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ABSTRACT 
When rendering from depth images, an important and difficult 
task is selecting the subset of depth-image samples that need to be 
warped to generate the new view. 
We present the vacuum-buffer algorithm, and its use within a 
sample-selection method. Like other techniques, our method 
proceeds by considering samples of reference images that were 
acquired from locations close to the current camera position. 
Additionally, our method offers an estimate of whether visible 
surfaces were potentially missed and points to the scene locations 
where such surfaces might be. The vacuum buffer is essentially a 
generalized z-buffer and it measures what subvolumes of the 
current view-frustum have not been seen by any reference image 
considered so far.  
KEYWORDS: image-based modeling & rendering, algorithm. 

1 INTRODUCTION 
In image-based rendering by warping (IBRW), the depth-and-
color samples of the reference depth images are reprojected 
(warped) to create new images [McMillan95]. IBRW has the 
potential of being very efficient if only one can determine a small 
set of samples that suffice to reconstruct the current view.  
Finding such a set however is a challenging problem. When a 
reference image is warped, surfaces that were not originally 
visible can become disoccluded due to motion parallax, and gaps 
form in the warped image (disocclusion errors). The gaps need to 
be covered with samples from other reference images. Also the 
sampling rate from reference to desired image changes differently 
for every surface.  
This paper presents the vacuum-buffer algorithm, and then its use 
within a new sample-selection method for IBRW. The vacuum 
buffer measures what sub-volumes of the current view-frustum 
are yet to be determined, by storing z-z spans. 
One simple solution is to just warp all samples of reference 
images that were taken from locations near the desired camera 
position. Complicated scenes require dense sampling with 
reference images and this approach generates too many samples. 
Layered Depth Images (LDIs) [Shade98] generalize the concept 
of a depth image by allowing for more than one sample along a 
ray. Consequently an LDI can store samples of surfaces that are 
hidden from the view of the LDI. As the view changes, the 
originally hidden samples become visible, avoiding disocclusion 
errors. Since there are only few samples in the deeper layers, the 
total number of samples in an LDI is only marginally larger than  

the number of samples in an equivalent depth image. The LDIs 
are constructed as a preprocess by warping reference images to 
the view of the LDI and discarding samples that warp to the same 
location and depth.  
An LDI offers only one sampling rate for a particular surface, 
which has to be adapted to the desired-image sampling rate at 
rendering time. This problem is addressed in [Chang99] by using 
a tree of LDIs of increasing resolutions. 
An important question is what reference images need to be 
combined in an LDI in order to completely eliminate disocclusion 
errors? The approach used is to combine many regularly spaced 
reference images, hoping that all potentially visible surfaces are 
sampled in at least one of the reference images. Such an approach 
can evidently miss surfaces. 
Also since LDIs are used to recreate several views, an LDI will 
inherently contain samples that are hidden for a particular view, 
and thus are unnecessarily warped.  
Another important motivation in looking for a new sample-
selection technique is the interest in designing and building 
hardware for accelerating IBRW [Popescu00]. LDIs are 
complicated structures that cannot be easily warped in hardware. 
Our sample-selection technique is based on the vacuum-buffer 
algorithm that decides whether a set of reference-image samples is 
sufficient for a particular desired view. If not, the algorithm will 
indicate where in the scene surfaces might have been missed. The 
next section presents the vacuum-buffer algorithm in detail and 
section 3 describes its use for choosing reference-image samples 
to adequately reconstruct the desired view. 

