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Simplification of Node Position Data for
Interactive Visualization of Dynamic Datasets

Paul Rosen and Voicu Popescu

Abstract—We propose to aid the interactive visualization of time-varying spatial datasets by simplifying node position data over the
entire simulation as opposed to over individual states. Our approach is based on two observations. The first observation is that the
trajectory of some nodes can be approximated well without recording the position of the node for every state. The second observation
is that there are groups of nodes whose motion from one state to the next can be approximated well with a single transformation. We
present dataset simplification techniques that take advantage of this node data redundancy. Our techniques are general, supporting
many types of simulations, they achieve good compression factors, and they allow rigorous control of the maximum node position
approximation error. We demonstrate our approach in the context of finite element analysis data, of liquid flow simulation data, and of

fusion simulation data.

Index Terms—simplification of node positions, trajectory simplification, trajectory clustering, rigid body decomposition, interactive

visualization, simulation data compression.

S compute power and simulation algorithm sophistica-
Ation continue to advance, scientists and engineers are
inspired to simulate complex phenomena with increased fi-
delity. These simulations often take the form of time-varying
spatial datasets with high spatial and temporal resolution. Such
a dataset records the 3-D position of every simulation node
(e.g. finite element vertex, particle center) for each simulation
state. The result is a large volume of data that is challenging for
transmission to remote parties and for interactive visualization.
The fact is that the movement, storage, and visualization
of large datasets continues to be a significant challenge in
visualization as a whole [1].

Until now, much of the research in interactive visualization
has focused on simplifying a static dataset or a single state of
a time-varying dataset. However, such an approach does not
take advantage of the temporal coherence exhibited by time-
varying datasets. The simplification of node position data over
all simulation states has received minimal attention from the
visualization community in spite of how common this form of
data happens to be.

In this paper we propose techniques for simplifying node
position information in time-varying simulation datasets by
considering all simulation states. The techniques take advan-
tage of motion redundancy characteristic to most simulations.
A first technique is based on the straightforward observation
that the trajectory of most nodes can be described well without
recording the position of the node for each intermediate state.
For example, the trajectory of a node that does not move or
that moves on a straight line should be described with only a
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starting and an ending node position. This technique, dubbed
individual trajectory simplification or ITS, uses a specialized
form of polyline simplification to achieve significant dataset
compression factors given a user specified maximum node
position error. We define the maximum node position error
as the maximum Euclidean distance between the position of a
node in the simplified and in the original datasets, over all
nodes and all states. The compression factor is defined as
the ratio between the storage size of the original and of the
simplified datasets.

A second and a third technique are based on the observation
that in many simulations there are groups of nodes that move
together as semi-rigid bodies. For such a group, the motion of
the nodes from one state to the next can be described well with
a single transformation, which is more compact than storing
the intermediate positions of the nodes explicitly.

Simulation data can come in many forms, from triangle
and tetrahedral elements of animation or finite element crash
simulations to the connectivity-free point-cloud data of dam
breaks and other fluid simulation, magnetic field lines of a
fusion reactor, or celestial motion simulation. The type and
availability of connectivity information associated with these
types of data can vary widely from domain to domain and
even between simulations within a single domain. Relying
too heavily upon any connectivity data reduces the generality
of any simplification technique to at best only simulations
with connectivity information, despite the widespread usage
of datasets lacking any connectivity information. Whereas
specific simulation information, such as any neighborhood
or connectivity information, can be used to help determine
these groups, the only input we use are node positions. One
reason for this is that initial groups of nodes can deform or
break apart under the extreme conditions that are typically
simulated, so groups have to be validated and further refined
using simulation data anyway. A second reason is that many
groups of nodes cannot be determined a priori from the
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Fig. 1. Top: Dataset simplified using rigid body decomposition (left) and original dataset for comparison (right). Nodes
not assigned to a rigid body are shown in white. The dataset size is 15m x 5m x 3.3m, the maximum node error is
10mm, and the data compression factor is 11:1. Bottom: Dataset simplified using trajectory clustering (left) and original
dataset (right). The dataset size is 110m x 90m x 60m, the maximum node error is 10mm, and the data compression

factor is 14:1.

simulation input data, and can only be determined a posteriori
by examining the simulation output data: pieces of a concrete
wall that is breaking apart, sections of a metal structural
column undergoing deformation, or groups of liquid particles
moving in unison. A third reason for only relying on node
data is that in this way the resulting technique is general,
independent of domain, simulation approach, and simulation
scene specifics.

The first technique based on node grouping, dubbed trajec-
tory clustering or TC, only considers translations from state to
state. The second technique, dubbed rigid body decomposition
or RBD, allows for a full 6 degree of freedom transformation
from one state to the next. For both techniques, the node
group is defined by the initial positions of the nodes and
by a sequence of transformations. The transformations are
applied to the initial node positions to decode intermediate
positions. Compared to RBD, TC has the advantage of faster
encoding and of more compact transformation storage (i.e.
it does not need to encode rotation angles). RBD has the
advantage of detecting rotating rigid bodies, which are missed
by TC, yielding better compression factors for datasets where
rotating rigid bodies are significant. Both TC and RBD can be
used in conjunction with ITS.

