
IE
EE

Pr
oo

f

Second-Order Feed-Forward Rendering
for Specular and Glossy Reflections

Lili Wang, Naiwen Xie, Wei Ke, and Voicu Popescu

Abstract—The feed-forward pipeline based on projection followed by rasterization handles the rays that leave the eye efficiently: these

first-order rays are modeled with a simple camera that projects geometry to screen. Second-order rays however, as, for example, those

resulting from specular reflections, are challenging for the feed-forward approach. We propose an extension of the feed-forward

pipeline to handle second-order rays resulting from specular and glossy reflections. The coherence of second-order rays is leveraged

through clustering, the geometry reflected by a cluster is approximated with a depth image, and the color samples captured by the

second-order rays of a cluster are computed by intersection with the depth image. We achieve quality specular and glossy reflections at

interactive rates in fully dynamic scenes.

Index Terms—Specular reflections, glossy reflections, fully dynamic scenes, feed-forward rendering, interactive rendering

Ç

1 INTRODUCTION

MOST interactive computer graphics applications ren-
der 3D scenes in feed-forward fashion, by projection

followed by rasterization. At a fundamental level, the
approach is efficient since projection is a straight forward
way to avoid considering ray/geometric-primitive pairs
that do not produce an intersection. By comparison, the
ray tracing pipeline requires acceleration schemes to avoid
considering geometric primitives that do not intersect a
given ray. However many scenes of interest contain specu-
lar reflective surfaces which extend and perturb first-order
rays. The resulting higher order rays cannot be modeled
with a simple camera that provides fast projection, and
consequently the classic feed-forward pipeline cannot ren-
der reflections. The palliative approach for rendering
reflections in interactive graphics applications is to approx-
imate the reflected scene with a panoramic image, e.g., a
cube map, and to look up the reflected rays into the cube
map. This is a drastic approximation that produces large
errors for reflected objects that are close to the reflector
surface (Fig. 1left).

In this paper we propose extending the feed-forward
pipeline to handle second-order rays. Our method is based
on the fact that in the case of specular reflections second-
order rays are locally coherent. We take advantage of this
coherence by grouping second-order rays of nearby pixels
into clusters. Although the rays in a cluster are coherent,

they usually do not pass through a common point and thus
they cannot be modeled with a conventional pinhole cam-
era. One approach is to reduce the size of clusters until the
pinhole approximation produces acceptable errors, but this
is inefficient for complex reflectors that require small clus-
ters and thus a large number of cameras.

Another approach is to model clusters of second-order
rays using more powerful non-pinhole camera models, but
such cameras introduce costly projection and non-linear ras-
terization, and even a small ray approximation error produ-
ces reflection discontinuity between clusters. Instead of
approximating the rays of the cluster, we approximate the geome-
try reflected by the cluster. The reflected geometry is approxi-
mated by rendering a depth image for each cluster. The
color samples captured by the second order rays of a cluster
are computed by intersecting the rays with the cluster’s
depth image.

Our method produces quality reflections at interactive
rates (see Fig. 1 and accompanying video, which can be found
on the Computer Society Digital Library at http://doi.ieee-
computersociety.org/10.1109/TVCG.2014.2314666). No pre-
computation is required, thus our method supports fully
dynamic scenes. Second-order rays are clustered on the fly,
directly in the output image, which brings support for gen-
eral scenes, with large, complex, and numerous reflectors.
The reflected scene geometry is approximated efficiently, on
demand: our method only approximates the geometry
needed for the reflections in the current frame, the approxi-
mation is done at the appropriate level of detail, and the
approximation is done automatically, without a prerequisite
partitioning of reflected geometry into objects. Our method
also allows approximating glossy reflections (Fig. 2) by inter-
secting the cluster depth image with multiple reflected rays
per cluster pixel.

Our method essentially approximates second-order rays
with one additional feed-forward rendering pass for each
cluster. Although, in theory, our method could support
higher-order rays, handling such rays is less efficient since
they are less coherent, which translates into a larger number
of clusters. Whereas incorrect first-order reflections are

� L. Wang and N. Xie are with the State Key Laboratory of Virtual Reality
Technology and Systems, School of Computer Science and Engineering,
Beihang University, Beijing, China.
E-mail: wanglily@buaa.edu.cn, xienw@vrlab.buaa.edu.cn.

� W. Kei is with the Computer Science Department, Macao Polytechnic
Institute, Macau, China. E-mail: ke.wei.gb@gmail.com.

� V. Popescu is with the Computer Science Department, Purdue University,
305 North University Street, West Lafayette, IN 47907-2107.
E-mail: popescu@cs.purdue.edu.

Manuscript received 15 Apr. 2013; revised 19 Feb. 2014; accepted 16 Mar.
2014. date of publication xx xx xxxx; date of current version xx xx xxxx.
Recommended for acceptance by G. Drettakis.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2014.2314666

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. X, XXXXX 2014 1

1077-2626� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



IE
EE

Pr
oo

f
easily noticeable and disturbing, higher-order reflection
inaccuracies are usually difficult to detect and as such they
do not warrant the additional cost—we render higher order
reflections using environment mapping.

The next section discusses prior work. Section 3 discusses
our method in detail. Section 4 presents and discusses
results. Section 5 concludes the paper and sketches direc-
tions for future work.

2 RELATED WORK

The problem of rendering specular reflections at interactive
rates has been approached from many directions.

2.1 Image Based Rendering and Caching

One group of methods employs pre-computed or pre-
acquired color samples. Such classic image-based rendering
methods include the light field [20], the lumigraph [19], and
view dependent texture mapping [29]. The lumigraph was
modified from storing color samples to storing a ray to
ray mapping, which allows changing the reflective and
reflected object independently [21]. An outside-looking-in

Fig. 1. Specular reflections rendered with environment mapping (left), ray tracing (middle), and our method (right). Environment mapping produces
incorrect reflections that fail to convey the reflected object’s proximity to the reflector surface (e.g., table leg reflected in floor, floor reflected in vase).
Our method renders reflections comparable to those rendered with ray tracing. The frame rate for our method is 15 fps, compared to 1.1 fps for ray
tracing (i.e., Optix with BVH acceleration).

Fig. 2. Glossy reflections rendered with our method, for two levels of
glossiness, at 5 fps.

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. X, XXXXX 2014



IE
EE

Pr
oo

f

parameterization of the light field has been proposed by
revolving a construction camera around the reflective object
[22]. The environment light field map [18] goes in the oppo-
site direction of achieving an inside-looking-out parameteri-
zation of the light field.

The idea of rendering acceleration by reusing pre-com-
puted color has recently evolved into irradiance [37], [38],
[39] and radiance [40], [41] caching. Irradiance caching
methods reuse shading results from nearby pixels and are
efficient, but they only apply to diffuse surfaces. Radiance
caching [40] overcomes the diffuse surface limitation by
storing full incoming radiance, which is interpolated
between pixels taking into account the pixels’ BRDFs.
Pre-convolved radiance caching [41] accelerates radiance
caching by storing pre-computed shading expressions
per surface as opposed to per pixel, at the cost of losing
high-frequency detail.

These caching approaches are ill-suited for rendering
specular reflections as the appearance of specular surfaces
changes substantially even with a small change in view-
point, which leads to impractically large ray databases.
Moreover, dynamic scenes are challenging for image-based
rendering methods since any change in the scene makes the
ray database obsolete and re-computing the ray-database is
too costly to be done per frame.

2.2 Ray Tracing

The ray tracing pipeline [1], [2] naturally supports ren-
dering reflections. The major concern is performance.
The brute force approach of intersecting every scene tri-
angle with every reflected ray is prohibitively expensive
and the goal is to avoid performing intersection tests
that do not yield an intersection. A multitude of accelera-
tion schemes have been developed, including level of
detail [5], KD-trees [3], bounding volume hierarchies
(BVH) [4], and beam tracing [43], running on the CPU
[11], [12] and on the GPU [13], [14], [15], [43]. Rendering
specular and glossy reflections with ray tracing poses
several challenges.

