smoothly blend between cylinders, boxes, and
spheres. From [90]

Fig. 27. Ellipsoidal (left) and superquadric (right) glyph visualizations of an axial
slice of a DT-MRI scan.

Figure 27 demonstrates the differences between ellipsoidal and superquadric
glyphs as used to visualize tensor field data from an axial slice of a diffusion-
tensor MRI dataset. In the left side of Figure 27, many of the ellipsoidal glyphs
appear similar, while the shape differences are more clearly conveyed with the
superquadric glyphs in the right side of Figure 27. The superquadric glyphs
additionally clarify directional patterns. Ideally, the composition of multiple
glyphs from across the tensor field can hint at larger-scale features that may
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be subsequently explored and extracted with other visualization and analysis
techniques.

As with vector visualization, simple attempts at indicating all the tensor vari-
ables at all sample locations rapidly produces unintelligible visual clutter. In
DT-MRI of nervous tissue, the degree of anisotropy has a biological signif-
icance relating to the white matter structure, so an effective way to avoid
clutter is to display only those tensors that exhibit anisotropy of a certain
degree or greater. This strategy was used in Figure 28.

Fig. 28. Visualization of half a brain DT-MRI volume using superquadrics glyphs.
Glyphs are depicted only in anisotropic voxels. Red indicates left/right fiber orienta-
tion, green indicates anterior/posterior, and blue indicates superior/inferior. Image
courtesy of Gordon Kindlmann.

Alternatively, the visualization can be restricted to a single slice. For this type
of representation Laidlaw et al. proposed a method to normalize the size of
the ellipsoids and another method that leverages techniques from oil painting
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to offer a complete view of the tissue anisotropy on a given slice [91].

While the symmetric tensor is a popular representation for the local diffusion,
it is a simplification of the underlying biophysics. In reality, how water diffuses
from a local region varies continuously over the space of directions. A tensor
representation approximates that continuous distribution with an ellipsoidal
shape parameterization. However, with the emerging field of high angular-
resolution diffusion (HARD) imaging, more complicated shapes can be mea-
sured and represented. HARD images reveal complex patterns at fiber-crossing
locations within the brain. This intravoxel heterogeneity is demonstrated in
Figure 29)[92,93].

Fig. 29. Q-ball image showing intravoxel fiber crossing in the major forceps. Figure
courtesy of D.S. Tuch.

In these images, the non-ellipsoidal shape of each glyph is exaggerated by
subtracting the isotropic component from the local measurements.

4.4 Fiber tractography

In diffusion tensor MRI, a popular technique of feature extraction is fiber
tractography[94–96]. In DT-MRI of nervous tissue, fiber tractography seeks
to create models of the pathways of axon bundles in white matter tracts. In
muscle tissue, such as the myocardium of the heart, tractography can illustrate
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the directional structure of the muscle fibers. Standard methods of tractogra-
phy are essentially applications of hyperstreamlines[97,84], in which pathways
are numerically integrated along the direction of the principal eigenvector of
the tensor samples. The biological justification for this lies in how the direction
of greatest diffusivity, the principal eigenvector of the tensor, should indicate
the orientation of the fibrous microstructure of the underlying tissue. How-
ever, noise in the data, inadequate resolution, or complex structures may lead
to problems in the visualization. In such cases, the direction of the principal
eigenvector changes suddenly or is not numerically well defined.

To address this, several generalizations of standard fiber tractography have
been proposed. Tensorlines [98] add an advection term to the diffusion equa-
tion in order to numerically stabilize the path integration. Zhang et al. created
a visualization method that constructs tubular representations of fiber path-
ways in region of strong linear anisotropy and surfaces everywhere tangential
to the two-dimensional eigenspace in regions of planar anisotropy [96]. Sur-
faces provide an intuitive depiction of the directional information associated
with planar anisotropy while avoiding the numerical instability associated with
the tracking of the ill-defined major eigenvector. The scheme computes both
streamtubes and streamsurfaces everywhere in the domain. It then applies
a decimation procedure that preserves the geometric structures only where
they are most meaningful and prunes objects based on similarity measures.
Zhukov and Barr presented a solution to the problem of tracking fiber orien-
tation across noisy DT-MRI data [99,100]. Their approach uses a regulariza-
tion method during the integration based on the technique of Moving Least
Squares. It determines the local tracking direction as a combination of the
orientation sampled in a neighborhood of the current position. The shape and
extent of the neighborhood is determined by a gaussian weighting function
that is scaled in each direction with respect to the anisotropy of the fiber di-
rection determined in the previous iteration. The application of this method
to white matter and cardiac tissue shows the robustness of this strategy and
its ability to extract subtle pathways. Illustrations are proposed in Figure 30
and Figure 31.