Figure 2 shows RBD applied to a liquid simulation on
subsequences of 10 states at a time. The dataset covers a
Im x 0.18m x 0.2m region, and the maximum error is Imm,

or 0.1%. The top row of Figure 1 shows an example of
RBD simplification using a point-based visualization. The
trajectories of nodes that are not assigned to a rigid body are
simplified using ITS. A good compression factor is achieved
for a maximum node error of 10mm that corresponds to
a relative error of 0.06% (10mm/15m). The bottom row
of Figure 1 shows an example of TC simplification, where
cluster and residual trajectories are simplified with ITS. The
mesh-based visualization of the simplified dataset is virtually
indistinguishable from the visualization constructed from the
original dataset. Figure 7 illustrates TC simplification on a
fusion simulation dataset. The dataset covers a 2.5m x 2.5m X
0.5m region and the maximum error is 10mm, or 0.04%. We
also refer the reader to the accompanying video.

In summary, our paper contributes node data simplification
techniques that provide:

« good compression factors,

o strict enforcement of a maximum node position error
specified by the user,

« fast decoding, and

« support for many simulation types by relying exclusively
on node data.

The remainder of the paper is organized as follows. Sec-
tion 1 discusses prior related work. Sections 2, 3, and 4 outline
the individual trajectory simplification, trajectory clustering,
and rigid body decomposition simplification techniques, re-



JOURNAL OF IATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

Fig. 2. Simplification of liquid simulation dataset using
rigid body decomposition (top) and original dataset (bot-
tom). Compression factor is 8.5:1 for a maximum error of
0.1%.

spectively. Results are discussed in section 5, and section 6
will conclude the work.

1 PRIOR WORK

The vast majority of work in simplifying simulation position
data has focused on compressing the data using high-level
structures such as triangles meshes for a single static simula-
tion state. A smaller body of work, primarily coming from the
field of animation, exists on the simplification of time-varying
node positions. For completeness, we review both.

The fields of both computer graphics and visualization have
seen many approaches for reducing the storage size of index
and node positions for static meshes. The broad majority are
focused on compressing vertex and/or connectivity data of
triangular meshes [2], [3], [4], [5], [6], [7], [8] or in some cases
polygonal meshes [9], [10], [11] for the purpose of reducing
storage and transmission costs or for streaming geometric
detail [12], [13], [14]. There has been work on compressing
volumetric structures as well, such as tetrahedral meshes [15],
[16] and hexahedral meshes [17]. Some methods work on more
general unstructured data, such as point-clouds, by reordering
the nodes [18].

In contrast to the majority of these methods, our method
works independently of the higher level structures. Further-
more, these methods are only concerned with simplifying data
in the spatial domain while our approach simplifies in both
the space and time domains. While you could, for example,
use these techniques to compress each state of a simulation
independently of the others, such an approach would ignore
very important temporal data correlations that can be made
between states. We do however see the usefulness of some
these approaches as potential enhancements to the techniques
we present. All of our techniques currently store the initial
node positions in a completely uncompressed state. Efficient
coding of this data would produce even higher compression
rates than those presented.

For time-varying datasets, approaches have employed the
simplification of individual trajectories for applications includ-
ing compressing and managing trajectories of moving object
databases [19], in a vain similar to ours. Other work has also
been done on clustering trajectories [20], [21], some using
individual trajectory simplification as an aid [22]. Whereas

we are concerned with simplification of large datasets, this
work has mostly focused on finding clusters of trajectories
as a means of identifying features of data. The approach is
therefore similar to ours, but focuses on design decisions such
as robustness to finding features while our primary goal is
compactness.

Some of the earliest work on time-varying datasets advo-
cated for manually subdividing a mesh into sets of rigid bodies
[23], [24] which would then have their positions updated as a
group. The automatic segmentation [25], [26], [27] of meshes
has also received a lot of attention. Later approaches use
principal component analysis to automatically detect and com-
press rigid-body [25], [28] or soft-body [29] animations. Still
others have automatically calculated skeletons to compress
animation [30]. Shamir and Pascucci [31] generated level-
of-detail animations for meshes by combining low-frequency
motion encoding affine transformations with residuals for
encoding high-frequency motion. Others have forgone mesh
segmentation and instead used Fourier or wavelet compression
[32], [33], [34] or space and time predictors and connectivity
graphs [35] to enable predicting new vertex positions from
neighbor positions in the previous and current states to reduce
the size of time-varying datasets. Many of these approaches
in one way or another, rely on an underlying mesh structure
for their simplification.

Finally, there are a wide variety of techniques for com-
pressing floating-point numbers [36], [37], [38], [39], [40] to
reduce the size of simulation datasets. These techniques are
complementary to our approach. We store our simplified data
as full-sized uncompressed 32-bit floating-point numbers. It is
very likely that the addition of one or more of these techniques
would further enhance our results.

2 INDIVIDUAL TRAJECTORY SIMPLIFICATION

The underlying shape of a node’s trajectory in time-varying
simulations is a curve, which, in the process of computing and
saving simulations, is discretized into a set of piecewise linear
segments, a.k.a a polyline. A polyline is sampled at regular
time intervals regardless of the shape and amplitude of the
motion of the node. Polyline simplification can be used to
remove redundant intermediate node positions, reducing the
size of simulation data.

