
The Vacuum Buffer In Proceedings of I3D 2001 1

The Vacuum Buffer
Voicu Popescu, Anselmo Lastra

University of North Carolina at Chapel Hill

ABSTRACT
When rendering from depth images, an important and difficult
task is selecting the subset of depth-image samples that need to be
warped to generate the new view.
We present the vacuum-buffer algorithm, and its use within a
sample-selection method. Like other techniques, our method
proceeds by considering samples of reference images that were
acquired from locations close to the current camera position.
Additionally, our method offers an estimate of whether visible
surfaces were potentially missed and points to the scene locations
where such surfaces might be. The vacuum buffer is essentially a
generalized z-buffer and it measures what subvolumes of the
current view-frustum have not been seen by any reference image
considered so far.
KEYWORDS: image-based modeling & rendering, algorithm.

1 INTRODUCTION
In image-based rendering by warping (IBRW), the depth-and-
color samples of the reference depth images are reprojected
(warped) to create new images [McMillan95]. IBRW has the
potential of being very efficient if only one can determine a small
set of samples that suffice to reconstruct the current view.
Finding such a set however is a challenging problem. When a
reference image is warped, surfaces that were not originally
visible can become disoccluded due to motion parallax, and gaps
form in the warped image (disocclusion errors). The gaps need to
be covered with samples from other reference images. Also the
sampling rate from reference to desired image changes differently
for every surface.
This paper presents the vacuum-buffer algorithm, and then its use
within a new sample-selection method for IBRW. The vacuum
buffer measures what sub-volumes of the current view-frustum
are yet to be determined, by storing z-z spans.
One simple solution is to just warp all samples of reference
images that were taken from locations near the desired camera
position. Complicated scenes require dense sampling with
reference images and this approach generates too many samples.
Layered Depth Images (LDIs) [Shade98] generalize the concept
of a depth image by allowing for more than one sample along a
ray. Consequently an LDI can store samples of surfaces that are
hidden from the view of the LDI. As the view changes, the
originally hidden samples become visible, avoiding disocclusion
errors. Since there are only few samples in the deeper layers, the
total number of samples in an LDI is only marginally larger than

the number of samples in an equivalent depth image. The LDIs
are constructed as a preprocess by warping reference images to
the view of the LDI and discarding samples that warp to the same
location and depth.
An LDI offers only one sampling rate for a particular surface,
which has to be adapted to the desired-image sampling rate at
rendering time. This problem is addressed in [Chang99] by using
a tree of LDIs of increasing resolutions.
An important question is what reference images need to be
combined in an LDI in order to completely eliminate disocclusion
errors? The approach used is to combine many regularly spaced
reference images, hoping that all potentially visible surfaces are
sampled in at least one of the reference images. Such an approach
can evidently miss surfaces.
Also since LDIs are used to recreate several views, an LDI will
inherently contain samples that are hidden for a particular view,
and thus are unnecessarily warped.
Another important motivation in looking for a new sample-
selection technique is the interest in designing and building
hardware for accelerating IBRW [Popescu00]. LDIs are
complicated structures that cannot be easily warped in hardware.
Our sample-selection technique is based on the vacuum-buffer
algorithm that decides whether a set of reference-image samples is
sufficient for a particular desired view. If not, the algorithm will
indicate where in the scene surfaces might have been missed. The
next section presents the vacuum-buffer algorithm in detail and
section 3 describes its use for choosing reference-image samples
to adequately reconstruct the desired view.

2 THE VACUUM-BUFFER ALGORITHM
The basic idea of the vacuum-buffer algorithm is to determine the
subvolumes of the desired view frustum that could contain visible
surfaces not sampled by the current set of reference images. We
call these undetermined subvolumes vacuum.
In IBRW, the depth of the sample is used to compute its output-
image location. The depth also tells us the distance to the first
surface in the reference image. Consequently we know that there
are no other occluders between the center of projection of the
reference image and the surfaces sampled.
Figure 1 shows a reference image with center of projection R used
to reconstruct the desired image with center of projection D. The
scene is shown by the line A0A1…A5. The area (volume in 3D)
shown in light gray is determined as being free of occluders by the
reference image R. For simple referencing we call it air, since in
most scenes it indeed corresponds to air. The desired image D
sees part of the air seen by the reference image R and that
subvolume of the desired image is determined as empty.
The empty-space information of depth images was used in
building polygonal-models from range data. In [Curless96], the
bounding box of a scanned object is subdivided into voxels and
then the range images are used to carve out the empty voxels. In
the IBRW context, depth images can be exploited even more.
In figure 1, the segment A1A2 of the scene is a connected opaque
surface (occluder) and although other surfaces might be located
behind it as seen from D, such surfaces cannot affect the desired
image since they are hidden. The “shadow” that is cast in the