Alternatively, Hlawitschka and Scheuermann proposed an algorithm for fiber
tracking in HARD tensor data called HOT-Lines [101]. Due to the higher
angular resolution crossings and bending of neural fibers within a single voxel
can be detected which is not possible using second order tensor models. The
method computes the fiber directions by means of a gradient descent algorithm
and therefore extracts fiber pathways that fully leverage the high angular
accuracy available in the input data.

A natural extension of fiber tractography consists in grouping individual path-
ways together to yield a segmentation of the white matter into fiber bundles.
From a visualization standpoint, the result of this clustering task can also
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Fig. 30. Brain structures: neural pathways computed using the MLS algorithm in
the corpus callosum (left) and corona radiata (right) shown together with isotropic
brain structures - ventricle, eye sockets, and pockets of CSF on the top of the brain.
Cutting planes show isotropic cs values. Images courtesy of Leonid Zhukov [99]

Fig. 31. Reconstruction of heart muscle fibers using the MLS algorithm. The color
coding changes smoothly from clockwise to counterclockwise spiral oriented fibers.
Horizontal parts (very small pitch angle) of the fibers are shown in white. This
coloration is consistent with observations of some heart researchers, who have de-
scribed a systematic smooth variation in pitch and direction of heart muscle fibers
from endocardium to epicardium. Images courtesy of Leonid Zhukov [100]

be leveraged to provide a color coding of the fibers that enhance the inter-
pretation of their spatial structure and their anatomical significance [102].
Some methods require the user to guide the clustering, typically by specify-
ing one or several regions of interest (ROI) [95,103] in order to identify the
fibers that intersect them. In the case of several ROIs, boolean logic can be
applied to determine the set of fibers that connect known regions of the brain
anatomy [104–106]. Clustering can also be achieved in a non-supervised way.
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To that end, Brun et al. proposed to represent each fiber pathway in a high-
dimensional space that embeds the mean vector of the fiber as well as its
covariance matrix [107]. In that space the authors apply so-called normalized
cuts that iteratively split the set of fibers in halves until some homogeneity
criteria are met in each cluster. The result of their method is shown in Fig-
ure 32. Alternatively, Zhang and Laidlaw used an agglomerative hierarchical
clustering method [108].

Fig. 32. Left: Axial view of a segmentation obtained from recursive bipartitioning of
the white matter fiber traces. The color of fiber traces indicate cluster membership.
Middle: coronal view. Images courtesy of Carl-Fredrik Westin [107]

4.5 Volume rendering

Beyond its traditional application to the visualization of three-dimensional
scalar fields, direct volume rendering has also been extended to tensor fields
in several ways. Wenger et al. [109] generalized ideas previously used to vi-
sualize vector fields to achieve the volume rendering of diffusion tensor fields.
The basic ingredients of their representation are threads that depict the di-
rectional information contained in the data combined with halos that enhance
depth perception and whose color and opacity can be varied to encode a scalar
measure of anisotropy. Following a different approach, Kindlmann et al. pro-
posed to use the barycentric coordinates of anisotropy measure introduced in
section 4.1 to control the opacity of the data volume [110,111], see Figure 33.
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Fig. 33. Examples of barycentric opacity maps and resulting volumes. Brighter
regions in the triangle correspond to higher opacity assignment. From [111]

The additional use of a standard color map indicating the orientation of the
major eigenvector helps disambiguate distinct structures of the white matter.
The same authors also designed a method called Lit-Tensors that provides
visual clues about the type of anisotropy and the corresponding orientation.
Their idea consists in introducing an additional control parameter in the stan-
dard Blinn-Phong shading model that allows for a smooth transition between
shading models associated with line and surface objects respectively. In that
way regions of linear anisotropy are shaded like illuminated streamlines [112]
and regions of planar anisotropy are shaded like surfaces, while intermediate
anisotropy types are shaded according to a combination of these two extrema.
Moreover this method can be combined with a shading based on the gradi-
ent of an opacity function alone, which ensures a consistent shading across a
feature of interest. Refer to Figure 34.

In his PhD thesis [113] Kindlmann also described a volume rendering method
based on the analytical computation of the derivatives of a tensor invari-
ant like FA. Leveraging smooth reconstruction kernels for the computation of
the tensor invariant and its derivatives, the method is able to generate vol-
ume renderings of extremely high-quality that effectively captures anatomical
structures.