A polyline simplification will find a representative subset
of points from an original polyline which closely matches
the shape of the original polyline. In conventional polyline
simplification, the simplified polyline is found by using the
orthogonal distance to measure error and match the shape.
In our context we are interested in measuring the error at the
simulation states, which are regularly spaced time intervals, so
we modify the error function as shown in Equation 1, where
the two polylines are represented as functions of time f(z) and

g(1).

Diff(f(t),8(t)) = MAX( |If(tr) =g}, (1)

1f (tvr) — g(ta)])
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2.1 Method

Given an input polyline and an error threshold, an optimal
polyline simplification finds a polyline (Fy,p) that satisfies
two conditions. The first condition is that there should be no
polyline with fewer points than Py;y, that satisfies the error
threshold. The second is that out of all polylines with the
same number of points as Pyp, Psimp should have the smallest
error. However, a brute force search for the optimal polyline
simplification is prohibitively slow, as the number of possible
polylines is exponential in the number of states.

The algorithms of Ramer [41] and Douglas—Peucker [42]
are fast methods for finding near-optimal polyline simplifi-
cations. Their methods take a greedy approach to building a
simplified polyline by incrementally inserting into the simpli-
fication the point where error is largest. The algorithm adapted
to our context is given below.

Algorithm: RamerDouglasPeucker

Input : Polyline P = {py,...,py} and threshold &€
Output: Simplification Py, with error Egpp, <= €

1 Insert py and py into Pyjpp
2 repeat

3 Find the point p; with the maximum error e;
4 Esimp =€

5 if Egp > € then
6 Insert p; in Py
7 end
8 until Eg;,, <=¢;

The algorithm starts from a segment connecting the two
end points and keeps adding points of largest error until
the error condition is met. Figure 3 right shows an example
of this algorithm while Figure 3 left shows the optimal
polyline simplification. Initially the polyline simplification
contains the two endpoints {p;, ps}. The point with the largest
error (p3) is then inserted into the approximation resulting
in polyline {pi,ps,ps}. Subsequently, ps and then p; are
inserted into the approximation, resulting in the final polyline
{p1,p3,P5,P7,ps} This algorithm produces a polyline sim-
plification which may be suboptimal (see rows 2 and 3), but
it does find quality approximations quickly.

2.2 Encoding, Storage, and Decoding

Polylines are encoded in two parts. First, all polylines contain
the first and last position, which are stored directly. Second,
all intermediate positions are stored as {position, state} pairs.
The data is stored in sorted order by time.

The size of the data storage first assumes 3-D points and
floating point storage. Each position then costs 3 x4 bytes to
store for a total storage of 3 x4 x p bytes for p positions. The
other component to store is the state number for each point.
This can be stored in a byte for simulations with fewer than
256 states, otherwise a short is used. Assuming the usage of
a single byte, the total storage cost is 3x4xp+ 1 (p—2).
Note, the first and last state numbers need not be stored, since

Fig. 3. The input polyline (top) is simplified shown with
the optimal representation (left) and the greedy Ramer
/ Douglas-Peucker method (right) which is significantly
faster but may not always find the best representation.

they are implicit. This is compared to the cost of storing
the original polyline of s states which is 3 x4 xs. Consider
an example polyline with 100 states. The original polyline
would cost 1,200 bytes to store. Compressing the line with
92 points (1,194 bytes) would result in a compression ratio of
approximately 1:1, while 25 points (323 bytes) would lead to
a 3.7:1 compression ratio.

Decoding node positions is accomplished by performing
linear interpolation with respect to time across the interval
containing the current time. The next problem is finding
the interval. For sequential access in time (either forward
or backward) an index is stored for the most recently used
interval, resulting in constant time access. For random access,
a binary search is performed on the intervals to find the interval
containing the current time, resulting in logarithmic access
time.

3 TRAJECTORY CLUSTERING

Trajectory clustering takes advantage of data redundancy
caused by groups of nodes moving in unison. The method
works by locating and clustering trajectories with similar mo-
tion using a greedy algorithm that attempts to minimize cluster
entropy. This idea parallels that of the principal component
analysis methods for meshes [25], [28], [29] and that of k-
means clustering of points [43].

3.1 Method

Before trajectory clustering can proceed, node trajectories need
to be transformed into initial-position invariant trajectories,
which is simply achieved by subtracting the position of the
node at state O from the positions of the node at all the
other states. A metric is needed for estimating the difference
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between two trajectories. We have chosen the infinity norm of
the Euclidean distance between corresponding points of the
two trajectories. This is done using Equation 1, replacing f(r)
with trajectory %, defined by points x;, and g(¢) with trajectory
7, defined by points y;.

A cluster of trajectories (T') is defined as a set of trajectories
{t_1>,t_2>, . ,EV)} where the first trajectory (t_1>) is the basis for
the simplified motion of the entire cluster. Each cluster of
trajectories also has an entropy value assigned to it. Equation
2 describes the entropy value for a cluster as the 2-norm of
the difference between the basis trajectory (t_f) and all other
trajectories in the cluster.