One challenge is the large number of per-pixel rays
needed to achieve adequate reflection antialiasing. When
the solid angle subtended by the reflected rays at a pixel is
large, a large number of rays are needed for adequate sam-
pling of reflected geometry. Another challenge is posed by
glossy surfaces. Specular, mirror-like surfaces have coher-
ent normals and therefore generate coherent reflected
rays, which can be adequately sampled with a small num-
ber of per-pixel rays. Glossy surfaces however generate
incoherent reflected rays and they require a large number
of rays per pixel. A third important challenge is that, in
the case of dynamic scenes, the data structure used to
accelerate ray tracing has to be re-computed on the fly. For
example, the Optix ray tracer used to render the compari-
son images in Fig. 1 spends 910 ms for the living room
and 260 ms for the bathroom per frame to re-construct its
BVH tree.

As GPUs remain primarily feed-forward rendering
machines, researchers have attempted to extend the feed-
forward pipeline to rendering reflections. There are two
fundamental options: processing the reflected triangles

with the feed-forward pipeline, or processing the reflec-
tive triangles.

2.3 Feed-Forward Processing of Reflected
Triangles

Consider a triangle that is first reflected before being pro-
jected onto the output image. Processing such a reflected tri-
angle with the feed-forward pipeline requires overcoming
two challenges. First, one has to be able to project onto the
image plane a vertex that is first reflected. Second, one has
to perform a non-linear rasterization of the reflected triangle
(i.e., curved reflected triangle edges, non-linear variation of
rasterization parameters within the triangle). The second
challenge can be overcome by subdividing the reflected tri-
angle until conventional, linear rasterization provides an
acceptable approximation. However, the first challenge is
difficult to overcome. If the reflector were a sphere, projec-
ting a reflected vertex requires solving a quartic. For general
reflectors modeled with a triangle mesh no closed-form pro-
jection exists.

The problem of projecting reflected vertices has been
addressed in several ways. One method considers the
reflected space subdivision induced by the reflector’s trian-
gles; a reflected vertex is projected by looking up the subdi-
vision cell that contains it; the lookup is accelerated using
an approximate representation called an explosion map
[27]. Another method [8] leverages the coherence of
reflected rays and approximates a group of reflected rays
with a conventional planar pinhole camera. The planar pin-
hole cameras are stored at the leafs of a BSP tree that defines
a sample-based camera. The sample-based camera projects
reflected vertices with bounded error. A third method
searches for the projection of a reflected vertex through a
local search executed on the GPU [28]. All these methods
scale poorly with reflector complexity and with the number
of reflectors. Complex and numerous reflectors increase the
complexity of the explosion map, of the sample-based cam-
era, or of the search for the reflected vertex projection, and
increase the number of projections for a given triangle due
to multiple projections.

2.4 Feed-Forward Processing of Reflective
Triangles

The other option for rendering reflections by projection fol-
lowed by rasterization is to process the triangles that form
the reflective surface. The vertices of the reflective triangle
are projected as usual, vertex normals are interpolated over
the projected triangle, and per-pixel reflected rays are com-
puted straightforwardly. However, finding the color of the
samples captured by the reflected rays is challenging. To
avoid the complexity of ray tracing the scene in search of
the reflected ray color, several methods resort to approxi-
mating the reflected scene geometry.

Environment mappingmakes the drastic assumption that
all reflected geometry is infinitely far away from the reflector
[6], [7]. With this assumption, the reflected scene can be
modeled with an environment map (typically parameter-
ized as a cube map), and the reflected ray is simply looked
up using solely its direction, ignoring the actual 3D point
from where it emanates. The reflection is antialiased

WANG ET AL.: SECOND-ORDER FEED-FORWARD RENDERING FOR SPECULAR AND GLOSSY REFLECTIONS 3



IE
EE

Pr
oo

f

through mipmapping in the environment map. The method
scales well with reflector complexity and multiple reflec-
tions are handled at no extra cost—the fact that multiple
reflected rays intersect the same region of the environment
map has no consequence on performance. Due to its low
cost and robustness, environment mapping is the method of
choice for rendering reflections when performance is at a
premium. However, when the reflected object is close to the
reflective surface, environment mapped reflections are
wrong, failing to convey the object’s proximity to the reflec-
tive surface (Fig. 1).

Environment maps have been extended to approximate
single- and multiple-lobe BRDF glossy reflections [23], [24].
In an effort to improve reflected geometry approximation
quality, environment maps have been enhanced with per-
pixel depth [25]. However, the resulting environment map
only captures surfaces visible from its center which leads to
serious errors in the reflection due to missing samples as
many reflected rays intersect surfaces that are not part of
the environment map.

In order to reduce the missing sample errors one option
is to subdivide the reflected scene into objects and to
approximate each object individually for each reflector,
using a billboard or a conventional depth image at first [26],
and later using a non-pinhole depth image [9]. Good reflec-
tions are obtained, but subdividing the scene into reflected
objects is not always possible and, when it is possible, the
approach does not scale with scene complexity.

A second option is to approximate scene geometry with
more powerful depth images. Layered depth images (LDIs)
allow for a variable number of samples along a conventional
camera ray [33] and they have been used to accelerate indi-
rect illumination computation [34], [35]. Although LDIs
avoid the redundancy of overlapping depth images, LDI
construction is laborious (requiring depth peeling or merg-
ing overlapping depth images), which precludes their use
in the context of dynamic scenes where LDIs would have to
be constructed for every frame.

A third option is to use a flexible non-pinhole camera,
such as the graph camera [36], to capture the entire scene in
a single-layered image [9]. The graph camera offers closed-
form projection and the graph camera depth image can be
constructed (i.e., rendered) for every frame. However,
graph camera constructors are limited to simple 2D mazes
with right angle turns, and therefore graph cameras cannot
approximate well the reflected rays resulting from specular
reflections in complex scenes like the ones considered in
our paper (Fig. 1).

Approximating reflected geometry has also been pur-
sued by researchers aiming to accelerate ray tracing.
Approximations include geometry fields that can be looked
up to estimate the reflected ray color [16] and mipmapped
geometry images [17]. These approximations cannot be
computed on the fly which precludes fully dynamic scenes
with deforming objects.

Our method falls in this category of methods that feed-
forward process reflective triangles and that approximate
reflected geometry to simplify reflected ray/geometry inter-
section. Our method computes a quality approximation of
the reflected scene for each frame which results in quality
reflections for fully dynamic scenes, and it does not require

partitioning the reflected scene into objects, which brings
scalability with scene complexity.

3 ALGORITHM

Consider a scene that contains diffuse surfaces, i.e., surfaces
with perfectly diffuse reflectance, specular surfaces, i.e., sur-
faces whose reflectance model is well approximated by a
combination of a perfectly specular component and of a dif-
fuse component, and glossy surfaces, i.e., surfaces whose
reflectance model is well approximated by a combination of
a single-lobe symmetrical BRDF and of a diffuse compo-
nent. The scene is modeled with triangles.

3.1 Algorithm Overview

Given a desired view V, the scene S is rendered from V with
the following algorithm:

1. Render S from V. For every pixel p record:

a. Diffuse component p.rgbd
b. Specular and glossiness levels p.s and p.g
c. Normal and depth p.n and p.z
d. Reflective object ID, p.rID

2. Cluster non-diffuse pixels.
3. For every cluster C, finalize reflections as follows:

a. Construct cluster camera K.
b. Render S with K to obtain cluster depth

image D.
c. For every pixel p in C:

i. For every reflected ray ri Intersect ri withD,
i.e., di ¼ ri \D.

ii. Set non-diffuse component p:rgbn ¼ Gðdi;
p:gÞ.

iii. Pixel color p.rgb ¼ LERP ðp:rgbd; p:rgbn; p:sÞ.
The algorithm has three main steps. The first step takes a
rendering pass over the scene to compute the diffuse
component for every pixel, to set the pixel specular and
glossiness levels, to compute the pixel normal and depth
by conventional interpolation of vertex values, and to set
the ID of the reflective object to which the pixel belongs.
The specular level of a pixel p.s ranges from 0 for per-
fectly diffuse to 1 for perfectly specular. The glossiness
level of a pixel p.g ranges from 0 for perfectly specular,
mirror-like reflections, to 1 for a glossy surface with the
widest BRDF lobe. The second step groups neighboring
non-diffuse pixels with similar reflected rays into clusters
as described in Section 3.2 The third step computes the
reflections and finalizes the frame one cluster at the time.
For each cluster, a planar pinhole camera is constructed
to encompass all the reflected rays of the cluster as
described in Section 3.3 (step 3a above). Then the geome-
try reflected by the cluster is approximated by rendering
the scene with the cluster camera (step 3b).