4.6 White matter segmentation using tensor invariants

We mentioned previously that fiber tractography can serve as a basis for
segmentation of the white matter into bundles of neural pathways that ex-
hibit strong spatial similarities. In collaboration with G. Kindlmann and C.-F.
Westin from Harvard Medical School we have recently proposed a compelling
alternative to that approach [114] which does not require the potentially error-
prone integration of fiber tracts in noisy tensor data. Leveraging concepts
from the field of computer vision we have devised a method that computes
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Fig. 34. Mixing between lit-tensor and opacity gradient shading for a portion of
brain data. Images from [111]

a segmentation of the white matter tissue through crease surfaces of the ten-
sor invariant FA. The premise of this technique is that surfaces where the
anisotropy (as measured by FA) is locally maximal (ridges) correspond to the
two-dimensional core of a fiber bundle, while surfaces where FA is locally min-
imal (valleys) coincide with the boundary between adjacent but distinctly ori-
ented fiber tracts. The algorithm makes use of cubic separable reconstruction
kernels so as to permit the analytical computation of the smooth second-order
derivatives needed to identify crease surfaces. The results demonstrate the
anatomic relevance of the structures extracted in that way. An illustration is
proposed in Figure 35.

5 Uncertainty

5.1 Multi-field visualization

Computational field problems, such as occur in computational fluid dynam-
ics (CFD), electromagnetic field simulation, and essentially any investigation
of a phenomenon whose physiology and physics can be modeled effectively
by ordinary and/or partial differential equations, are frequently encountered
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Fig. 35. Anisotropy creases near the corpus callosum. Top left: RGB map with
fibers. Top right: Ridge surfaces. Bottom left: Valley surfaces. Bottom right:
Valleys with fibers. From [114]

within biomedical computing. For this reason, visualization researchers have
concentrated on developing effective ways to visualize large-scale computa-
tional fields. The output of such simulations might be a single field variable
(such as voltage, pressure or velocity) or a combination of variables involving
a number of scalar, vector, and/or tensor fields. However, much of current and
previous visualization research has focused on methods and techniques for vi-
sualizing a single computational field variable (such as the extraction of an
isosurface from a single scalar field). While visualizations of a single field are
sometimes sufficient for the achievement of some biomedical research goals,
effective simultaneous visualizations of multiple fields would greatly enhance
many projects.

For this reason, biomedical computing is ripe for research in what we will term
“multi-field” visualization[115], in which combinations of the above fields are
visualized together to elucidate their interactions. The challenges for such
multi-field visualizations are many and include large-scale data, complicated
geometries, and heterogeneous and anisotropic material properties. Below are
two examples of multi-field visualizations. Both examples illustrate the chal-
lenges involved in providing a researcher with intuitive and useful visual feed-
back.

In Figure 36, we give a simple example of a multi-field visualization from the

39



simulation of electric current flow within an anisotropic media. The sample
volume has Dirichlet (±1 volts) boundary conditions on the opposite sides of
the cube (orthogonal to the plane of view) and Neumann zero flux boundary
conditions on all remaining sides. The media is described by a single conduc-
tivity tensor with all non-zero elements. The result is very unintuitive; the
isosurfaces are not parallel to the sides of the cube and current lines are not
orthogonal to these isosurfaces. Electric field lines will still be orthogonal to
the isosurfaces, but will not be parallel to the sides of the cube.

Fig. 36. Electric current flow within an anisotropic media. Note how current is not
orthogonal to the isovoltage surfaces because of the anisotropic conductivity.

In another example of multi-field visualization, Figure 37, shows the results
of a large-scale finite element simulation of the distribution of electric current
flow and voltage within an inhomogeneous model of the human head and brain.
The image shows a combination of an isovoltage surface and streamlines of
current flow within the context of the magnetic resonance image scans and a
geometric head model.

In the next figure 38 we see a multi-field visualization from a computational
fluid flow simulation.

Another multi-field visualization idea is to use a combination of scalar and
vector field visualization using glyphs for time-dependent data as shown in
Figures (39 and 40), which illustrate the electrical potential along with the
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Fig. 37. Electric current flow within the brain arising from a localized source, visu-
alized in an immersive environment.

current on the cardiac surface during excitation and repolarization, highlight-
ing regions of in and outflow.