; 1/2
Entropy (T) = <ZDiff (ﬁ,r?)z) @)
i=2

The set of all trajectory clusters is found as follows.

Algorithm: FindClusters

Input : A set containing a single cluster, T = {7y}
Output: A set of clusters, T={T},...,Ty}

repeat
Remove cluster 7; with highest entropy from T
Subdivide T; into 2 new clusters 7; and T}
Insert T; and Ty into T

until size(T) = desired number of clusters;

N oA W N -

The input is a set (T) containing a single cluster holding all
trajectories for the dataset. The algorithm subdivides the clus-
ter with highest entropy repeatedly until the desired number
of clusters is reached. Cluster subdivision is performed by the
SubdivideCluster algorithm.

Algorithm: SubdivideCluster

Input : Cluster of trajectories T = {ﬁ,
Output: Two new clusters, A and B

— —
t27"'7tN}

1 Select 2 trajectories d and Z} randomly from T
2 foreach Tl) in T do

s | if Diff(@. 7)) < Diff(B,7) then

4 ‘ Insert 7,> in A

5 else

6 ‘ Insert Tl) in B

7 end

8 end

The algorithm first selects 2 trajectories (7 and Z)) ran-
domly from the input cluster (7). These trajectories become
the basis trajectories for new clusters A and B. Each trajector
(?) in the input cluster (7') is compared with both d and b,
using Equation 1. The trajectory (7,?) is inserted into the new
cluster with the most similar basis trajectory.

The choices used in this algorithm can be seen as a com-
promise between speed, optimality, and compactness. As an
alternative, the k-means approach could be used to subdivide

‘ /

/ K
X
\/
\ A
K\

//
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Fig. 4. Trajectory clustering example. The input nodes
(left) are converted to clusters and simplified (middle).
The clustering is then applied to the original nodes (right)
resulting in a lossy 3:1 compression ratio.

the set of trajectories into 2 or more clusters. However k-means
requires many sweeps through the data to find optimal sets, a
cost which because difficult to bear as the data becomes larger.
Further, we could have used the k-means approach to calculate
a mean for the cluster basis trajectory (this is in fact the first
approach we attempted). In practice, we found that using a
trajectory from the original dataset gave us similar errors for
cluster members with the added benefit of avoiding the need to
save any residual information for the basis trajectory. As the
number of clusters increase and cluster sizes decrease, this
leads to significantly fewer residuals needing to be calculated.

When contemplating this approach one might also expect
to follow an error-bounded approach similar to that of ITS.
Unfortunately, this approach does not work particularly well
due to outlier trajectories. There tend to be a few trajectories
which travel in very different directions from most other
trajectories. These outliers are difficult to detect and can lead
to many unnecessary cluster subdivisions.

Figure 4 shows a trajectory clustering example. Six node
trajectories (left) are first converted to initial-position invariant
trajectories (middle). Two basis trajectories (brown and purple)
are selected at random to seed two new clusters (middle).
The remaining trajectories are added to the new cluster with
the closest basis trajectory (orange with brown and blue with
purple, middle). The result is a 3:1 compression factor, as
six trajectories have been reduced to only two. The basis
trajectories of the new clusters is applied to the initial node po-
sitions to approximate positions at intermediate states (right).
Trajectory clusters obtained with our algorithm are visualized
in Figure 5.

3.2 Encoding, Storage, and Decoding

Each cluster has a single trajectory associated with it. These
trajectories are first simplified using the ITS method presented
in section 2. For every node, an initial position and index to
a trajectory cluster is stored.

The storage space for each cluster trajectory is relatively
small in size (refer to section 2), however one must be stored
for each cluster. The storage space for the initial positions is
3x4x p for p nodes (assuming 3-D floating point values). The
raw storage space for unsigned integer indices is 4 * p.
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Decoding a node position first requires using the trajectory
cluster index to find the associated cluster. An offset position
is the calculated using the ITS decoding method. The final
position is then found by adding the initial node position to
the offset position for the cluster.

4 RiciD Bobpy DECOMPOSITION

Consider a dataset with n nodes and s states. The goal of
rigid body decomposition is to partition the nodes into groups
such that the motion of the nodes belonging to a group
can be approximated well with a sequence of rigid body
transformations. We define a rigid body decomposition of the
dataset as a triplet (G,Sp,Q):

o G={g1,82,-..,8m} is a partition of nodes into m groups,

with each group containing at least 3 nodes,

e So={(,»,2)1,*x¥,2)2,...,(x,y,2)n} is the set of initial

3-D positions for all nodes, and

e 0={q1,92,---,9m} is a set of m sequences of s — 1 rigid

body transformations.

Not all simulation nodes have to be assigned to a group. A
rigid body transformation consists of a rotation followed by
a translation. Let j be a node assigned to group i. The rigid
body decomposition approximates the position of node j at
state k according to Equation 3.

k (X,y,z)j, if k=0
node; = =1 R ( T k>0 O
q;  Rx(x,y,2)j+q; T, ifk>

4.1 Method

Given a user-selected maximum node position error €, a
rigid body decomposition of a dataset is computed with the
following algorithm.