The resulting depth image is used to finalize the compu-
tation of the color for the pixels in the cluster (step 3c). For
each pixel in the cluster, the depth image is intersected with
reflected rays, as described in Section 3.4 (step 3ci above).
For perfectly specular, mirror-like surfaces (i.e., a p.g of 0),
there is a single reflected ray per pixel, defined by the sur-
face point, the pixel normal, and the eye position. The larger

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. X, XXXXX 2014



IE
EE

Pr
oo

f

the glossiness factor p.g, the larger the number of reflected
rays. The non-diffuse component of the current pixel is
computed by blending the color samples di found at the
reflected ray/depth image intersections based on the gloss-
iness level p.g, using function Gðdi; p:gÞ, which corresponds
to an application chosen BRDF. The final pixel color is com-
puted by linearly interpolating the diffuse and non-diffuse
pixel color components with weights defined by the pixels
specular level p.s (step 3.c.iii).

3.2 Non-Diffuse Pixel Clustering

The first pass over the scene (step 1 in Section 3.1) computes
the pixel normal which translates to a reflected ray. We take
advantage of the coherence of per-pixel reflected rays by
grouping nearby non-diffuse pixels into clusters. We have
designed an algorithm for clustering non-diffuse pixels
based on the following considerations:

a. There should be as few clusters as possible, since
each cluster requires rendering the scene to construct
its depth image.

b. The cluster should be small enough such that a con-
ventional planar pinhole camera constructed for the
cluster captures the samples reflected by the cluster.

c. Clustering should be fast as it runs for each frame.
We assign non-diffuse pixels directly to their cluster by bin-
ning pixel normals into a 3D array of bins whose resolution
is adapted for each frame to achieve a good tradeoff
between number of clusters and reflected ray modeling
fidelity. Our algorithm proceeds as follows.

Offline:

1. Partition non-diffuse triangles into reflective objects
Online, once per frame:

2. For every reflective object R:

a. Set normalized screen area aR
3. Compute the number of visible reflective objects, nv.
4. For each non-diffuse pixel p, assign p to cluster

(i, j, k).

a. i ¼MAXTHETABINS � p:n:u=360o � aR=nv

b. j ¼MAXPHIBINS � p:n:’=180o � aR=nv

c. k ¼ p:rID

Binning normals based solely on their orientation can
lead to grouping distant pixels in the same cluster. For
example in Fig. 1(top row), the vase, the teapot, and the

lamp have patches with identical normals. Grouping all
three patches in the same cluster is inefficient since it would
result in unnecessarily large depth images. This problem
could be avoided by building contiguous clusters in bot-
tom-up quadtree fashion in the output frame, but such an
approach is slow.

Step 1. We group non-diffuse triangles offline into objects
(step 1), and we prevent a cluster from spanning multiple
reflective objects. This is done using the reflective object ID
as a third dimension of the array in which normals are
binned, in addition to the normal’s spherical coordinates u
and ’. The partition of non-diffuse triangles follows the nat-
ural subdivision of the scene into objects. Fig. 3 illustrates
the 25 and 15 reflective objects for the living room and the
bathroom scenes (Fig. 1), respectively. We render reflec-
tions only for the non-diffuse pixels visible in the output
frame—the offline partitioning of the scene into reflective
objects is only used for fast clustering. Whereas the number
of reflective objects is fixed, the resolution along the u and ’

dimensions of the array of bins is set online, for each reflec-
tive object and for each frame. The u and ’ dimensions of
the bins depend on two quantities.

Step 2. One quantity, aR, measures the footprint of the
reflective object in the output frame, as the percentage of
output frame pixels where the reflective object is visible.

Step 3. The second quantity is the number of reflective
objects nv that are visible in the output frame, computed as
the number of reflective objects whose aR is not 0 (step 3).

Step 4. Each pixel is assigned to a cluster based on its
normal and on the index of the reflective object to which
it belongs. The maximum possible u and ’ resolution
MAXTHETABINS x MAXPHIBINS is modulated using aR
and nv. MAXTHETABINS and MAXPHIBINS are con-
stants that we set to 13 and 8, respectively, for all exam-
ples shown in the paper. The larger the relative footprint
of the object, the finer the bins, and the larger the number
of reflective objects, the coarser the bins. Although the
maximum number of bins for the two scenes is 25� 13�
8 ¼ 2;600 and 15� 13� 8 ¼ 1;560, respectively, the num-
ber of clusters is given by the number of bins that are not
empty. For example, in the case of a single large sphere
that covers the entire screen, the maximum number of
clusters is 1� 13� 8=2 ¼ 52, which accounts for the fact
that only half of the sphere is visible.

Fig. 4 illustrates the clusters used to render the reflec-
tions in the four images from Figs. 1 and 2. The floor defines
a single cluster. The table top and the floor define two dif-
ferent clusters, although they are oriented the same way.
The vase defines more clusters when seen in more detail
(top right versus top left). The spherical coordinate system
used over-samples clusters near the pole (see top right
image in Fig. 4), a small disadvantage outweighed by the
advantage of its simplicity. Clustering based on normals as
opposed to based on reflected rays avoids over-clustering
at the silhouette of reflective objects and has good frame to
frame stability.

3.3 Cluster Camera Construction

Once clustering is complete, reflections are computed for
one cluster at the time. The first step is to construct a

Fig. 3. Visualization of reflective objects. Diffuse objects are shown in
grey.

WANG ET AL.: SECOND-ORDER FEED-FORWARD RENDERING FOR SPECULAR AND GLOSSY REFLECTIONS 5



IE
EE

Pr
oo

fconventional planar pinhole camera for the current cluster
that allows approximating the geometry reflected by the
cluster. We use a conventional camera for three fundamen-
tal reasons. First, conventional camera allows rendering the
scene geometry efficiently to obtain a depth image that
approximates the reflected geometry. Second, reflected rays
project to straight lines onto depth images constructed with
conventional cameras, which makes ray/depth image inter-
section efficient. Third, a conventional camera models the
reflected rays of a planar cluster perfectly. Planar specular
surfaces abound in man-made scene and handling them
well is an important reflection rendering algorithm design
consideration.

The goal is for the camera to capture all the samples
reflected by the cluster. One consideration is for the camera
to have enough field of view, such that the camera frustum
contains all the reflected rays of the cluster. A second con-
sideration is for the rays of the camera to approximate the
reflected rays of the cluster as closely as possible in order to
avoid disocclusion errors in the reflection. A disocclusion
error occurs when a reflected ray intersects a surface at a
sample that is missing from the depth image rendered with
the cluster camera. The camera cluster is constructed as fol-
lows (Fig. 5);

1. Set image plane through 3D point Pc and normal nc

a. Pc ¼ SPi=N
b. nc ¼ Sni=N

2. Set far plane at distanceD
3. Set center of projection ec

a. Compute e0 ¼ Reflectðe; Pc; ncÞ.
b. Displace e0 along e0Pc : ec ¼ e0 þ ðPc � e0Þf:

4. Set the image frame aabb.
5. Set the image resolution w x h.

Step 1. The image plane of the cluster camera is defined
by the cluster centroid and the cluster normal. The cluster
centroid is the average of the 3D reflector surface points
over all cluster pixels (N is the number of pixels in the clus-
ter). The cluster normal is the average over all cluster pixel
normals. The image plane also serves as near plane. Fig. 5
illustrates cluster camera construction in 2D, for clarity. A
curved reflector is partitioned into a cluster between points
P1 and PN , where the surface normals are n1 and nN and
the reflected rays are r1 and rN . The output frame center of
projection is e.