The Vacuum Buffer In Proceedings of I3D 2001 2

desired-image view-frustum by occluders define a don’t care
subvolume. For the purpose at hand, don’t-care subvolumes are
equivalent to air volumes.
The vacuum subvolumes could contain surfaces that are not
sampled in the reference image R and are visible in the desired
image D. Vacuum is not a guarantee that visible surfaces were
missed. In figure 1 for example, the vacuum zone close to D
might resolve to air when an appropriate reference image that
encompasses it is used.
Looking at figure 1, one could imagine that we could detect that
we are missing samples by searching for uninstantiated pixels in
the framebuffer. Indeed the framebuffer will contain a gap
between the new positions of A2 and A3 but missing samples can
occur even when the framebuffer is fully instantiated as illustrated
in figure 2.

2.1 Algorithm Overview
Given a set of reference images and a desired view, the algorithm
computes the amount and location of vacuum that remains after
all reference images are used. Initially the entire view frustum of
the desired image is undetermined, thus filled with vacuum. The
reference images are processed in turn by first intersecting the air
and then the occluder shadows with the vacuum.
These volume intersections are computed efficiently using a
generalized z-buffer, which we call the vacuum buffer. The
vacuum buffer stores z intervals, or spans, corresponding to the
vacuum remaining in the view frustum along that particular ray.
The method of intersecting volumes using rasterization buffers
was first used in constructive solid geometry [vanHook86].
As a preprocess, each reference image is recursively subdivided in
quadtree fashion and the closest-z values are precomputed for
each subregion. This subdivides the reference-image frustum into
air subfrusta (figure 3). The first frustum is defined by the hither
plane and the plane of closest z. The next level frusta are defined
by the parent-region’s closest z and each subregion’s closest z.

Initially, each vacuum buffer location contains the span (hither,
yon) since nothing has been determined. We process the
reference-image frusta recursively, starting from the root of the
quadtree. The six faces of each frustum are scan-converted into
the vacuum buffer. Since the frustum is a convex polyhedron, if a
vacuum buffer location is hit, it will be hit twice. The two z's
define an air span that is subtracted from the list of vacuum spans
stored at that location (see figure 4).
The second step of the algorithm is to ignore all vacuum behind
occluders. If the reference-image regions at the leaf of the
quadtree -- which we call tiles -- are small enough, they are, in
general, part of the same occluder. Computing the exact desired-
image projection of a tile is expensive and is equivalent to
warping it. This defeats the purpose when the vacuum-buffer
algorithm is used to choose the tiles needed for the current frame.
In order to compute the desired-image projection of tiles
efficiently, we replace the height field corresponding to the tile
with a single quad. For surface continuity we use the four corner
samples of the tile, which are connected by two triangles. All
vacuum behind the projection of the two triangles is eliminated
(see figure 5).
If the tiles are too large, the approximation is too coarse and one
can incorrectly eliminate vacuum, potentially missing surfaces.
We found that 16x16 sample tiles are adequate for a variety of test
scenes.
No matter how small the rectangular tiles, there will be some tiles
that stretch from one object to the other. Such silhouette tiles that
are not patches of a single occluder cannot be assumed to be a
continuous surface and the vacuum behind them cannot be
eliminated. We detect these tiles by estimating the depth
discontinuities in the reference image [Popescu00]. The tiles are
segmented according to the surfaces sampled. The resulting tile
segments will each model one object, and they can be treated as

R
D

R
D

Figure 4. The figure on the left shows the vacuum buffer after the
first level frustum of the reference image R has been processed.
Several locations contain two spans since part of the vacuum has
been determined. The right figure shows the vacuum buffer after the
second level frustum has been processed.

A5

A1A0

A2

A3 A4

air

vacuum

don't care
R

D

Figure 1. The reference image R is used to determine the volume of
the view frustum of the desired image D.