Algorithm: RigidBodyDecomposition
Input : All node positions and an error threshold €
Output: Rigid body decomposition (G, Sy, Q)

1G={}, 0={} So={}

2 foreach node i do

3 foreach group j in G do

4 if Err(i,q;) < € then

5 git=A{i}

6 So+ = {(x,y,2)i}

7 next i

8 end

9 end

10 | if NewRigidBody(i,€, jour,kou,qou) then
11 G+ = {(i7j0LlI7k0Ml‘)}

12 O+= {QOW}

13 So+ = {(xvy’ Z)i’ (xvya Z)jom? (x7y7 Z)k()ut}
14 next i

15 end

16 Mark i as unassigned

17 end

Fig. 5. A visualization of the trajectory clustering for the
truck dataset shown in Figures 1 and 8. The trajectories
are all centered at the origin and colored using their
associated cluster ID.

The algorithm considers each node in turn. The algorithm
first tries to assign the current node to an existing group (line
3). The function Err(i,q;) returns the maximum node position
approximation error over all states; to do so, the position of
node i is estimated at all states using the sequence of rigid
body transformations g;. If node i cannot be assigned to an
existing group, the algorithm attempts to construct a new rigid
body with the given node (line 10). If that fails, the node
remains unassigned (line 16).

A new rigid body with three nodes is constructed as follows.

Algorithm: NewRigidBody

Input : A node i and an error threshold €
Output: Construction success and jour, Kours Gout

1 foreach node j do

2 if distance (i, j) varies > € then

3 ‘ next j

4 end

5 foreach node k do

6 if distance (i,k) or (j,k) varies > € then
7 ‘ next k

8 end

9 ComputeRBX (i, j,k,q)

10 if Err(i,q) & Err(j,q) & Err(k,q) < € then
1 (jouhkouhCIout) = (jak7CI)

12 return true

13 end

14 end

15 end

return false

—
=)

Given a node i with which to construct a new rigid body,
the algorithm first finds a second node j that remains approx-
imately at the same distance from i throughout the simulation
(line 2). This condition is implemented by computing the



JOURNAL OF IATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

a
€9
1
e P —mmmo—--
Translate Rotate Rotate
itoa nytong e;toey

Fig. 6. lllustration of 3 step rigid body transformation
construction described by algorithm ComputeRBX.

distance d between nodes i and j at state 0, and then by
checking whether the distance remains within € of d for the
subsequent states.

Once a second node is found, the algorithm searches for a
third and final node k (line 5). Nodes whose distance to the
previous two nodes does not remain approximately constant
throughout the simulation are early rejected (line 6). The three
candidate nodes are used to construct a sequence g of s —
1 rigid body transformations (line 9), as described below. If
q places i, j,k within € of their true positions for all states
(line 10), the new rigid body (i, j,k) with its transformation
sequence g are returned (line 11).

Given the 3 nodes i, j, k, a sequence of transformations g,
is constructed as follows.

Algorithm: ComputeRBX
Input : i j.k
Output: g,

1 Make (i, j,k) the triangle with nodes i, j,k at state O
2 foreach state t = 1 to s-1 do

3 Let triangle (a,b,c) be defined by i, j,k at state ¢
4 X;: Translate (i,j,k) by a—i

5 X»: Rotate (i, j, k), align planes (i, j,k) & (a,b,c)
6 X3: Rotate (i, j,k), align edges (i, j) & (a, b)

7 qi);[] =X3 x X2 x X
s end

Given 3 nodes, a transformation is constructed for each state
t in 3 steps that align the triangle defined by the 3 nodes at state
0 with the triangle defined by the nodes at state ¢ (also refer to
Figure 6). The first step is a translation that aligns one vertex of
the two triangles. The second step is a rotation that aligns the
normals of the two triangles. Finally the third step is a rotation
in the now common plane of the two triangles to align a pair
of corresponding edges. The triangles are not congruent thus
the two triangles will not overlap perfectly. By construction,
the approximation error at vertex i is 0. The transformations
of the individual steps are combined to compute the final rigid
body transformation from state O to state 7.

4.2 Encoding, Storage, and Decoding

Once a rigid body decomposition of a dataset has been
computed, we encode it by storing:

1) for each node, the initial position and an index pointing
to the group to which the node is assigned (or -1 if the
node is not assigned);

2) for each group, a rigid body transform for every state
except state 0; a transform is encoded with 3 translations
and 3 Euler angles;

3) for each unassigned node, the original positions of the
node for all states except state 0.

Consider a group with p nodes and s states. The raw cost
of the nodes is 3 x ps+4 bytes. The group cost is p*4 to
encode the group index for the nodes, plus 3 * p x4 for state 0,
plus (3+3)* (s— 1) *4 for the group’s sequence of rigid body
transformations, totaling 16p +24(s — 1). The group brings
storage savings for any p >= 3. A group with 100 nodes is
over 30 times more compact than its corresponding raw data,
assuming 100 states. For large groups, the compression factor
approaches 0.75s, or 75 for 100 states and 750 for 1,000 states.