Step 2. For specular reflections, the far plane of the cluster
camera is set to be parallel to the image plane at a distance
D equal to the scene diameter for specular reflections
(Fig. 5). For glossy reflections the far plane is set closer to
the image plane, as described in Section 3.5

Step 3. The center of projection ec of the cluster cam-
era is defined such that the cluster camera rays approxi-
mate the reflected rays of the cluster as well as possible.
We construct ec such that the axis aligned bounding box
aabbn of the projections of the near reflected ray end-
points be of similar size to the axis aligned bounding
box aabbf of the projections of the far reflected ray end-
points. In Fig. 5, the near endpoints of reflected rays r1
and rN are P1 and PN ; the far endpoint for ray rN is QN ,
and for r1 it is Q1 (actual location of Q1 is not shown to
keep the figure compact).

We set ec in two steps. First, the output frame center of
projection e is reflected over the cluster camera image plane
to e0 (Fig. 6). Then, ec is computed by displacing e0 towards
or away from the centroid of the cluster Pc. The displace-
ment is controlled by a scalar value f , which is set such that
the diagonal of the 2D AABB aabbf be approximately equal
to the diagonal of the 2D AABB aabbn. We set f as shown in
Equation (1), where dn is the length of the diagonal of aabbn
when ec is at e0; df is the length of the diagonal of aabbf
when ec is at e0, and dF is the length of the axis aligned
bounding box of the far endpoints of the reflected rays on
the far plane. As ec moves on e0Pc, the projections P 0

i of
points Pi do not change much, as points Pi are close to the
image plane. Consequently, the length of the diagonal of
aabbn is approximately constant, and Equation (1) approxi-
mates it to the length dn it has when ec ¼ e0. On the other

Fig. 5. Construction of the image plane (also the near plane) and of the
far plane for the cluster camera.

Fig. 4. Visualization of pixel clusters used to render the reflections in
Figs. 1 and 2. Diffuse pixels are shown in grey.

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. X, XXXXX 2014



IE
EE

Pr
oo

f

hand, the length of the diagonal of aabbf is sensitive to the
position of ec on e0Pc. Equation (1) sets ec such that the
length of the diagonal of aabbf is equal to dn:

f ¼ dnðdF � dfÞ
dfðdF � dnÞ: (1)

Fig. 6 illustrates the case of the convex reflector from
Fig. 5. Points Q0

1; P
0
1; P

0
c; P

0
N;Q

0
N correspond to the cluster

camera image plane projection from e0 of the correspond-
ing points from Fig. 5. The length of segment Q0

1Q
0
N corre-

sponds to df , that of P
0
1P

0
N corresponds to dn, and that of

Q1QN corresponds to dF . At e0 aabbn is smaller than aabbf ,
i.e., df > dn. Since dF > df and dF > dn; 0 < f < 1. The
displacement moves ec from e0 towards PC . This decreases
aabbf with respect to aabbn. The cluster camera with center
of projection ec approximates the reflected rays better than
a cluster camera with center of projection at e0. The direc-
tion of ecP

0
1 is closer to the direction of r1 than is the direc-

tion of e0Q
0
1.

For a cluster corresponding to a planar reflector, all
reflected rays intersect at e0, and consequently the cluster
camera should use e0 as a center of projection. Such a cluster
camera models the reflected rays perfectly and there are no
disocclusion errors. For a planar reflector the near and far
endpoints project from e0 to the same image plane point.
Consequently aabbn and aabbf are identical, dn ¼ df , and,
according to Equation (1), f becomes 1, which implies that
ec is set to e0 as desired.

Step 4. The image frame is set at by projecting the
near and far reflected ray endpoints with the finalized
center of projection ec. The image frame is the axis
aligned bounding box of these projections. This way the
cluster camera has a field of view that is guaranteed to
encompass all the reflected rays of the cluster (orange
shaded area in Fig. 6).

Step 5. The image resolution is set to match the resolution
of the cluster. The 3D points of a few pairs of cluster pixels
that are either in consecutive rows or in consecutive col-
umns in the output image are projected with the cluster
camera. The average distance between the pairs of projec-
tions are used to define the pixel size p. The cluster camera
resolution is defined as w� h, where w ¼ aabb:w=p, and
h ¼ aabb:h=p.

3.4 Reflected Ray/Depth Image Intersection

Once the camera cluster is complete, the scene is rendered
with it to obtain the cluster depth image. A depth image is a
powerful approximation of geometry: the approximation
can be constructed quickly through conventional rendering
to obtain a frame buffer with color and depth per pixel, the
depth image captures geometry with controllable level of
detail, and one can intersect a depth image with a single ray
efficiently. The efficient intersection between a ray and a
depth image is well known—it has been used in inverse
image-based rendering by 3D warping [31], in rendering
surface geometric detail [32], and in rendering reflections
[26]. We briefly sketch the algorithm here for completeness.

Given a ray r and a cluster depth image DI, the closest .
intersection between r and DI, if any, is found by projec-
ting r onto DI. Let r0 be the projection of r with the cluster
camera that rendered DI; r0 is traversed from the near end-
point to the far endpoint with one-pixel steps. Let a and b
be the previous and current steps on r0. If the 2D segments
½ð0; zraÞ; ð1; zrbÞ� and ½ð0; DI½a�Þ; ð1; DI½b�Þ� intersect, and
intersection is found, and the search stops. zra is the depth
along the ray at a, and DI½a] is the depth in the depth image
at a. A measure of depth that is linear in screen space is
used, i.e., proportional to 1/z. If the end of r0 is reached
there is no intersection.

3.5 Glossy Reflections

A point on a glossy surface does not reflect along a single
direction, but rather along a solid angle centered at the spec-
ularly reflected ray (i.e., the ray obtained by reflecting the
output image ray over the point’s normal). We support
glossy reflections with the following three modifications to
the algorithms described above for specular reflections:

1. The field of view of the cluster camera has to be con-
structed to take into account the non-zero solid angle
subtended by a glossy reflected cone. We do this by
extending the field of view computed at Step 4 of the
cluster camera construction algorithm (Section 3.3)
with the angle of the reflected cone. This way the
resulting cluster depth image captures the additional
geometry reflected by the glossy cluster.

2. Glossy surfaces only have well defined reflections
close to the reflector surface. We take advantage of
this fact by setting the far plane of a cluster camera
constructed to render a glossy reflection based on
the glossiness level. For surfaces that are more
matte, the far plane can be closer to the near plane,
compared to surfaces that are more specular. Bring-
ing in the far plane as much as possible reduces the
amount of geometry that has to be reflected. When
no object is sufficiently close to a glossy surface, the
resulting cluster depth image is empty, and no sub-
sequent ray/depth image intersections are needed.
To provide for a gradual fade away of a glossy
reflection as a reflected surface moves progres-
sively farther from the glossy surface, the glossy
reflection is blended with the diffuse color of the
surface with a weight that decreases to 0 as the dis-
tance to the reflected surface becomes the distance
to the far plane.

Fig. 6. Construction of the eye e0 of the cluster camera.

WANG ET AL.: SECOND-ORDER FEED-FORWARD RENDERING FOR SPECULAR AND GLOSSY REFLECTIONS 7



IE
EE

Pr
oo

f
3. Glossy reflections require multiple reflected rays per

reflector surface point. We intersect several reflected
rays with the cluster depth image, for each glossy
surface pixel. The reflected rays sample uniformly a
cone with apex at the surface point and with an axis
defined by the reflected ray generated by the pixel
normal. The solid angle covered by the cone
depends on the glossiness level. For surfaces close to
specular, the angle is small, and therefore the num-
ber of rays is small. For a more matte surface the
angle is larger requiring additional rays. For the
examples shown in this paper the number of rays
per glossy pixel ranges from 8 to 49.

4 RESULTS AND DISCUSSION

We tested our method on two indoor scenes with numerous
specular and glossy reflections. The living room scene
(Fig. 1, top andmiddle rows) has 286K triangles, out of which
156K are diffuse and 132K are non-diffuse. The bathroom
scene (Fig. 1 bottom row) has 90K triangles, out of which 44K
are diffuse and 46K are non-diffuse.