2 THE VACUUM-BUFFER ALGORITHM 
The basic idea of the vacuum-buffer algorithm is to determine the 
subvolumes of the desired view frustum that could contain visible 
surfaces not sampled by the current set of reference images. We 
call these undetermined subvolumes vacuum. 
In IBRW, the depth of the sample is used to compute its output-
image location. The depth also tells us the distance to the first 
surface in the reference image. Consequently we know that there 
are no other occluders between the center of projection of the 
reference image and the surfaces sampled.  
Figure 1 shows a reference image with center of projection R used 
to reconstruct the desired image with center of projection D. The 
scene is shown by the line A0A1…A5. The area (volume in 3D) 
shown in light gray is determined as being free of occluders by the 
reference image R. For simple referencing we call it air, since in 
most scenes it indeed corresponds to air. The desired image D 
sees part of the air seen by the reference image R and that 
subvolume of the desired image is determined as empty. 
The empty-space information of depth images was used in 
building polygonal-models from range data. In [Curless96], the 
bounding box of a scanned object is subdivided into voxels and 
then the range images are used to carve out the empty voxels. In 
the IBRW context, depth images can be exploited even more. 
In figure 1, the segment A1A2 of the scene is a connected opaque 
surface (occluder) and although other surfaces might be located 
behind it as seen from D, such surfaces cannot affect the desired 
image since they are hidden. The “shadow” that is cast in the 
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desired-image view-frustum by occluders define a don’t care 
subvolume. For the purpose at hand, don’t-care subvolumes are 
equivalent to air volumes.  
The vacuum subvolumes could contain surfaces that are not 
sampled in the reference image R and are visible in the desired 
image D. Vacuum is not a guarantee that visible surfaces were 
missed. In figure 1 for example, the vacuum zone close to D 
might resolve to air when an appropriate reference image that 
encompasses it is used.  
Looking at figure 1, one could imagine that we could detect that 
we are missing samples by searching for uninstantiated pixels in 
the framebuffer. Indeed the framebuffer will contain a gap 
between the new positions of A2 and A3 but missing samples can 
occur even when the framebuffer is fully instantiated as illustrated 
in figure 2. 

2.1 Algorithm Overview 
Given a set of reference images and a desired view, the algorithm 
computes the amount and location of vacuum that remains after 
all reference images are used. Initially the entire view frustum of 
the desired image is undetermined, thus filled with vacuum. The 
reference images are processed in turn by first intersecting the air 
and then the occluder shadows with the vacuum.  
These volume intersections are computed efficiently using a 
generalized z-buffer, which we call the vacuum buffer. The 
vacuum buffer stores z intervals, or spans, corresponding to the 
vacuum remaining in the view frustum along that particular ray. 
The method of intersecting volumes using rasterization buffers 
was first used in constructive solid geometry [vanHook86].  
As a preprocess, each reference image is recursively subdivided in 
quadtree fashion and the closest-z values are precomputed for 
each subregion. This subdivides the reference-image frustum into 
air subfrusta (figure 3). The first frustum is defined by the hither 
plane and the plane of closest z. The next level frusta are defined 
by the parent-region’s closest z and each subregion’s closest z. 

Initially, each vacuum buffer location contains the span (hither, 
yon) since nothing has been determined. We process the 
reference-image frusta recursively, starting from the root of the 
quadtree. The six faces of each frustum are scan-converted into 
the vacuum buffer. Since the frustum is a convex polyhedron, if a 
vacuum buffer location is hit, it will be hit twice. The two z's 
define an air span that is subtracted from the list of vacuum spans 
stored at that location (see figure 4).  
The second step of the algorithm is to ignore all vacuum behind 
occluders. If the reference-image regions at the leaf of the 
quadtree -- which we call tiles -- are small enough, they are, in 
general, part of the same occluder. Computing the exact desired-
image projection of a tile is expensive and is equivalent to 
warping it. This defeats the purpose when the vacuum-buffer 
algorithm is used to choose the tiles needed for the current frame. 
In order to compute the desired-image projection of tiles 
efficiently, we replace the height field corresponding to the tile 
with a single quad. For surface continuity we use the four corner 
samples of the tile, which are connected by two triangles. All 
vacuum behind the projection of the two triangles is eliminated 
(see figure 5).  
If the tiles are too large, the approximation is too coarse and one 
can incorrectly eliminate vacuum, potentially missing surfaces. 
We found that 16x16 sample tiles are adequate for a variety of test 
scenes.  
No matter how small the rectangular tiles, there will be some tiles 
that stretch from one object to the other. Such silhouette tiles that 
are not patches of a single occluder cannot be assumed to be a 
continuous surface and the vacuum behind them cannot be 
eliminated. We detect these tiles by estimating the depth 
discontinuities in the reference image [Popescu00]. The tiles are 
segmented according to the surfaces sampled. The resulting tile 
segments will each model one object, and they can be treated as 
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Figure 4. The figure on the left shows the vacuum buffer after the
first level frustum of the reference image R has been processed.
Several locations contain two spans since part of the vacuum has
been determined. The right figure shows the vacuum buffer after the
second level frustum has been processed. 
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Figure 1. The reference image R is used to determine the volume of
the view frustum of the desired image D. 