For the initial state, decoding straightforwardly returns the
node position which is stored explicitly. For an intermediate
state first one finds the group to which the node is assigned by
using the group index. If the node is unassigned the position is
directly looked up in the data containing unassigned nodes. If
the node is assigned to a group, the rigid body transformation
for the group and the current state are looked up and the
node position is computed using Equation 3. This amounts
to computing a rotation matrix from Euler angles, multiplying
the position vector by the rotation matrix, and finally adding
the translation to the result.

This method allows random node and state decoding
queries. It is frequently the case of course that one decodes
the positions of all nodes for a given state, when the Euler
angles to rotation conversion is done only once per group,
which results in an insignificant amortized cost. Moreover,
the rigid body decomposition is well suited for graphics APIs
which allow transforming all nodes in a group by placing the
transformation for the current state on the model-view matrix
stack.

5 RESULTS AND DISCUSSION

We have applied our techniques to 4 datasets from different
application domains. The first dataset, Truck (Figures 1 and

Fig. 7. Simplification of fusion simulation dataset using
trajectory clustering (left) and the original dataset (right).
The trajectories of only 50 randomly selected nodes are
shown. Compression factor is 5:1 for a maximum error of
0.4%.
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TABLE 1
Compression performance using optimal configurations for various datasets, methods, and error thresholds.

Error Threshold ITS TCHITS RBD+ITS
AE::LTB Re[l;;ive CO?E?:;?OH Aver[z:;,;::n ;Error Con;zz::;.:ion Clusters Aver[z:;gem ?rror Cor;g:t:(ziion Rigid Bodies Aver[z:;gren ;Error
Truck (26.6 MB uncompressed) 15m x Sm x 3m
1 0.0066 1.8 0.86 2.4 8K 0.86 2.7 1,809 0.33
5 0.033 43 4 6.3 4K 4.1 7.0 573 1.0
10 0.066 6.4 7.8 9.8 4K 7.8 11 353 1.7
50 0.33 15 36 24.8 4K 36 25 139 6.4
100 0.66 22 61 338 2K 60 33 92 14
Airplane (643 MB uncompressed) 110m x 90m x 60m
1 0.00091 4.0 0.76 4.1 128K 0.76 4.1 530 0.10
5 0.0045 8.7 34 9.6 64K 34 9.0 429 1.0
10 0.0091 12 6.3 14 64K 6.3 13 286 22
50 0.045 25 25 29 32K 25 27 51 11
100 0.091 34 41 39 32K 41 38 31 20
Liquid (9.4 GB uncompressed) Im x 0.18m x 0.2m
1 0.1 7.5 0.95 12 512K 0.94 — — —
5 0.5 19 4.5 31 512K 45 — — —
10 1 30 8.8 47 256K 8.8 — — —
Fusion (4.2 GB uncompressed) 2.5m x 2.5m x 0.5m
1 0.04 1.5 0.89 1.7 128K 0.97 — — —
5 0.2 34 49 3.6 128K 49 — — —
10 04 44 9.7 5 128K 9.8 — — —

8), is a finite element analysis (FEA) simulation of a truck
colliding with a barricade. The dataset also contained connec-
tivity information which was used for the surface rendering,
but the cost of storage was not included in our analysis. The
simulation contains 28.5K nodes simulated over 80 states, and
the simulation first state axis aligned bounding box (AABB)
is 15m x 5m x 3m. The second dataset, Airplane (Figure 1), is
also an FEA dataset containing 370K nodes in total, simulated
over 170 states, including 60K smooth particle hydrodynamics
(SPH) elements, with the first state AABB of 110m x 90m x
60m. Once again, this dataset contains surface connectivity
information which was excluded from analysis. The third data
set, Liquid (Figure 2), is a dam break simulation calculated
using SPH containing over 2.1M nodes simulated across 360
states, with an AABB of 1m x 0.18m x 0.2m. The final dataset,
Fusion (Figures 7 and 10), is a simulation of the magnetic field
lines of fusion tokamak. This dataset contains 500K nodes
simulated over 750 states, and an AABB of 2.5m x 2.5m x
0.5m. All datasets were simplified using small error thresholds,
which results in visualizations that are difficult to distinguish
from visualizations of the original data, as shown in the figures
throughout this paper and in the accompanying video.

5.1

Individual Trajectory Simplification (ITS) treats nodes inde-
pendently, working on a single node trajectory at a time. The
runtime memory required for a dataset with n nodes and s

Individual Trajectory Simplification

states is only the size of one node worth of data, or O(s).
The construction time is » multiplied by the time needed
to process a trajectory. The worst case asymptotic running
time for ITS is O(ns?), which corresponds to the case when
simplified trajectories have O(s) points and when simplified
trajectories grow from one endpoint to the other, one position
at a time, requiring O(s?) updates to the point errors. The
expected running time is O(ns log s), which corresponds to
a case when simplified trajectories are constructed in more
balanced fashion. The best case running time is O(ns) when
all simplified trajectories have only 2 points, which still
requires checking that the error is below the threshold at
the intermediate positions. In practice, the running time was
always below 40 minutes for all our tests and was usually in
the 1 to 10 minute range. All running times reported in this
paper were measured on a single processor, without any form
of parallelism.