Figure 3. 2D view of the
quadtree subdivision of the
reference image frustum.
Only three levels are shown.
At each subdivision one of
the children will have the
same closest z as its parent
so three new frus ta are
c r e a t e d w i t h e a c h
subdivision (one in the 2D
view shown).

z
0

z
1

z
21

z
31

z
32

R

R D

A0 A1

A'1

A2

A'2

A3B1 B2

R1

Figure 2. R samples the surfaces
A0A1A'1A'2A2A3 . It does not sample
the hollow sphere. When used to
reconstruct the desired image D, the
hollow sphere projects to B1B2 and
the corresponding pixels are already
instantiated with a fragment of
A0A1 . Just filling the gap between
A 1 and A2 , like from reference
image R1 , might not suffice to
reveal the missing object.

The Vacuum Buffer In Proceedings of I3D 2001 3

regular tiles. Note that tile segmentation does not depend on the
desired view so it can be done as a preprocess.

2.2 Algorithm Implementation
1. For each reference image (Preprocess)

1.1. Compute depth discontinuities
1.2. Segment tiles
1.3. Build quadtree of frusta

2. Initialize vacuum buffer
3. Initialize vacuum accounting tree (VAT)
4. Clear item buffer
5. For each reference image

5.1. ProcessFrustum(F0)
6. Done: VAT measures and locates remaining vacuum
The ProcessFrustum(Frustum F) routine is summarized next:
1. if (F == null) return
2. if F not leaf and F->closestZ is F->parent->closestZ

2.1. go to 6
3. Transform, clip, and project frustum
4. Scan-convert faces in item buffer

4.1. if item-buffer location hit first time
4.1.1. UpdateZBuffer(z0)
4.1.2. UpdateItemBuffer(F)

4.2. if item-buffer location hit second time
4.2.1. dv = UpdateVacuumBuffer(z0, z1)
4.2.2. UpdateVAT(dv)

4.3. if current face is occluder
4.3.1. dv =UpdateVacuumBuffer(z0, yon)
4.3.2. UpdateVAT(dv)

5. if F is leaf
5.1. ProcessFrustum(F->next)

6. for (i = 0; i < 4; i++)
6.1. ProcessFrustum(F->child[i])

The reader will recognize the algorithm described previously. The
resolution at which vacuum is determined, in other words the
number of rays in the vacuum buffer, does not have to be the
resolution at which desired images will ultimately be produced.
We used a 320x240 vacuum buffer for VGA output resolution.
However, the resolution cannot be lowered indefinitely since the
projections of the quads that approximate the tile height-field
must have relatively accurate sizes and shapes.
The VAT (vacuum accounting tree) is a data structure for fast
lookup of how much vacuum is left in the desired view frustum
and where it is located. It is a quadtree subdivision of a buffer at
vacuum-buffer resolution. A leaf node stores, for every vacuum-
buffer location, the sum of the lengths of the vacuum spans in that
linked list. A higher level node stores the sum of the vacuum
stored at its four children. The VAT is initialized and updated
together with the vacuum buffer.
The item buffer is also at the vacuum-buffer resolution and stores
unique frusta identifiers. It is used to detect second hits of samples
from the faces of the same frustum. Since the frusta identifiers are
unique, the item buffer does not need to be cleared from one
frustum to the next. The z-buffer, also at the vacuum buffer
resolution, is used to record the z of the first hit. When the second
hit occurs, the value in the z-buffer and the new z value are used
to update the vacuum buffer. The amount of vacuum determined
is used to update the VAT. The z-buffer does not need to be
cleared since it is used in conjunction with the item buffer.
The frusta are processed recursively by ProcessFrustum. If the
current frustum has the same closest z as its parent, it doesn’t need
to be processed since no progress can be made (step 2). The
segmented tiles generate two or more frusta at the leaf level of the
reference-image quadtree (step 5.1).
Although the frusta are convex and should hit the vacuum buffer
twice, there are cases of one or more than two hits because of

finite resolution. If only one hit occurs, (at the desired-view
silhouette of the frustum), there will be no air span generated to
update the vacuum. This is the correct degenerate-case behavior.
If more than two hits occur, typical for edges of the frustum that
project over another face, the vacuum buffer is updated using tiny
air spans. The results are correct and the sole penalty is in
efficiency. We avoid such cases by setting a threshold below
which air spans are discarded.
From figure 4 one can see that the typical vacuum buffer update is
done with adjacent air spans. Adjacency is of course important
since it keeps the vacuum-span lists short, which translates into
efficient update times.
The next section presents the application of the vacuum-buffer
algorithm to reference-image sample choosing, called tile
choosing since tiles are the level at which samples are selected.