4.1 Quality

4.1.1 Specular (Mirror Like) Reflections

As shown in Fig. 1 and in the accompanying video, avail-
able in the online supplemental material, our method

produces quality specular reflections. Unlike in the case of
environment mapping, objects close to the reflector are
reflected correctly, conveying the proximity between the
reflected and reflecting object. There is no reflection discon-
tinuity between clusters because the clusters have a slight
overlap, which prevents any gaps, and because the reflected
rays are continuous over the smoothly changing reflector
surface, which prevents any misalignment of the reflection
from cluster to cluster (see Fig. 7 bottom).

The reflections rendered with our method are comparable
to reflections rendered by ray tracing. Throughout this paper
and the video, available in the online supplemental material,
reflections rendered with our method are rendered at a reso-
lution of 512� 512 with uniform 2� 2 super-sampling (i.e.,
1;024� 1; 024 before output frame reconstruction); the reflec-
tions rendered by ray tracing use an equivalent 512� 512
output image resolution with four rays per pixel. We use
NVIDIA’s Optix ray tracer [30]. Fig. 8 shows pixel value
differences between our method and ray tracing. The aver-
age absolute pixel channel differences (i.e., L1 norm) are
small, i.e., 6, 3, and 9, for each of the three rows, respectively
(we use eight bit RGB channels with values from 0 to 255).

One reason for the difference is the large angle
between reflected rays at the reflector edges, which leads

Fig. 7. Disocclusion errors (red) decreasing as more clusters are used,
for the image in the middle row of Fig. 1. Diffuse pixels are shown in
black and only the reflective component is shown for non-diffuse pixels.
The bottom row shows that there are no reflection discontinuities
between adjacent clusters.

Fig. 8. (Left) Difference images between our method and ray tracing for
the three rows in Fig. 1. (Right) same difference images with intensities
scaled up by a factor of 50.

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. X, XXXXX 2014



IE
EE

Pr
oo

f

to minification errors. Another reason for the difference
is the slightly different sampling of the diffuse objects,
which produces differences most visible at color edges.
Our method uses bilinear interpolation of the intermedi-
ate sampling provided by the depth image, whereas ray
tracing samples the diffuse geometry directly with addi-
tional rays.

Differences are also caused by surfaces that should be
visible in the reflection at a cluster but that are not cap-
tured by the cluster depth image. The reflected rays do
not pass exactly through the cluster camera’s center of
projection so it can happen that a few reflected rays reach
surfaces that are not visible to the cluster’s camera. We
measured the number of pixels per frame where such dis-
occlusion errors occur over a sequence of 1,000 frames.
The maximum/average percentage of disocclusion error
pixels is 1.3 percent/0.62 percent for the living room
scene, and 3.5 percent/2.75 percent for the bathroom
scene. The disocclusion error is controlled by reducing
the size of the clusters. The fewer the reflected rays that
are approximated with a single planar pinhole camera,
the higher the approximation fidelity (Fig. 7).

Finally, when curved reflectors have a small screen foot-
print, the cluster has only one or a few rays, which can

lead to not finding an intersection between the reflected ray
and the depth image of the cluster. When an intersection is
not found, the reflected ray is looked up in an environment
map (Fig. 9).

Our method approximates the reflected geometry for
each output frame using depth images, which allows adapt-
ing the level of detail of the reflected geometry as needed
for the current frame. The resolution of the depth image ren-
dered for a cluster is commensurate with the resolution of
the cluster of reflected pixels. Fig. 10 shows that a lower res-
olution for the depth images would lead to blurriness (dis-
tant part of floor reflected in vase) and jagged edges (table
leg reflected in floor).

4.1.2 Glossy Reflections

Our approach approximates glossy reflections by intersect-
ing multiple reflected rays with a cluster depth image for
each cluster pixel. Fig. 11 shows that our method achieves
quality glossy reflections, comparable to those obtained by
ray tracing. For Fig. 11 our method uses eight reflected rays
per glossy pixel. Fig. 12 shows the less noisy but more
expensive glossy reflections obtained with our method
when 49 rays per pixel are used.

Fig. 9. Visualization in red of pixels whose reflected rays are looked up in
an environment map, for Fig. 1(top). Diffuse pixels are shown in black
and only the reflective component is shown for non-diffuse pixels.

Fig. 10. Reflections rendered with our algorithm (left) and with depth
images with 3� 3 lower resolution than the resolution computed by our
algorithm (right). Diffuse pixels are shown in black and only the reflective
component is shown for non-diffuse pixels.

Fig. 11. Glossy reflections rendered for two glossiness levels (left versus
right), with our method and without a diffuse component (top), with our
method and with a diffuse component (middle), and with ray tracing
(bottom).

WANG ET AL.: SECOND-ORDER FEED-FORWARD RENDERING FOR SPECULAR AND GLOSSY REFLECTIONS 9



IE
EE

Pr
oo

f
4.2 Performance

All performance numbers reported in this paper were
recorded on a PC workstation with a 3.4 GHz Intel(R) Core
i7-2600 CPU, with 4 GB of memory, and with an NVIDIA
GeForce GTX 570 graphics card.

4.2.1 Specular (Mirror Like) Reflections

The performance of our method and the comparison to ray
tracing is given in Table 1. Ray tracing used the bounding
volume hierarchy acceleration and the BVH data structure
is reconstructed every frame as needed for the dynamic
scenes. Performance was measured on two paths of 900
frames each, through each of the two scenes. The scenes
contain many reflective surfaces and approximately half
the pixels in a frame are non-diffuse. Our method sustains
10 fps for all four paths, and it is about five times faster
than ray tracing for the simpler bathroom scene, and about
10 times faster than ray tracing for the more complex living
room scene. To explain the better scalability of our method
with scene complexity we breakdown the performance
analysis as follows.

Table 2 gives the maximum and average times in milli-
seconds for the main steps of our algorithm (see Section 3.1).
As expected, the first pass, which entails rendering the
scene geometry with simple shading, and the second pass,
which entails binning pixels with a simple pass over the
image, take negligible time. The construction of the cluster
cameras is expensive, as it requires multiple passes over the
pixels in the cluster and concurrent writes for the computa-
tion of the cluster point, normal, and AABB. Rendering the
cluster depth images is also laborious as it implies a pass
over the scene geometry for each cluster. Finally, computing
the intersection between the reflected rays and the cluster
depth images takes about half the time compared to each of
the previous two steps.

The rendering parameters that could affect performance
are the number of clusters (Table 3), the output frame reso-
lution (Table 4), the cluster depth image resolution (Table 5),
and the number of diffuse triangles (Table 6). Tables 3, 4, 5,
and 6 report average performance for the living room scene.

Our method renders the non-diffuse triangles and parti-
tions the resulting non-diffuse pixels into clusters. Conse-
quently, performance does not depend on the number of
non-diffuse triangles, but only on the number of clusters
(Table 3). All steps depend on the output image resolution:
for a bigger output image resolution, the first pass renders a
bigger image, there are more pixels to cluster, camera con-
struction handles clusters with more pixels, and the resolu-
tion of the depth image for each cluster is higher which
translates to longer depth image rendering and reflected
ray/depth image intersection times. This translates to
slower frame rates for higher resolution (Table 4). However,
the cost is not proportional to the number of output image
pixels—higher output image resolutions do not increase the
complexity of the non-diffuse geometry, thus the number of
clusters remains the same, each cluster grouping a larger
number of pixels.

Fig. 12. Glossy reflections from Fig. 11 now rendered with 49 rays per
non-diffuse pixel.