Figure 3.  2D view of the
quadtree subdivision of the
reference image frustum.
Only three levels are shown.
At each subdivision one of
the children will have the
same closest z as its parent
so three new frus ta  are
c r e a t e d  w i t h  e a c h
subdivision (one in the 2D
view shown).
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Figure 2. R samples the surfaces
A0A1A'1A'2A2A3 . It does not sample
the hollow sphere. When used to
reconstruct the desired image D, the
hollow sphere projects to B1B2 and
the corresponding pixels are already
instantiated with a fragment of
A0A1 . Just filling the gap between
A 1 and A2 , like from reference
image R1 , might not suffice to
reveal the missing object.
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regular tiles. Note that tile segmentation does not depend on the 
desired view so it can be done as a preprocess.  

2.2 Algorithm Implementation 
1. For each reference image (Preprocess) 

1.1.  Compute depth discontinuities 
1.2. Segment tiles 
1.3. Build quadtree of frusta 

2. Initialize vacuum buffer 
3. Initialize vacuum accounting tree (VAT) 
4. Clear item buffer 
5. For each reference image 

5.1. ProcessFrustum(F0) 
6. Done: VAT measures and locates remaining vacuum 
The ProcessFrustum(Frustum F) routine is summarized next: 
1. if (F == null) return 
2. if F not leaf and F->closestZ is F->parent->closestZ 

2.1. go to 6 
3. Transform, clip, and project frustum 
4. Scan-convert faces in item buffer 

4.1. if item-buffer location hit first time 
4.1.1. UpdateZBuffer(z0) 
4.1.2. UpdateItemBuffer(F) 

4.2. if item-buffer location hit second time 
4.2.1. dv = UpdateVacuumBuffer(z0, z1) 
4.2.2. UpdateVAT(dv) 

4.3. if current face is occluder 
4.3.1. dv =UpdateVacuumBuffer(z0, yon) 
4.3.2. UpdateVAT(dv) 

5. if F is leaf 
5.1. ProcessFrustum(F->next) 

6. for (i = 0; i < 4; i++) 
6.1. ProcessFrustum(F->child[i]) 

The reader will recognize the algorithm described previously. The 
resolution at which vacuum is determined, in other words the 
number of rays in the vacuum buffer, does not have to be the 
resolution at which desired images will ultimately be produced. 
We used a 320x240 vacuum buffer for VGA output resolution. 
However, the resolution cannot be lowered indefinitely since the 
projections of the quads that approximate the tile height-field 
must have relatively accurate sizes and shapes. 
The VAT (vacuum accounting tree) is a data structure for fast 
lookup of how much vacuum is left in the desired view frustum 
and where it is located. It is a quadtree subdivision of a buffer at 
vacuum-buffer resolution. A leaf node stores, for every vacuum-
buffer location, the sum of the lengths of the vacuum spans in that 
linked list. A higher level node stores the sum of the vacuum 
stored at its four children. The VAT is initialized and updated 
together with the vacuum buffer. 
The item buffer is also at the vacuum-buffer resolution and stores 
unique frusta identifiers. It is used to detect second hits of samples 
from the faces of the same frustum. Since the frusta identifiers are 
unique, the item buffer does not need to be cleared from one 
frustum to the next. The z-buffer, also at the vacuum buffer 
resolution, is used to record the z of the first hit. When the second 
hit occurs, the value in the z-buffer and the new z value are used 
to update the vacuum buffer. The amount of vacuum determined 
is used to update the VAT. The z-buffer does not need to be 
cleared since it is used in conjunction with the item buffer. 
The frusta are processed recursively by ProcessFrustum. If the 
current frustum has the same closest z as its parent, it doesn’t need 
to be processed since no progress can be made (step 2). The 
segmented tiles generate two or more frusta at the leaf level of the 
reference-image quadtree (step 5.1). 
Although the frusta are convex and should hit the vacuum buffer 
twice, there are cases of one or more than two hits because of 