Another compelling example of the need and use of multi-field visualization
arises from EEG inverse simulations. One of the open questions in inverse EEG
source localization is what effect the anisotropy of white matter has on source
localization accuracy. We applied a combination of stream surface visualiza-
tion with simple tensor field visualization to look at the effects of including
anisotropy within a realistic head model for the EEG source localization simu-
lation. Figure 41 illustrates the effects of white matter anisotropy using these
visualization techniques. We can observe a correlation between the primary
direction of the conductivity structure of the white matter fiber bundles and
the direction of the return currents. The visualization of return currents in
bioelectric field problems can reveal important details about the distribution
of sources, interactions at conductivity boundaries, and the effect of geomet-
ric distortion on bioelectric fields. By integrating the stream surfaces with a
visualization of the diffusion tensors representing the white matter, we can
better understand the relationship between structural, spatial relationships
[116,117].

For generations, artists have attempted to convey complex and multiple ideas
and images via limited channels. Painters, for example, use different brush
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Fig. 38. This figure shows a multi-field visualization from a computational fluid flow
simulation. Here we are visualizing two scalar fields by using volume rendering and
the cutting plane in the x-y plane. We are also visualizing two vector fields using
streamlines and arrows in the x-z cutting plane. Data courtesy of Lawrence Berkeley
National Laboratory.

strokes and texture in layers to add depth and structure to oil paintings. In
a similar way, we will employ creative methods to increase the number of
channels that can be presented clearly in visualization. A successful exam-
ple of the application of a painterly method applied to a scientific data set
is shown in Figure 42. The authors, [118] use a combination of discrete and
continuous visual elements arranged in multiple layers to represent the data
and additional mathematically derived quantities such as derivatives or eigen-
values and eigenvectors of a diffusion tensor. Figure 42 shows a visualization
of an airflow simulation based on this layered approach, which presents six
different quantities in a compact way. In the bottom layer, the area of the el-
lipses represents divergence, while eccentricity encodes shear. The arrow layer
conveys the velocity and speed via the direction and area, respectively, of the
arrows. Finally, the ellipses encode the vorticity through their color, texture,
and contrast..

These are just a few examples of our initial ideas and research in the emerg-
ing field of multi-field visualization. From a scientific perspective, multi-field
visualization is valuable because it can generate novel hypotheses about the re-
lationships between the underlying physical or biological quantities. Successful
multi-field visualization requires visual transparency in all the constituent field
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Fig. 39. Combined scalar and vector visualization I. The image shows the electrical
potential and the electrical current over the cardiac surface during excitation, at 10
ms, 20 ms, 30 ms, 40 ms, 50 ms, and 60 ms respectively. The black lines indicate
the boundary between regions of in and outflow of the electrical current. Data and
image courtesy of Bruno Taccardi and Frank Sachse of the Cardiovascular Research
and Training Institute.

visualizations. In the three-dimensional domains of biomedical researchers, it
will be a challenge to generate such transparency, especially through tech-
niques that are also intuitive and interactive.

5.2 Error and uncertainty visualization

With few exceptions, visualization research has ignored the visual representa-
tion of errors and uncertainty for three-dimensional visualizations. Certainly,
this lack can be attributed partly to the inherent difficulty in defining, char-
acterizing, and controlling comparisons between different data sets and partly
to the corresponding error and uncertainty in the experimental, simulation,
and/or visualization processes. In addition, visualization researchers have de-
veloped few methods that allow for easy comparison and representation of
error and uncertainty in data for visualizations. To make current visualization
techniques and software more useful to biomedical computing (and other)
researchers, we need to incorporate visual representations of error and uncer-
tainty [119].
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Fig. 40. Combined scalar and vector visualization II. Electrical potential and elec-
trical current over the cardiac surface are shown during repolarization, at 110 ms,
130 ms, 150 ms, 170 ms, 190 ms, and 210 ms respectively. Data and image courtesy
of Bruno Taccardi and Frank Sachse of the Cardiovascular Research and Training
Institute.

A few visualization researchers have started thinking about how to create
effective three-dimensional visual representations of errors and uncertainties,
the sources of which can include uncertainty in acquisition (instrument mea-
surement error, numerical analysis error, statistical variation), uncertainty in
the model (both in mathematical and in geometric models), uncertainty in
transformation (where errors may be introduced from resampling, filtering,
quantization, rescaling), and uncertainty in visualization. (A useful overview
of uncertainty definitions can be found in[120]). Pang et al.[121] have summa-
rized a variety of techniques that might be used for uncertainty visualization.
These techniques range from adding or modifying the geometry with, for ex-
ample, a bump map or altered lighting attributes, to using textures. Perhaps
the most interesting technique proposed is the use of blurring, as shown in
Figure 43. Grigoryan et al.[122], on the other hand, used point-based primi-
tives instead of blurring to create a fuzzy surface that achieves similar results,
Figure 44. Blurring is a natural cue to the eye that something is amiss. This
technique can easily be applied to a variety of different visualization techniques
from particle tracing to isosurfacing, as we describe later on.