TABLE 1
Performance of Our Method Compared to Optix

TABLE 2
Performance in Milliseconds for Various Algorithm

Steps as Defined in Section 3.1

TABLE 3
Average Frame Rate for Various Numbers of Clusters

TABLE 4
Average Frame Rate for Various Output Resolutions

TABLE 5
Average Frame Rate for Various Depth Image Resol’s

TABLE 6
Average Frame Rate for Various Numbers of Diffuse Tris

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. X, XXXXX 2014



IE
EE

Pr
oo

f

The frame rate depends very little on the resolution of the
depth image—forcing the resolution to be half or twice as
much as the resolution computed by the algorithm does not
change the frame rate substantially (Table 5). For the steps
in Table 2, only the last two depend on the depth image res-
olution. Step 3b depends on the number of passes, i.e., the
number of depth images, and it depends little on the resolu-
tion of individual depth images. Step 3ci requires substan-
tially less time than Step 3b, thus the variable number of
steps along the projection of the reflected ray onto the depth
image (Section 3.4) has little influence on the overall frame
rate. The number of diffuse triangles only affects Step 3b,
and reducing the number of diffuse triangles benefits over-
all performance (Table 6) until the cost of Step 3b is too
small compared to that of Step 3a.

We can now explain why our method scales better with
scene complexity than ray tracing. For our method, cluster-
ing, cluster camera construction, and reflected ray depth
image intersection mainly depend on output image resolu-
tion. Because of this, simple scenes (e.g., the Cornell box)
rendered at high resolution will be handled faster by ray
tracing. Whereas depth image construction does depend on
scene complexity, the two scenes are still simple enough for
depth image construction to take roughly the same amount
of time (Table 6). This is not the case for BVH construction
needed by ray tracing, which takes substantially longer for
the living room scene (910 ms) compared to the bathroom
scene (260 ms). Our method depends on the number of clus-
ters (Table 3), which is similar for all four paths used for
Table 1, as shown in Table 7. In conclusion, our method
scales better with diffuse scene complexity than ray tracing
because the conventional GPU rendering of the cluster
depth images scales better than the construction of the accel-
eration structure needed for ray tracing.

Regarding the dependence on reflector complexity, our
method handles optimally planar reflectors, which are fre-
quently encountered in man-made scenes, and ray tracing
does not. Complex reflectors, with high curvature and high
fragmentation are challenging for both our method and ray
tracing: they imply a large number of clusters for our
method, and ray tracing has to filter the reflected geometry
by shooting tens or hundreds of rays per pixel. Our method
filters geometry at a much lower cost during cluster depth
image rendering. Both our method and ray tracing are
intended for large reflectors that produce coherent reflec-
tions; environment mapping should remain the approach of
choice for very high complexity reflectors, where it is diffi-
cult to judge reflection accuracy and hence the additional
cost is not justified.

4.2.2 Glossy Reflections

The difference between rendering perfectly specular, mirror-
like reflections and rendering glossy reflections consists of

intersecting the cluster depth image with multiple reflected
rays for each glossy pixel. However, the performance impli-
cation is that, in addition to having to intersect multiple rays,
it is also the case that each intersection is more expensive.
Whereas the pinhole camera constructed for a cluster
approximates the one-per-pixel specularly reflected rays
well, glossy reflected rays are markedly divergent from the
cluster camera rays. Because of this, the length of the seg-
ment where a glossy ray projects onto the depth image is lon-
ger, leading to more steps for finding the intersection. The
glossier the surface (i.e., the more matte and the less mirror-
like), the more divergent the rays, and the higher the ray /
depth image intersection cost. Glossy rendering perfor-
mance is given in Table 8. The frame rate is lower compared
to that for mirror-like reflections, but the advantage over ray
tracing is maintained. Higher performance more approxi-
mate glossy reflections can be obtained by intersecting a sin-
gle ray with the cluster depth image and averaging samples
in a neighborhood centered at the intersection.

In terms of memory requirement, the algorithm scales
well since the cluster depth images do not have to be stored
in memory simultaneously—the memory is reused as soon
as the reflection for a cluster is completed. The total amount
of GPU memory required for rendering the 512� 512 reflec-
tions shown here is 87 MB, most of which (i.e., 64 MB) is
used for the framebuffer with position, normal, cluster ID,
and color channels.

4.3 Implementation Notes

The first rendering pass that finalizes the diffuse pixels and
initializes the non-diffuse pixels (step 1 in Section 3.1) is
done on the GPUwith a straightforward shader. Non-diffuse
pixel clustering (step 2) is also donewith a GPU shader, since
a pixel is assigned to a cluster using only the information at
the pixel, and no information from neighboring pixels.

Cluster camera construction (step 3a) requires concurrent
writes (e.g., for the computation of the cluster centroid, nor-
mal, and AABB of sample projections) and we perform the
step on the GPU in CUDA using shared memory and
atomic operations. The number of costly atomic operations
is reduced whenever possible by using regular operations
to determine a good initial guess. For example, when
searching for a maximum element in an array, running the
algorithm without atomic operations will return one of the
larger elements of the array. This element is then used to ini-
tialize the maximum for the rigorous version of the algo-
rithm that employs atomic operations. Since this initial
value is only smaller than a few of the elements of the array,
the maximum will only be updated a few times, saving

TABLE 7
Number of Clusters for the Four Paths in Table 1

TABLE 8
Performance for Glossy Reflections in Fig. 11

WANG ET AL.: SECOND-ORDER FEED-FORWARD RENDERING FOR SPECULAR AND GLOSSY REFLECTIONS 11



IE
EE

Pr
oo

f

most atomic operations that occur if the maximum is initial-
ized with the customary first element.

Depth image rendering (step 3b), and finalizing the non-
diffuse pixel colors which includes reflected ray/depth
image intersection (step 3c) are performed on the GPU. For
step 3b view frustum culling at object level is used, and for
step 3c intersections for planar reflectors are immediate
since the projection of the reflected ray is a single point, i.e.,
the intersection point (see cluster camera construction in
Section 3.3). Handling planar reflectors correctly (no disoc-
clusion errors) and efficiently (planar reflectors are detected
automatically in the output frame and only the reflection for
the visible part of each planar reflector is computed) is an
important strength of our method since planar reflectors are
frequently encountered in man-made scenes (Table 9).

4.4 Limitations

As discussed above, our method resorts to several approxi-
mations. First, the reflected rays are approximated by fitting
a conventional planar pinhole camera to each cluster. The
smaller the cluster, the better the pinhole’s ray approximate
the actual reflected rays. Since the image captured by
the pinhole is not used directly to form the reflection, the
approximation only has a second order effect on the correct-
ness of the reflection. In other words, the reflection is not
distorted, and the samples captured by the pinhole are
reflected correctly by computing the intersection with the
reflected ray. However, the pinhole does not capture all
samples captured by the actual reflected rays, which leads
to disocclusion errors as discussed.

A second approximation is that the reflected geometry is
replaced with a depth image, which introduces an interme-
diate resampling of both geometry and color. The effects of
this approximation are mitigated by increasing the resolu-
tion of the depth images. The third approximation consists
of looking up into an environment map the reflected rays
generated by non-diffuse pixels of small clusters (e.g., sil-
houette pixels in Fig. 9).

Our method is best suited for mirror-like reflections with
one ray per pixel, because glossy rays cannot be approxi-
mated well by the cluster cameras, and intersecting a glossy
ray with the cluster depth image is more expensive.

Our method requires one rendering pass for each cluster
to render the cluster’s depth image. These passes cannot be
avoided as one has to follow the reflected rays to capture the
reflected samples. A cluster camera is constructed with the
smallest field of view that encompasses the reflected rays of
the cluster. The depth images are non-redundant, except for
instances when the same part of the scene is reflected more
than once, and except for a small overlap at the borders that
ensures reflection continuity between neighboring clusters.

Performance scalability with diffuse scene complexity
has to be sought along the lines of reducing the cost of these

passes. Partitioning scene geometry with a hierarchical
subdivision scheme is of course an option, but that is not
suitable for dynamic scenes. Another possibility is to
improve the clustering scheme, which in its present form
emphasizes efficiency at the cost of unnecessarily numerous
clusters. K-means clustering based on k-d trees [42] would
result in fewer clusters and we will investigate whether that
brings a performance gain sufficient to offset the cost of the
slower clustering. We will also investigate grouping clusters
with cameras whose frusta are disjoint and rendering one
compound depth image for each group in a single pass.