finite resolution. If only one hit occurs, (at the desired-view 
silhouette of the frustum), there will be no air span generated to 
update the vacuum. This is the correct degenerate-case behavior. 
If more than two hits occur, typical for edges of the frustum that 
project over another face, the vacuum buffer is updated using tiny 
air spans. The results are correct and the sole penalty is in 
efficiency. We avoid such cases by setting a threshold  below 
which air spans are discarded. 
From figure 4 one can see that the typical vacuum buffer update is 
done with adjacent air spans. Adjacency is of course important 
since it keeps the vacuum-span lists short, which translates into 
efficient update times.  
The next section presents the application of the vacuum-buffer 
algorithm to reference-image sample choosing, called tile 
choosing since tiles are the level at which samples are selected. 

3 TILE CHOOSING  
An ideal set of samples satisfies the following conditions: 
• completeness: all visible surfaces must be sampled; 
• good quality: the sampling rate should be as close as possible 

to the sampling rate required by the desired image; 
• non-redundancy: a particular surface should be sampled by 

only one reference image; 
• low depth complexity: no surfaces should be sampled that are 

hidden in the desired view. 
For the reasons discussed previously, we split the reference 
images into tiles, and the sample-selection is done at tile level.  
To satisfy the quality condition we define a quality metric for tiles 
that relies on approximating the sampling-density change from 
reference to desired image. A similar quality metric was used in 
[Mark97]. In our implementation, the quality is efficiently derived 
from the size of the bounding box of the projection of the quad 
corresponding to the tile. 
Together with the vacuum buffer, we use an additional z-buffer 
and an additional item buffer. The two buffers store the z of the 
closest occluder sample and a pointer to the tile it came from. 
When an occluding face is rasterized, the occluder z-buffer is 
consulted. Close z values indicate tiles that sample the same 
surface, a case in which we give preference to the occluder sample 
that belongs to the higher quality tile. If the current occluder 
sample is clearly behind the closest occluder sample, the hidden 
sample is discarded, reducing the depth complexity. 
The tiles that could not be segmented in order to avoid internal 
depth discontinuities cannot be processed by the algorithm, and, 
conservatively, have to be chosen. 
The tile-choosing algorithm starts with the reference images that 
were acquired from a location closest to the desired camera 
location (see color plate). More and more distant reference images 

Figure 5.  The reference
image is split into 8 tiles.
The leaves of the quadtree
are frusta defined by the
closest -z p lane of  the
previous level and the
quads (AkAk+1 segments)
tha t  app rox ima te  t he
height field of the tile.
The occluding faces are
used  to  e l imina t e  a l l
vacuum behind them (the
dotted rays in D's frustum
indicate the eliminated
vacuum).R D
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are processed until the amount of vacuum remaining is below a 
certain threshold. The chosen tiles are the tiles that have at least 
one sample present in the occluder item buffer: they were neither 
completely occluded nor completely replaced by better tiles. In 
order to avoid scanning through the occluder item buffer, we 
maintain presence counters for each tile. 

3.1 Results 
We tested the tile-choosing technique on a complex model of a 
town - eurotown. The reference images used as input were 
rendered from locations that form a regular 3D grid. 
Our first version of the tile-choosing algorithm [Popescu00] did 
not use the vacuum buffer. It just considered the 8 sampling 
locations defining the cell of the current camera position and 
rendered the tiles in the occluder item buffer and the occluder z-
buffer. No tile segmentation was attempted.  
With the vacuum buffer we were able to double the lengths of the 
sides of the cell, reducing the number of reference images by a 
factor of 8. As in the previous case, tile choosing starts by 
considering the images of the current cell. It stops when the total 
amount of vacuum decreases below a threshold. We used 1/z for 
the vacuum buffer and the initial (hither, yon) vacuum span was 
(100.0, 0). 1/z is convenient since it gives more importance to 
vacuum spans that are close to the camera. Objects that are close 
have a large screen area and the artifact resulting from missing 
them is more noticeable. In our particular case, the threshold 
below which no more disocclusion errors were noticeable was 
1500 (the average amount of vacuum per location is about 0.02).  
Tiles were segmented, allowing a maximum of 6 segments per 
tile. If a tile could not be successfully segmented it was 
conservatively chosen. 
For VGA output resolution, the number of tiles chosen per frame 
was, on average, 3,300. The ratio between the number of 
reference-image samples selected and the number of output-image 
samples is 2.75. This is due to differences in sampling rates from 
input to output and to tile-level sample selection, which does not 
allow the elimination of all redundant samples. 