Table 1 gives the compression factors and the average errors
achieved by ITS for our 4 datasets and for various node
position error thresholds (also see Figure 8). The relative error
threshold is computed as the absolute threshold value over
the largest dimension of the AABB of the dataset, times 100.
ITC achieves good compression of all datasets for these small
relative error threshold values.

The average error is comparable to the error threshold (i.e.
the maximum error). As expected, compression performance
is very good for the Truck and Airplane datasets. We were
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Fig. 8. Individual trajectory simplification on Truck dataset
(middle) and original dataset (top). The error at each point
is shown (bottom), while the maximum error is 10 mm for
compression factor 12:1.

particularly pleased with the performance on the liquid simu-
lation, where a relative error of 0.1% (1mm) was enforced with
a compression factor of 7.5:1. As expected, the fusion dataset
with its chaotic motion was the most challenging, but even
there, ITS achieves a 4.4:1 compression factor for a relative
error of 0.4% (10mm).

5.2 Trajectory Clustering

Trajectory clustering (TC) starts out with a single cluster with
all n trajectories, which is then subdivided into two clusters
repetitively. Subdividing a cluster with ¢ trajectories takes
O(ts) work and requires an O(ts) runtime memory footprint.
Consequently, if the subdivision is balanced, completely sub-
dividing the initial cluster to singleton clusters is done in
O(ns log n) time with shrinking runtime memory footprints of
size O(ns+27/"!). An unlikely unbalanced subdivision takes

O(n?s) time. If data streaming is used, the runtime memory
footprint can remain small at the cost of loading the data
O(log n) expected and O(n) worst case number of times. In
practice, the running time was on the order of a few minutes
and never exceeded 45 minutes.

Although TC could be trivially implemented to stop subdi-
vision when an input error threshold is met by changing the
termination condition in Line 5 of Algorithm FindClusters,
doing so would generate an excessive number of clusters
which hurts the compression factor. This is due to the fact
that TC does not optimize the choice of basis trajectories for
the subclusters. Much better compression factors are generated
if TC is run up to a user specified number of clusters, followed
by ITS on the cluster basis trajectories, and finally followed by
ITS on individual node residual trajectories, where the residual
trajectory is simply a trajectory containing the error for each
simplified state.

The results of this TC+ITS method are given in Table 1 (also
see Figures 1 (bottom), 7, and 10). The number of clusters
in this case were chosen to be near-optimal, producing the
highest compression ratio. TC+ITS further improves over the
compression factors of ITS alone. For the Liquid dataset for
example, the compression factor improves from 7.5 to 12 for
the 0.1% threshold. TC+ITS average error is virtually identical
to that of ITS, which is explained by the fact that it is ITS in
both cases that brings the error of individual nodes below the
threshold.

Choosing the optimal number of clusters is a challeng-
ing problem. We approached the problem by progressively
increasing the number of clusters until the most compact
representation was found. Fortunately, TC is a refinement
process that can reuse previous results. For example, the result
of 1K clusters can be used as input for determining 2K
clusters. This means that when using TC+ITS, determining
the ultimate storage cost at each progression only requires
running through an additional ITS phase per progression.

TC compression performance depends on the number of
clusters used, as seen in Figure 9. The dotted lines show the
size of the dataset simplified using ITS alone. Solid lines
correspond to TC+ITS. The error threshold is specified by
the suffix of the name of the series. The graphs show that
performance improves for a while with increasing numbers of
clusters. More clusters model the trajectories better, allowing
for smaller residual entropies in the clusters, which are more
easily encoded by the subsequent ITS. The storage cost
achieved by TC+ITS eventually dips below that achieved by
ITS alone. However, once the number of clusters becomes
too large, the overhead of the additional clusters starts to
exceed the benefits they bring. Once a certain number of
clusters is sufficient for each cluster to model the replaced
trajectories well, further increasing the number of clusters
only adds overhead without considerably reducing cluster
entropy. Also as the number of clusters becomes large, the
average number of trajectories per cluster becomes small, and
the cluster payoff, which is dependent on the cluster basis
trajectory replacing many trajectories, decreases.
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5.3 Rigid Body Decomposition

Rigid body decomposition (RBD) seeds rigid bodies by finding
triples of nodes (i, j,k) that move semi-rigidly together. As
validating a candidate triple takes s work to check the triangle
edge lengths at each state, an upper bound on the worst case
performance is O(n’s). However, many triples are trivially
rejected when pairs of nodes (i,j) do not respect the rigid
body constraint. It is difficult to imagine a dataset where any
pair of nodes moves like a rigid segment yet no 3 nodes move
like a rigid triangle. On the other hand, one can easily imagine
the case when no pair of nodes moves rigidly, which provides a
lower bound for the worst case of Q(n”s). When the algorithm
finds rigid bodies, performance is good. In the extreme case of
a dataset with a single rigid body, the algorithm runs in O(ns),
as checking whether a node can be added to a rigid body takes
O(s) time. In practice, all Truck and Airplane simplifications
took less than 1 and 70 minutes, respectively.

As for runtime memory requirements, optimal performance
is achieved when the entire dataset is loaded into memory.
The RigidBodyDecomposition algorithm scans through the
entire dataset only once, hinting towards a data streaming
method. However, the NewRigidBody algorithm also scans
O®?) times, and may be executed up to O(n) times. Therefore,
for the data streaming method, the worst case is that the dataset
needs to be loaded O(n?) times.