Our method achieves second-order feed-forward render-
ing, with first order rays being the rays leaving the output
image eye. This means that our method supports only first-
order reflections. When a reflected ray intersects a reflective
surface, the ray color is simply set to the diffuse component
of the surface. Higher-order reflections also occur in the case
of concave reflectors, which can reflect a ray multiple
times until the ray escapes the reflector to sample the envi-
ronment. We handle concave reflector clusters in one of two
ways. One way is to handle concave clusters like the convex
clusters—reflected rays are intersected with the cluster
depth image, ignoring the second intersection with the
reflector surface sampled by the cluster. Another way is to
detect that a cluster is concave, by testing whether the center
of a cluster is behind the image plane of the camera cluster,
and then to intersect reflected rays with the cluster itself to
detect a possible second intersection. When such a second
intersection occurs, the ray color is set to the diffuse compo-
nent of the cluster sample. None of the two methods provide
the accurate second order reflection, but the second method
provides amore stable reflection, at the small additional cost.

Finally, our method brings the most benefit close to the
specular end of the specular-glossy-diffuse continuum. A
narrower reflection cone per reflective surface point results
in more coherent reflected rays that are well approximated
by a cluster pinhole camera and requires fewer ray/depth
image intersections per pixel. When moving towards the
diffuse end of the surface reflectance continuum, the ray
coherence decreases and the cluster cameras become panor-
amas with fields of view that encompass the sum of the
upper hemispheres of the cluster pixels. Clustering based
on normals does not pay off anymore as the reflected rays at
a point become indifferent to the point’s normal. We have
shown that our method achieves good results for specular
reflections and that it can also handle high glossiness. Sup-
porting low glossiness or diffuse reflections require a differ-
ent strategy for approximating the reflected scene geometry.

5 CONCLUSIONS AND FUTURE WORK

We have presented a method for rendering specular and
glossy reflections that achieves quality reflections at interac-
tive rates. No pre-computation is required which supports
fully dynamic scenes at substantially higher frame rates
than a ray tracer that has to reconstruct its acceleration data
structure for every frame. Our method readily works with
normal-mapped reflectors (Fig. 13).

Compared to methods that approximate the projection
of reflected vertices such as the explosion map [27], our
method has the advantage of better scalability with

TABLE 9
Percentage of Non-Diffuse Pixels that Belong

to Planar Reflectors for the Four Paths in Table 1

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. X, XXXXX 2014



IE
EE

Pr
oo

f

reflector complexity and of handling multiple reflections at
no extra cost. Our method can handle complex reflectors
because it does not attempt to provide a constant time solu-
tion to the problem of projecting reflected vertices. Instead,
the reflected scene vertices are first mapped to a depth
image to which reflected rays are then mapped. The
reflected ray to depth image mapping implies a search,
which is more expensive than the constant time explosion
map projection, but which makes complex reflectors tracta-
ble. The search is confined to the 1D projection of the ray to
the depth image, which bounds the cost to the resolution of
the depth image.

Compared to image based rendering and caching meth-
ods, our method does well for specular reflections which
require a high image or cache resolution that makes them
expensive to construct and search. Our method compresses
the specular reflection data well leveraging the reflected
scene geometry. Compared to other methods based on
approximating the reflected scene, our method has the
advantage of approximating only the part of the scene
needed for the reflections in the current frame. The approx-
imation fidelity is tailored to the needs of the current
frame. Compared to environment mapping our method is
more accurate and compared to methods that rely on view
independent approximations of reflected geometry our
method is more efficient, enabling applications involving
dynamic scenes.

Our method achieves interactive rates on complex
reflections. Applications where frame rate is the main
design consideration could reserve the use of our method
to a subset of the reflective surfaces in a scene. We foresee
that the advantage of our method over ray tracing will
increase as graphics hardware progresses, since we map
well to the GPU’s strength of rendering by projection fol-
lowed by rasterization.

In addition to the future work directions sketched in
Section 4.4, the number of clusters could be reduced by
replacing the conventional planar pinhole camera used to
approximate the reflected rays of a cluster with more pow-
erful, non-pinhole camera models that can conform to larger
sets of more diverse rays.

Our method demonstrates that today’s hardware imple-
mentation of the feed-forward graphics pipeline is suffi-
ciently versatile and prolific to compute not only the color
samples captured by first order rays leaving the eye, but
also the samples captured by second order rays. In the con-
text of our paper, the second order rays were created by
reflective surfaces, but, in future work, our method could be
extended to other types of rays.

ACKNOWLEDGMENTS

The authors would like to thank Zheng Yang for help with
the implementation and Shuo Wang for help with scene
modeling and animation. This work was supported in part
by the National Natural Science Foundation of China
through Projects 61272349, 61190121 and 61190125, by the
Macao Science and Technology Development Fund through
Project 043/2009/A2, by the National High Technology
Research and Development Program of China through 863
Program No. 2013AA01A604, and through Beijing Science
Technology Star Plan No. 2009B09.

REFERENCES

[1] T. Whitted, “An improved illumination model for shaded dis-
play,” Commun. ACM, vol. 23, no. 6, pp. 343–349, 1980.

[2] A. S. Glassner, An Introduction to Ray Tracing. San Mateo, CA,
USA: Morgan Kaufmann, 1989.

[3] T. Foley and J. Sugerman, “KD-tree acceleration structures for a
GPU raytracer,” in Proc. ACM SIGGRAPH/EUROGRAPHICS Conf.
Graph. Hardware, 2005, pp. 15–22.

[4] N. A. Carr, J. Hoberock, K. Crane, and J. C. Hart, “Fast GPU ray
tracing of dynamic meshes using geometry images,” in Proc.
Graph. Interface, 2006, pp. 203–209.

[5] S. E. Yoon, C. Lauterbach, and D. Manocha, “R-LODs: Fast LOD-
Based Ray Tracing of Massive Models,” Vis. Comput., vol. 22,
no. 9–11, pp. 772-7–772-84, 2006.

[6] J. Kautz and M. D. McCool, “Approximation of glossy reflection
with prefiltered environment maps,” in Proc. Graph. Interface,
2000, pp. 119–126.

[7] P. Green, J. Kautz, and F. Durand, “Efficient reflectance and visi-
bility approximations for environment map rendering,” Comput.
Graph. Forum, vol. 26, no. 3, pp. 495–502, 2007.

[8] V. Popescu, E. Sacks, and C. Mei, “Sample-based cameras for
feed-forward reflection rendering,” IEEE Trans. Vis. Comput.
Graph., vol. 12, no. 6, pp. 1590–1600, Nov./Dec. 2006.

[9] P. Rosen, V. Popescu, K. Hayward, and C. Wyman, “Nonpinhole
approximations for interactive rendering,” IEEE Comput. Graph.
Appl., vol. 31, no. 6, pp. 68–83, Nov./Dec. 2011.

[10] V. Popescu, P. Rosen, L. Arns, X. Tricoche, C. Wyman, and C. M.
Hoffmann, “The general pinhole camera: Effective and efficient
non-uniform sampling for visualization,” IEEE Trans. Vis. Comput.
Graph., vol. 16, no. 5, pp. 777–790, Sep. 2010.

[11] I. Wald, P. Slusallek, C. Benthin, and M. Wagner, “Interactive ren-
dering with coherent ray tracing,” Comput. Graph. Forum, vol. 20,
no. 3, pp. 153–165, 2001.

[12] A. Reshetov, A. Soupikov, and J. Hurley, “Multi-level ray trac-
ing algorithm,” ACM Trans. Graph., vol. 24, no. 3, pp. 1176–
1185, 2005.

[13] T. J. Prucell, I. Buck, W. R. Mark, and P. Hanrahan, “Ray tracing
on programmable graphics hardware,” ACM Trans. Graph.,
vol. 21, no. 3, pp. 703–712, 2002.

[14] T. J. Purcell, “Ray tracing on a stream processor,” Ph.D. disserta-
tion, Dept. Comput. Sci., Stanford Univ., Stanford, CA, USA, 2004.