4 CONCLUSIONS 
We presented a method of selecting reference samples to be 
warped to create the desired view. The method uses the vacuum-
buffer algorithm to estimate the subvolumes of the view frustum 
that have not been determined by the reference images considered 
so far. To our knowledge this is the first IBRW sample-selection 
method that is conservative at the conceptual level; the 
implementation is not absolutely conservative due to the various 
optimizations introduced (i.e. approximation of tiles with quads), 
but good results were obtained. 
A software-only implementation is too slow to be practical. We 
found that the algorithm requires rendering about 7 million 
triangles per second, which is within the capabilities of today's 
hardware. However the algorithm cannot be run on existing 
graphics hardware. The additional capability required is an 
extended z-buffer that can store several z-spans for each location.  
Due to the incremental nature of the updates of the vacuum buffer, 
the span-lists are typically short. We found that for eurotown, no 
list grew longer than 11 spans, which suggests that a simple 
hardware implementation that supports lists of fixed maximum 
length should be possible. 

5 FUTURE WORK 
The current version considers the reference images of the current 
cell in the order defined by increasing distance to the camera 

position. The residual amount of vacuum should decrease more 
rapidly if we: 
• first process the reference image that sees the desired view 

location and has a view direction closest to the desired image 
view;  this eliminates all the vacuum close to the camera; 

• use the VAT to localize the remaining vacuum and then 
select the reference images that see that vacuum. 

This improved heuristic would probably reduce the number of 
reference images that need to be considered. Note that reducing 
the vacuum as quickly as possible is orthogonal to finding the 
samples that best sample a surface for the current view. The 
current implementation relies on the reference images' proximity 
to the camera position for finding good samples. More aggressive 
implementations probably need to consider sample quality as part 
of their termination condition. 
Another possible application of the vacuum buffer is in scene 
acquisition, as a mean of determining the sampling locations. One 
wants to acquire as few images as possible while minimizing the 
number of disocclusion errors. This is the well-known next best 
view problem ([Connoly85] and others). 
Given a set of initial reference images, the vacuum-buffer 
algorithm can be used iteratively to determine the locations of 
subsequent reference images. For each iteration, first the 
algorithm is run for a representative subset of all possible viewing 
locations. Then a new reference-image location is chosen in order 
to eliminate as much vacuum as possible. The iterative process 
stops when the maximum number of sampling locations is met or 
when the scene is adequately sampled. 
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The Vacuum Buffer: tile choosing with the vacuum-buffer algorithm 
Some reference images are shown at the top. The columns show results as the reference images are processed. Row 1 shows the result of warping the 
tiles chosen so far. Rows 2 and 3 show (only every kth row of) the vacuum buffer from an offset view. The vacuum spans are shown in yellow. In row
3, nearby vacuum is not shown and the number of vacuum-buffer rows shown is increased. The vacuum buffer is shown composited with the
warpbuffer. Row 4 shows the occluder item buffer, which stores the tiles chosen so far. Each tile (or tile segment) is shown with a different color.
After the first reference image is added (first column), vacuum persists close to the camera and in the volumes that were occluded in the reference
image and are now exposed (e.g. behind light poles). As one more reference image is processed (second column), the vacuum is reduced and drops 
below a pre-established threshold after the last image. The item buffer contains the chosen tiles. In order to match the sampling rate of the desired
image, the algorithm gives preference to tiles that have projected size close to the original size (see the sky tiles which are not affected by the 
projection). 