Our reaction-diffusion visualization technique described in section 3.4 can be
modified to create a way to represent uncertainty in the vector field. By al-
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(a) (b)

Fig. 41. Visualization of return current surfaces from an EEG simulation using a
deep thalamic source. The two visualizations show the results of the simulation
using an isotropic model (a) and a model including anisotropic white matter (b).

Fig. 42. Visualization of experimental two-dimensional flow past an airfoil, indicat-
ing velocity, speed, vorticity, rate of strain, divergence, and shear. Image courtesy
R.M. Kirby and H. Marmanis and D.H. Laidlaw.

lowing the amount of anisotropy in the reaction-diffusion model to vary, we
embed another variable that can be visually mapped and controlled. For ex-
ample, let us assume that we have a uncertainty in the vector field associated
with orientation. We can use the anisotropy tensor within the reaction diffu-
sion equation to help create a visual mapping of uncertainty to the resulting
spot pattern. When the amount of anisotropy within the reaction diffusion
equation is small (corresponding to a high value of uncertainty), we can cause
the spot to take an almost circular shape, with the ratio of the semi-axes being
approximately one. However, when the anisotropy within the reaction diffu-
sion equation is high (corresponding to a low value of uncertainty), we can
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Fig. 43. Particle tracing using blurring to show the uncertainty in the path. Used
with permission of the author.

Fig. 44. Point-based primitives used to create a fuzzy surface to show uncertainty.
Used with permission of the author.

cause the spot to take the shape of an ellipse, deforming at times so extremely
that it appears almost as a thick line i.e., the ratio of the semi-axes becomes
very large. This creates a visual difference very well suited to mapping an ori-
entation uncertainty. When the orientation uncertainty is very small, the spot
is elliptical, reflecting a precise orientation. When the uncertainty is very high,
the spot is more circular, reflecting the uncertainty in the orientation. This is
demonstrated in Figure 45 on a synthetic circular field where the uncertainty
in the direction is a function of the angle [123,69].

One simple example of the error and uncertainty visualization techniques com-
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Fig. 45. Reaction diffusion vector field model visualization of orientation uncertainty.
A more elliptical pattern represents low orientation uncertainty, while a more cir-
cular pattern represents a higher uncertainty in the orientation of the vector field.

bines isosurface methods with volume rendering methods. For example, one
can represent the average value of a scalar field with an isosurface and then
represent the error or uncertainty of the scalar field using volume rendering,
as shown in Figures 46 and 47.

Fig. 46. An isosurface of a synthetic dataset (in gray) is bracketed with volume-ren-
dered regions (red and green) indicating uncertainty around the isovalue.

Most recently we have proposed an alternative approach to encoding uncer-
tainty in volume rendering visualizations [124]. Our method offers an intuitive
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Fig. 47. An isosurface of an MRI dataset (in orange) is surrounded by a volume-ren-
dered region of low opacity (in green) to indicate uncertainty in surface position.

means to interactively select the transfer function for a precomputed fuzzy
classified volume data. One key feature of this new method is to permit the
manipulation of the transfer function directly in the feature space. The user
can therefore interact with the visualization at a semantic level. Moreover the
uncertainty present in the fuzzy classification as a result of the mixture of
neighboring material intensities at each sample point can be properly inte-
grated in the volume rendering representation to draw user attention to the
lack of a clear-cut boundary between homogeneous materials. The benefits of
this approach are illustrated in Figure 48.

6 Information Visualization

7 Visualization Software

The are a variety of commercially available and research-based general visu-
alization systems that may be useful for biomedical visualization (see [4] for
an overview of visualization systems). While certainly not an exhaustive list,
examples of these systems are:

Amira: Amira is a professional image segmentation, reconstruction, and
3d model generation application produced by Mercury Computer Systems
GmbH (www.amiravis.com). It is used by research and development groups
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Fig. 48. A Comparison of transfer function-based classification versus data-specific
probabilistic classification. Both images are based on T1 MRI scans of a human
head and show fuzzy classified white matter, gray matter, and cerebro-spinal fluid
from [124]. Left: Results of classification using a carefully designed 2D transfer
function based on data value and gradient magnitude. Right: Visualization of the
data classified using a fully automatic, atlas-based method that infers class statistics
using minimum entropy, non-parametric density estimation [125].

in chemistry, biology, medicine, material science, etc. Amira is designed to
handle confocal microscopy, MRI, or CT data. It uses the tcl language as
a command interface for scripting and is built on top of the OpenGL and
Open Inventor toolkits. Modules can be developed to extend the Amira
system and can use parallelization techniques if the developer so desires.