3 TILE CHOOSING
An ideal set of samples satisfies the following conditions:
• completeness: all visible surfaces must be sampled;
• good quality: the sampling rate should be as close as possible

to the sampling rate required by the desired image;
• non-redundancy: a particular surface should be sampled by

only one reference image;
• low depth complexity: no surfaces should be sampled that are

hidden in the desired view.
For the reasons discussed previously, we split the reference
images into tiles, and the sample-selection is done at tile level.
To satisfy the quality condition we define a quality metric for tiles
that relies on approximating the sampling-density change from
reference to desired image. A similar quality metric was used in
[Mark97]. In our implementation, the quality is efficiently derived
from the size of the bounding box of the projection of the quad
corresponding to the tile.
Together with the vacuum buffer, we use an additional z-buffer
and an additional item buffer. The two buffers store the z of the
closest occluder sample and a pointer to the tile it came from.
When an occluding face is rasterized, the occluder z-buffer is
consulted. Close z values indicate tiles that sample the same
surface, a case in which we give preference to the occluder sample
that belongs to the higher quality tile. If the current occluder
sample is clearly behind the closest occluder sample, the hidden
sample is discarded, reducing the depth complexity.
The tiles that could not be segmented in order to avoid internal
depth discontinuities cannot be processed by the algorithm, and,
conservatively, have to be chosen.
The tile-choosing algorithm starts with the reference images that
were acquired from a location closest to the desired camera
location (see color plate). More and more distant reference images

Figure 5. The reference
image is split into 8 tiles.
The leaves of the quadtree
are frusta defined by the
closest -z p lane of the
previous level and the
quads (AkAk+1 segments)
tha t app rox ima te t he
height field of the tile.
The occluding faces are
used to e l imina t e a l l
vacuum behind them (the
dotted rays in D's frustum
indicate the eliminated
vacuum).R D

A0
A1

A2

A5
A4

A3 A6 A7

A8

The Vacuum Buffer In Proceedings of I3D 2001 4

are processed until the amount of vacuum remaining is below a
certain threshold. The chosen tiles are the tiles that have at least
one sample present in the occluder item buffer: they were neither
completely occluded nor completely replaced by better tiles. In
order to avoid scanning through the occluder item buffer, we
maintain presence counters for each tile.

3.1 Results
We tested the tile-choosing technique on a complex model of a
town - eurotown. The reference images used as input were
rendered from locations that form a regular 3D grid.
Our first version of the tile-choosing algorithm [Popescu00] did
not use the vacuum buffer. It just considered the 8 sampling
locations defining the cell of the current camera position and
rendered the tiles in the occluder item buffer and the occluder z-
buffer. No tile segmentation was attempted.
With the vacuum buffer we were able to double the lengths of the
sides of the cell, reducing the number of reference images by a
factor of 8. As in the previous case, tile choosing starts by
considering the images of the current cell. It stops when the total
amount of vacuum decreases below a threshold. We used 1/z for
the vacuum buffer and the initial (hither, yon) vacuum span was
(100.0, 0). 1/z is convenient since it gives more importance to
vacuum spans that are close to the camera. Objects that are close
have a large screen area and the artifact resulting from missing
them is more noticeable. In our particular case, the threshold
below which no more disocclusion errors were noticeable was
1500 (the average amount of vacuum per location is about 0.02).
Tiles were segmented, allowing a maximum of 6 segments per
tile. If a tile could not be successfully segmented it was
conservatively chosen.
For VGA output resolution, the number of tiles chosen per frame
was, on average, 3,300. The ratio between the number of
reference-image samples selected and the number of output-image
samples is 2.75. This is due to differences in sampling rates from
input to output and to tile-level sample selection, which does not
allow the elimination of all redundant samples.

4 CONCLUSIONS
We presented a method of selecting reference samples to be
warped to create the desired view. The method uses the vacuum-
buffer algorithm to estimate the subvolumes of the view frustum
that have not been determined by the reference images considered
so far. To our knowledge this is the first IBRW sample-selection
method that is conservative at the conceptual level; the
implementation is not absolutely conservative due to the various
optimizations introduced (i.e. approximation of tiles with quads),
but good results were obtained.
A software-only implementation is too slow to be practical. We
found that the algorithm requires rendering about 7 million
triangles per second, which is within the capabilities of today's
hardware. However the algorithm cannot be run on existing
graphics hardware. The additional capability required is an
extended z-buffer that can store several z-spans for each location.
Due to the incremental nature of the updates of the vacuum buffer,
the span-lists are typically short. We found that for eurotown, no
list grew longer than 11 spans, which suggests that a simple
hardware implementation that supports lists of fixed maximum
length should be possible.