[15] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan, “Ray tracing
on programmable graphics hardware”, in Proc. ACM SIGGRAPH
Conf., 2002, pp. 703-712.

[16] S. Li, Z. Fan, X. Yin, K. Muller, A. E. Kaufman, and X. Gu, “Real-
Time Reflection using Ray Tracing with Geometry Field,” in Proc.
Eurographics, 2006, pp. 29–32.

Fig. 13. Reflections on a normal-mapped reflector rendered with our
method at 31 fps.

WANG ET AL.: SECOND-ORDER FEED-FORWARD RENDERING FOR SPECULAR AND GLOSSY REFLECTIONS 13



IE
EE

Pr
oo

f

[17] X. Yu, R. Wang, and J. Yu, “Interactive glossy reflections using
GPU-based ray tracing with adaptive LOD,” Comput. Graph.
Forum, vol. 27, no. 7, pp. 1987–1996, 2008.

[18] J. Yu, J. Yang, and L. McMillan, “Real-Time Reflection Mapping
with Parallax,” in Proc. Symp. Interactive 3D Graph. Games, 2005,
pp. 133–138.

[19] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The
Lumigraph,” in Proc. 23rd Annu. Conf. Comput. Graph. Interactive
Tech., 1996, pp. 43–54.

[20] M. Levoy and P. Hanrahan, “Light field rendering,” in Proc. 23rd
Annu. Conf. Comput. Graph. Interactive Tech., 1996, pp. 187–196.

[21] W. Heidrich, H. Lensch, M. F. Cohen, and H. Seidel, “Light field
techniques for reflections and refractions,” in Proc. Eurographics
Symp. Rendering/Eurographics Workshop Rendering Tech., 1999,
pp. 187–196.

[22] Y. Taguchi, A. K. Agrawal, S. Ramalingam, and A. Veeraragha-
van, “Axial light field for curved mirrors: Reflect your perspec-
tive, widen your view,” in Proc. Comput. Vision Pattern Recog.,
2010, pp. 499–506.

[23] J. Kautz and M. D. Mccool, “Approximation of glossy reflection
with prefiltered environment maps,” in Proc. Graph. Interface,
2000, pp. 119–126.

[24] P. Green, J. Kautz, and F. Durand, “Efficient reflectance and visi-
bility approximations for environment map rendering,” Comput.
Graph. Forum, vol. 26, no. 3, pp. 495–502, 2007.

[25] L. Szirmay-kalos, B. Asz�odi, I. Laz�anyi, and M. Premecz,
“Approximate ray-tracing on the GPU with distance impostors,”
Comput. Graph. Forum, vol. 24, no. 3, pp. 695–704, 2005.

[26] V. Popescu, C. Mei, J. Dauble, and E. Sacks, “Reflected-scene
impostors for realistic reflections at interactive rates,” Comput.
Graph. Forum, vol. 25, no. 3, pp. 313–322, 2006.

[27] E. Ofek and A. Rappoport, “Interactive reflections on curved
objects,” in Proc. 25th Annu. Conf. Comput. Graph. Interactive Tech.,
1998, pp. 333–342.

[28] P. Estalella, I. Mart�ın, G. Drettakis, and D. Tost, “A GPU-driven
algorithm for accurate interactive reflections on curved objects,”
in Proc. 17th Eurographics Conf. Rendering Tech., 2006, pp. 313–318.

[29] P. E. Debevec, Y. Yu, and G. Borshukov, “Efficient view-depen-
dent image-based rendering with projective texture-mapping,” in
Proc. Eurographics Symp. Rendering/Eurographics Workshop Render-
ing Tech., 1998, pp. 105–116.

[30] NVIDIA OptiX ray tracing engine, [Online]. Available: https://
developer.nvidia.com/optix,

[31] L. McMillan, “An image-based approach to three-dimensional
computer graphics,” Ph.D. dissertation, Dept. Comput. Sci., UNC-
CH, , Apr. 1997.

[32] F. Policarpo and M. M Oliveira, “Relief mapping of non-height-
field surface details,” in Proc. ACM SIGGRAPH Symp. Interactive
3D Graph, GamesRedwood City, CA, USA, Mar. 2006, pp. 55–62.

[33] J. Shade, S. Gortler, L.-w. He, and R. Szeliski, “Layered depth
images,” in Proc. ACM SIGGRAPH 25th Annu. Conf. Comput.
Graph. Interactive Tech., 1998, pp. 231–242.

[34] K. B€urger, S. Hertel, J. Kr€uger, and R. Westermann, “GPU render-
ing of secondary effects,” in Proc. Vision, Model. Vis. Conf.,
Saarbr€ucken, Germany, Nov. 2007, pp. 51–60.

[35] M. Nießner, H. Sch€afer, and M. Stamminger, “Fast indirect illumi-
nation using layered depth images,” Visual Comput., vol. 26, nos.
6–8, pp. 679–686, 2010.

[36] V. Popescu, P. Rosen, and N. Adamo-Villani, “The graph camera,”
ACM Trans. Graph., vol. 28, no. 5, 2009.

[37] G. J. Ward, F. M. Rubinstein, and R. D. Clear, “A ray tracing solu-
tion for diffuse interreflection,” in Proc. ACM SIGGRAPH 15th
Annu. Conf. Comput. Graph. Interactive Tech., 1988, pp. 85–92.

[38] G. Greger, P. Shirley, P. M Hubbard, and D. P. Greenberg, “The
irradiance volume,” IEEE Comput. Graph. Appl., vol. 27, no. 2,
pp. 32–43, Mar. 1998.

[39] G. J. Ward, “Irradiance gradients,” in Proc. ACM SIGGRAPH Clas-
ses, 2008.

[40] J. Kriva�nek and P. Gautron, “Radiance caching for efficient global
illumination,” IEEE Trans. Vis. Comput. Graph., vol. 11, no. 5,
pp. 550–561, Sep./Oct. 2005.

[41] D. Scherzer, C. H. Nguyen, T. Ritschel, and H.-P. Seidel, “Pre-con-
volved radiance caching,” Comput. Graph. Forum, vol. 31, no. 4,
pp. 1391–1397, 2012.

[42] R. Wang, R. Wang, K. Zhou, M. Pan, and H. Bao, “An efficient
GPU-based approach for interactive global illumination,” ACM
Trans. Graph., vol. 28, no. 9, 2009.

[43] B. Liu, L.-Y. Wei, X. Yang, Y.-Q. Xu, and B. Guo, “Nonlinear beam
tracing on a GPU,” Microsoft Res., Redmond, WA, USA, Tech.
Rep. MSR-TR-2007-34, Microsoft, 2009.

Lili Wang received the PhD degree from the
Beihang University, Beijing, China. She is an
associate professor with the School of Computer
Science and Engineering of Beihang University,
and a researcher with the State Key Laboratory
of Virtual Reality Technology and Systems. Her
interests include real-time rendering, realistic
rendering, global illumination, soft shadow, and
texture synthesis.

Naiwen Xie received the BE degree in computer
science from Huazhong University of Science
and Technology in 2011. He is currently working
toward the PhD degree in the State Key Labora-
tory of Virtual Reality Technology and Systems
at Beihang University. His research interests
include global illumination, image-based render-
ing, and image processing.

Wei Ke received the PhD degree from School of
Computer Science and Engineering, Beihang
University. He is a researcher of Macao Poly-
technic Institute. His research interests include
programming languages, functional program-
ming, formal methods, and tool support for
object-oriented and component-based engineer-
ing and systems. His recent research focuses on
the design and implementation of open platforms
for virtual reality applications, including program-
ming tools, environments, and frameworks.

Voicu Popescu received the BS degree in com-
puter science from the Technical University of
Cluj-Napoca, Romania in 1995, and the PhD
degree in computer science from the University
of North Carolina at Chapel Hill, in 2001. He is an
associate professor with the Computer Science
Department of Purdue University. His research
interests lie in the areas of computer graphics,
computer vision, and visualization. His current
projects include camera model design, visibility,
augmented reality for surgery telementoring, and

the use of computer graphics to advance education.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. X, XXXXX 2014