IDL: Research Systems Inc.’s Interactive Data Language (IDL) (www.rsinc.com/idl)
is used for data analysis and visualization and to rapidly develop algorithms
and interfaces. IDL is a ’Matlab’-like tool that interprets the commands en-
tered by the user.

MicroView: MicroView is an open-source, freely-distributed 3D volume
viewer. It is written in Python and uses VTK for its graphical capabili-
ties.

OsiriX: OsiriX is an open-source image processing software package dedi-
cated to DICOM images produced by medical equipment (MRI, CT, PET,
PET-CT, etc) and confocal microscopy designed to run under OSX on the
Mac. It offers many visualization modes including surface and volume ren-
dering for 2D and 3D interrogation of the data. It is multi-threaded, and
takes advantage of graphic board acceleration.

VTK: VTK, The Visualization Toolkit (www.kitware.com), is a public do-
main visualization package that is widely used in both classroom settings
and research labs. It provides general visualization capabilities for scalars,
vectors, tensors, textures, and volumetric data. Written in C++, VTK in-
cludes Tcl, Python and Java bindings for application development and pro-
totyping. VTK contains some built-in parallelization pieces for both thread-
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ing and MPI.
AVS: Advanced Visual Systems’ (www.avs.com) AVS was the first commer-

cially available dataflow visualization system. AVS/Express provides general
visualization capabilities for scalar and vector visualization. The Manchester
England AVS Center provides user contributed models that add function-
ality to the commercial system. AVS/Express allows for C++/C/Fortran
legacy codes to be integrated using a modular approach.

IBM Open Visualization Data Explorer: IBM Open Visualization Data
Explorer, OpenDX
(www.research.ibm.com/dx), is a public domain dataflow visualization sys-
tem similar to AVS/Express. OpenDX as it is a community-based open
software project.

Iris Explorer: Iris Explorer (www.nag.com) is another commercially-available
dataflow visualization system. The newest version allows modules to be op-
tionally (off-line) compiled into a single executable. This allows the user to
run the group as a single process thus using less CPU time and memory
than required by the original separate modules. Individual modules may be
written to use parallel processing, but this is not directly facilitated by Iris
Explorer.

ANALYZE: The ANALYZE software system (developed at the Mayo Clinic)
is a comprehensive commercially available software packages for three-dimensional
biomedical image visualization and analysis.

In this next section, we describe open source visualization software tools that
have been developed at the SCI Institute.

7.1 SCIRun/BioPSE visualization tools

The SCIRun system has been a focus of research and development at the
SCI Institute since 1995[126,127]. Its framework for visualization, modeling,
and simulation has been the test bed for much of our fundamental research
in visualization techniques and their applications to real-world scientific prob-
lems. As such, it supports all the standard techniques of scientific visualization
and our improvements upon them. This includes efficient extraction of iso-
surfaces (unstructured and structured grids) and volume rendering of scalar
fields, streamlines and hedge-hogs for vector fields, as well as of tensorlines
and glyphs for tensor fields. The visualization can be interactively created
and modified with data probe widgets located within the field geometry. In
2000, the SCIRun PSE (Problem Solving Environment) was made available to
the research community as open source software[128].

We show an example of the SCIRun/BioPSE software system for an elec-
troencephalography (EEG) source localization application in Figures 49 and
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50. Figure 49 contains the dataflow network that implements an inverse EEG
application. At the top of the network, the input data files are loaded; these
include the finite element mesh that defines the geometry and conductivity
properties of the model and a precomputed lead-field matrix that encodes the
relationship between electric sources in the domain and the resulting poten-
tials that would be measured at the electrodes. Further down in the network,
we have a set of modules that optimize the dipole location in order to minimize
the misfit between the measured potentials from the electrodes and the simu-
lated potentials due to the dipole. Finally, we have visualization and rendering
modules, which provide interactive feedback to the user.

Fig. 49. SCIRun/BioPSE modules combined for EEG modeling (unstructured mesh
generation), simulation (finite element simulation, parallel linear system solves, and
inverse source localization), and visualization (mesh visualization, isosurface extrac-
tion, and vector field visualization.
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Fig. 50. Visualization of simulation results of an EEG simulation localizing a neural
source.