5 FUTURE WORK
The current version considers the reference images of the current
cell in the order defined by increasing distance to the camera

position. The residual amount of vacuum should decrease more
rapidly if we:
• first process the reference image that sees the desired view

location and has a view direction closest to the desired image
view; this eliminates all the vacuum close to the camera;

• use the VAT to localize the remaining vacuum and then
select the reference images that see that vacuum.

This improved heuristic would probably reduce the number of
reference images that need to be considered. Note that reducing
the vacuum as quickly as possible is orthogonal to finding the
samples that best sample a surface for the current view. The
current implementation relies on the reference images' proximity
to the camera position for finding good samples. More aggressive
implementations probably need to consider sample quality as part
of their termination condition.
Another possible application of the vacuum buffer is in scene
acquisition, as a mean of determining the sampling locations. One
wants to acquire as few images as possible while minimizing the
number of disocclusion errors. This is the well-known next best
view problem ([Connoly85] and others).
Given a set of initial reference images, the vacuum-buffer
algorithm can be used iteratively to determine the locations of
subsequent reference images. For each iteration, first the
algorithm is run for a representative subset of all possible viewing
locations. Then a new reference-image location is chosen in order
to eliminate as much vacuum as possible. The iterative process
stops when the maximum number of sampling locations is met or
when the scene is adequately sampled.

6 ACKNOWLEDGEMENTS
We would like to thank Leonard McMillan and the UNC IBR
group for useful suggestions. This work was supported by the
Link Foundation, the Department of Energy, NSF ACR-9876914,
Intel and Microsoft.

REFERENCES
[Chang99] Chang C., Bishop G. and Lastra A., “LDI Tree: A

Hierarchical Representation for Image-Based Rendering”, In
Proceedings of SIGGRAPH 99, 291-298 (1999).

[Connolly85] Connolly, “The determination of next best views”,
In Proceedings of IEEE International Conference on
Robotics and Automation, pages 432-435, (1985).

[Curless96] Curless B., and Levoy M., “A Volumetric Method for
Building Complex Models from Range Images”, In
Proceedings of SIGGRAPH 96, 303-312 (1996).

[Mark97] Mark W., McMillan L., and Bishop G., "Post-
Rendering 3D Warping", In Proceedings of Symposium on
Interactive 3D Graphics 97, 7-16, (1997).

[McMillan95] McMillan L. and Bishop G., “Plenoptic Modeling:
An Image-Based Rendering System”, In Proceedings of
SIGGRAPH 95, 39-46 (1995).

[Popescu00] Popescu V., Eyles J., Lastra A., Steinhurst J.,
England N., and Nyland L., “The WarpEngine: An
Architecture for the Post-Polygonal Age”, In Proceedings of
SIGGRAPH 00, 433-442 (2000).

 [Shade98] Shade J., Gortler S., He L, Szeliski R., “Layered Depth
Images”, In Proceedings of SIGGRAPH 98, 231-242 (1998).

 [vanHook] van Hook T., “Real-Time Shaded NC Milling
Display”, In Proceedings of SIGGRAPH 86, 15-20 (1986).

The Vacuum Buffer In Proceedings of I3D 2001 5

The Vacuum Buffer: tile choosing with the vacuum-buffer algorithm
Some reference images are shown at the top. The columns show results as the reference images are processed. Row 1 shows the result of warping the
tiles chosen so far. Rows 2 and 3 show (only every kth row of) the vacuum buffer from an offset view. The vacuum spans are shown in yellow. In row
3, nearby vacuum is not shown and the number of vacuum-buffer rows shown is increased. The vacuum buffer is shown composited with the
warpbuffer. Row 4 shows the occluder item buffer, which stores the tiles chosen so far. Each tile (or tile segment) is shown with a different color.
After the first reference image is added (first column), vacuum persists close to the camera and in the volumes that were occluded in the reference
image and are now exposed (e.g. behind light poles). As one more reference image is processed (second column), the vacuum is reduced and drops
below a pre-established threshold after the last image. The item buffer contains the chosen tiles. In order to match the sampling rate of the desired
image, the algorithm gives preference to tiles that have projected size close to the original size (see the sky tiles which are not affected by the
projection).