To further improve the compression factor of RBD alone
we run ITS on the unassigned nodes (note the difference with
the TC+ITS method described above, which runs ITS on the
residuals of all nodes). RBD+ITS performance is given in Ta-
ble 1 (also see Figures 1 (top) and 2). Regarding compression
factors, RBD+ITS improves over ITS, RBD+ITS improves
slightly over TC+ITS for the Truck dataset, and TC+ITS has
a slight edge on the Airplane dataset. RBD+ITS is well suited
for datasets with spinning rigid bodies, which TC+ITS does
not find. These could be mechanical parts (e.g. wheels) or
debris resulting from the fracture of brittle materials. When the
semi-rigid bodies are not spinning, the overhead of RBD+ITS
is not warranted and TC+ITS should be preferred.

While somewhat counter intuitive, increasing the error
threshold decreased the number of rigid bodies detected. One
might expect a larger number of rigid bodies to be found with
higher errors. Instead the size of the rigid bodies (i.e. number
of elements) increased caused by a more or less merging of
similar rigid bodies.

Regarding average errors, RBD+ITS clearly outperforms
TC+HITS. The difference is even more pronounced when RBD
is used alone, encoding the unassigned nodes with O error.
For example the average error for RBD alone on the Airplane
dataset with a threshold of 1mm is 0.079mm, almost an order
of magnitude below the 0.76mm of ITS and TC+ITS. This
is explained by the fact that simulations are divergent and a
rigid body that barely passes the error test for the last state
is likely to have much smaller errors at the beginning of the
simulation. Table 1 also reports the number of rigid bodies
which, as expected, decreases as the error threshold increases.

For the error thresholds that provide a good visualization,
RBD did not find any rigid bodies in the Liquid and the Fusion
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Fig. 9. Trajectory clustering performance as a function of
the number of clusters.

datasets. This is expected, it is unlikely that 3 nodes move as a
rigid triangle in these long and unstable simulations. TC+ITS
did simplifying these datasets by allowing for occasional
larger errors in clusters, which were subsequently eliminated
by the ITS step on trajectory residuals. Running TC with a
termination condition based on the error threshold would result
in single trajectory clusters, which does not bring compression.
In order to use RBD on the Liquid and Fusion datasets, one
option is to run RBD with a larger threshold and then to
reduce the error in a subsequent ITS step on the residuals, akin
to TC+ITS. We chose a different option: we segmented the
Liquid dataset into sequences of 10 states, as shorter sequences
reduce the motion complexity. Figure 2 shows some of the
rigid bodies found for an error threshold of 0.1% (1mm). As a
rigid body decomposition stores the initial state of a sequence,
the upper limit on the compression factor is 10:1 when 10-
state sequences are used. The actual compression factor was
8.5:1, which is worse than the 12:1 that achieved by TC+ITS,
but with a superior average error of 0.26mm as opposed to
0.94mm.

5.4 Limitations

Scientists and engineers are concerned about errors within
their simulations since those errors can lead to incorrect deci-
sion making. Although all the techniques we have described
are lossy, all of them provide a way of strictly controlling the
error introduced.

All the algorithms described proceed in greedy fashion
and are not guaranteed to produce the optimal solution.
However, one cannot find the optimal solution to individual
trajectory simplification, to trajectory clustering and to rigid
body decomposition in a reasonable amount of time. We have
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Fig. 10. Trajectory clustering simplification of Fusion
dataset (top, left) and original (bottom, right). The error
per node is show (bottom) for a compression factor of 5:1
with a maximum relative error of 0.4%.

shown that our algorithms produce good approximate solutions
quickly on a variety of datasets.

Our work so far has been limited to node positions and has
not considered additional node data (associate scalars, vectors,
etc.), which could represent an important fraction of the total
dataset size.

Finally, in their current form, our methods cannot be used
to generate the best simplification of a dataset that fits a given
storage resource.

6 CONCLUSIONS AND FUTURE WORK

We have presented general techniques for simplifying node
position data that achieve good compression factors with
strictly-enforced, user-specified error thresholds. The encod-
ing time is a fraction of the time it took to compute the
simulations. Decoding is straightforward and well suited for
graphics hardware. Visualizations based on the simplified
datasets are virtually indistinguishable from those produced
from the original datasets.

In terms of future work, these techniques can be readily
integrated into applications to improve the interactivity of
visualizations by reducing the storage and memory needs of
large datasets. This can lead to interactive in-core visualization
of datasets too large to fit in memory or significantly reduce the
disk and network access needs of out-of-core visualizations.
These techniques are also useful for sharing datasets, where
simplified versions of large datasets can be transmitted across
the Internet in relatively small amounts of time.

Another direction of future work is to improve the com-
pression factors achieved by our techniques by integrating the

benefits of complementary approaches such as unstructured
point cloud and floating-point compression.

Finally, the core trajectory clustering and rigid body decom-
position algorithms developed here in the context of compres-
sion and visualization could prove useful as a simulation data
analysis tool.
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