7.1.1 SCIRun PowerApps

One of the major hurdles to SCIRun becoming a practical tool for the scientists
and engineers has been SCIRun’s dataflow interface. While visual program-
ming is natural for computer scientists and some engineers, who are accus-
tomed to writing software and building algorithmic pipelines, it is sometimes
overly cumbersome for application scientists . Even when a dataflow network
implements a specific application (such as the bioelectric field simulation net-
work provided with BioPSE and detailed in the BioPSE Tutorial), the user
interface (UI) components of the network are presented to the user in sepa-
rate UI windows, without any semantic context for their settings. For example,
SCIRun provides file browser user interfaces for reading in data. However, on
the dataflow network all of the file browsers have the same generic presenta-
tion. Historically, there has not been a way to present the filename entries in
their semantic context, for example to indicate that one entry should iden-
tify the electrodes input file and another should identify the finite element
mesh file. While this interface shortcoming has long been identified, it has
only recently been addressed. With a recent release of BioPSE/SCIRun, we
introduced PowerApps. A PowerApp is a customized interface built atop a
dataflow application network. The dataflow network controls the execution
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and synchronization of the modules that comprise the application, but the
generic user interface windows are replaced with entries that are placed in the
context of a single application-specific interface window. A comparison of the
dataflow version and the PowerApp version is shown in Figures 51 and 52.

Fig. 51. BioPSE dataflow interface for a bioelectric field application.

7.2 map3d

A special area of visualization that arises in many biomedical domains is dis-
playing sets of time signals that represent scalar values at numerous locations
in space. Examples come from electrophysiology of the heart [129–137] and
nervous system[138–140] and many others in which scientists and engineers
deal with high spatial and temporal resolution of their measured or simulated
data. The challenges of this form of visualization include representing both
geometric shape and the associated data in a manner that is clear to the user,
establishing quantitative, flexible coding and scaling of the data for detailed
interactive analysis, and preserving efficiency so that a user may sort through
very large (tens to hundreds of MBytes) data sets.

One approach to these visualization goals is map3d , an open-source software
project that has been developed over the past 10 years for use in a wide range of
applications in biomedical research[129,130,132]. map3d is written using the
OpenGL standard graphics library and there are versions for all the major
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Fig. 52. The BioFEM PowerApp custom interface. Though the application is func-
tionality equivalent to the dataflow version shown in Figure 51, this PowerApp
version provides an easier-to-use custom interface. Everything is contained within
a single window; the user is lead through the steps of loading and visualizing the
data with the tabs on the right; and generic control settings have been replaced
with contextually appropriate labels; and application-specific tooltips (not shown)
appear when the user places the cursor over any user interface element.

platforms (Windows, MacOSX, Linux, SGI Irix). The motivating application
for map3d was visualizing results from simulations and experiments in cardiac
electrophysiology of the whole heart and although this remains the dominant
application, it has also found use for displaying skin temperature profiles,
scalp electric potentials from electroencephalography, and even concentration
profiles in the nephrons of the kidney. More generally, map3d contains elements
and capabilities that are typical of other solutions to the need to view this
type of data.

The essential structure of map3d is a set of locations in space (nodes), usually
connected to form surfaces of triangles and time signals associated with each
of these nodes. The user must identify the nodes and may use map3d to
connect them and must provide some form of mapping between channels of
time signal and the nodes. From this information, map3d provides a highly
interactive environment with which to view multiple sets of data associated
with the same or multiple sets of nodes/triangles.

To illustrate map3d functionality, Figure 53 shows an example of potentials
recorded from the surface of a dog heart using a 600-electrode sock array.
The figure also shows the capability to display not just scalar values from

54



time series but also quantities derived from those time series. In the figure,
the center image contains what is known as the “activation” time, i.e., the
time instant at which the cardiac wave of excitation passes each location. The
specific case in Figure 53 shows a heart beat that initiated in the center of
the ventricles, indicated by the smallest concentric ellipse colored dark blue in
the image. Contours here indicate discrete values of activation time, spaced at
5-millisecond intervals, and show the pathway of a single activation sequence
(i.e., the electrical sequence that leads to the contraction phase of the heart
beat). The surrounding maps contain renderings of electric potential at a
sequence of time instants, as indicated by the red vertical bar on the time
signal below each frame. map3d offers the capability of rendering not only
the activation time in its own window but also the activation contour that
corresponds to each instant in time within the potential maps—the arrows
in the figure indicate the relationship between the activation time and the
thick red band in each of the four potential maps corresponding to 312, 316,
320, and 324 ms, respectively from the start of the measurement. This figure
also shows the unique support map3d provides for displaying visual queues or
“landmarks”, in this case the red tubes lying on the surface of the heart that
show the location of the coronary arteries.

Frame 321   Time 320 ms

Frame 313   Time 312 ms

Frame 325   Time 324 ms

Frame 317   Time 316 ms
mV

mV

mS

mV mV

mV

Activation Time

Fig. 53. Example of map3d visualization of cardiac potentials and activation times.

The importance of this type of visualization lies in its ability to incorporate
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multiple information sources of quite different nature into the same visualiza-
tion. There are many quantities one can derive from bioelectric time signals
that have meaning on their own, just as activation time provides a compact
representation of the trajectory of the excitation wave in the heart. The chal-
lenge becomes then to display this mixed information in a way that is intuitive
and simple for the user. map3d now supports complex file formats that con-
tain all the information derived from a set of time signals as well as the time
signals themselves so that once constructed (the task of other programs), the
user can quickly evaluate a large volume of information with map3d .

Another example of map3d visualization of multiple data sources is shown
in Figure 54, which contains a sequence of electric potential maps recorded
from the outer surface (epicardium) and inner surface (left-ventricular en-
docardium) of a canine heart. map3d offers many options for quantitative
examination of data sets such as this including the ability to select any point
in the surface rendering and see the associated time signal; an enormous array
of scaling options, including dynamically coupling the scaling across multiple
surfaces; selecting new reference signals (important in evaluating EEG data);
and even marking of data values directly on the surface.

A

D E F

B C

t=43

t=69 t=85 t=252

t=52 t=63

Fig. 54. Sequence of potentials from the outer and inner surfaces of the heart.
Image show the use of clipping planes to reveal data from two concentric surfaces
simultaneously. The first image in the sequence shows the underlying measurement
meshes for both surfaces (in red) and the time values marked in each panel indicate
the time after stimulation of the heart from the epicardium.

A final example of map3d functionality that provides additional visual refer-
ences is shown in Figure 55. Here the entire display of geometry, potentials,
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time signals, and scaling bars is superimposed over a related image of the
source of the data. The user can manually scale and align the geometry or
prescribe the parameters for consistent alignment across multiple instances of
the program.

Fig. 55. Visualization of data from the surface of the heart superimposed on an image
of the same heart during the experiment. Color coding is for surface potentials with
the think red contour indicating the location of activation. The time signal in the
upper right corner of the figure shows a vertical red mark indicating the time instant
captured in the surface map.

7.2.0.1 Application domains of map3d Typical applications of map3d—
and the origins of the program—are in mapping the spatial and temporal
features of cardiac electrophysiology and for this purpose there remains, to
our knowledge, no suitable alternative. Other application areas require the
same basic functionality, i.e., whenever there exist time signals associated
with locations on a surface in three-dimensional space, there are is a similar
set of visualization needs. Some examples from biomedicine include bioelectric
signals from the head, skeletal muscle, or even the eye. However, one might
also visualize temperature variations over the surface of the body or even the
distribution of RNA expression over a two-dimensional tissue preparation.
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8 Summary and Conclusion

New imaging modalities, more accurate simulation models, and continued
growth in computational power all contribute to confronting biomedical re-
searchers and engineers with an unprecedented volume of information to fur-
ther their understanding of biological systems and improve clinical practice.
As the size and complexity of the resulting data explode, the tools created
by Scientific Visualization research become crucial to gaining insight into the
underlying biophysical phenomena. In this chapter, we have offered a selected
overview of recent advances in biomedical visualization, while emphasizing
promising avenues for future research.

Following a natural decomposition, techniques were presented that address
the specific challenges posed by the exploration and analysis of large-scale
scalar, vector, and tensor biophysical datasets. We showed that, in each case,
both effective general purpose and application specific methods have been
devised by the Scientific Visualization community over the last decade. The
proposed algorithms address the need for effective visual representations while
ensuring an efficient processing of large data that supports user interaction.
We also discussed the question of the depiction of the error and uncertainty
present in the visualization pipeline. While the importance of this aspect has
long been underestimated, it is now regarded as an essential component of a
useful visual analysis within a scientific study. We concluded our presentation
with an overview of some of the existing visualization software packages that
feature the methods that we discussed. In particular we gave a more detailed
description of BioPSE and map3d that the Scientific Computing and Imaging
Institute has developed and made publicly available for the benefit of the
biomedical community.

Finally, we would like to mention two important additional visualization re-
search areas that we did not cover in this chapter that could have entire
chapters devoted to them. Information visualization is an active research field
concerned with the visual representation of abstract data with no natural spa-
tial embedding. For example, it provides compelling tools to support analysis
in bioinformatics [141,142]. Another biomedical visualization area that has
received a significant interest over the last few years is molecular visualiza-
tion [143–146].
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