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Sample-based cameras for fast accurate reflections
Voicu Popescu, Elisha Sacks, and Chunhui Mei

Abstract— This paper presents sample-based cameras
for rendering accurate reflections on curved reflectors at
interactive rates. The method supports change of view,
moving objects and reflectors, higher order reflections,
view-dependent lighting of reflected objects, and reflector
surface properties. In order to render reflections with the
feed forward graphics pipeline, one has to compute the
image points where a reflected scene point projects. A
sample-based camera is a collection of BSP trees of pinhole
cameras that jointly approximate the projection function.
It is constructed from the reflected rays defined by the
desired view and the scene reflectors. A scene point is
projected by invoking the cameras that contain it in their
frustums. Reflections are rendered by projecting the scene
geometry then rasterizing in hardware.

Index Terms— reflections, interactive rendering, image-
based rendering, sample-based graphics.

I. INTRODUCTION

Fig. 1. Sample-based camera Fresnel reflections on automobile.

WE present a novel algorithm for rendering
reflections quickly and accurately. Reflec-

tions are important for interactive computer graphics
applications because they provide visual cues about
surface properties, shape, and relative position.
The main techniques for rendering reflections are
ray tracing and environment mapping. Ray tracing
searches for the scene point seen at each pixel.
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Fig. 2. Projection: computed reflected points v and w given scene
points p and q and reflectors A and B.

Although accurate and general, ray tracing is too
slow for interactive graphics because of the ineffi-
cient search for the inverse mapping. Environment
mapping approximates the reflection with a pre-
rendered image that is indexed using the direction
of the reflected ray. Although fast, the technique is
inaccurate and is limited to first order reflections.
There are several variants of these methods, but
none is accurate, general, and fast.

The feed forward pipeline, which first projects
then rasterizes scene geometry, is the preferred
approach in interactive graphics because of its effi-
ciency. The challenge in rendering reflections with
this approach is to project reflected points (Fig. 2).
An accurate, efficient approximation is required
because the projection cannot be expressed in closed
form for curved reflectors.

We have developed a projection method that
renders reflections with 1–5 pixels accuracy at in-
teractive rates (Figs. 1 and 3). The method supports
change of view, moving objects and reflectors, and
reflections of any order. The projection function is
represented with a sample-based camera (SBC): a
collection of binary space partitioning (BSP) trees
that store planar pinhole cameras at their leaves. A
scene point is projected by invoking the cameras that
contain it in their frustums. Reflections are rendered
by projecting the scene geometry then rasterizing in
hardware. The rasterization routine supports view
dependent lighting of reflected objects and reflector
surface properties, such as Fresnel and attenuation-
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Fig. 3. Environment mapping (left), sample-based camera at 60 fps (middle), and ray tracing (right).

with-distance effects (Fig. 1).
SBCs are constructed from the reflected rays

defined by the desired view and the scene re-
flectors. Fig. 4 shows an example with view
C, reflectors A and B, and reflected rays
{a0e0, a1e1, a2b2, a3b3, b4e4, b5e5}. Points ei are ob-
tained by clipping the reflected rays with a scene
bounding box. Sets of neighboring rays that hit the
same sequence of reflectors define pinhole cameras.
The rays between a0e0 and a1e1 define camera ca

01,
the rays between a2b2 and a3b3 define ca

23, and the
rays between b4e4 and b5e5 define cb

45. The first two
cameras represent first order reflections, while the
third represents second order reflections. The ray
sets are chosen so that the cameras meet a user-
specified projection accuracy.

Fig. 4. Sample-based camera concept.

For first order reflections and a moderate output
resolution (720x480), we build one SBC per frame
on the fly (runtime mode). For higher order reflec-
tions or for high resolutions, we precompute SBCs
at the nodes of a tetrahedral grid. At each frame,
we retrieve the tetrahedron that contains the current
view, project with its four cameras, and blend the
projections. This reflection morphing mode achieves
interactive performance on scenes with higher order
reflections at 1440x960 resolution. The only case
that it does not support is higher order reflections

on independently moving reflectors.
The paper is organized as follows. Section 2

surveys prior work on rendering reflections. Sec-
tions 3–5 describe runtime mode and Section 6 de-
scribes the extension to reflection morphing mode.
Section 7 discusses results and future work.

II. PRIOR WORK

The importance of rendering reflective surfaces
has been recognized early on in computer graphics.
Phong lighting and shading [1] is equivalent to
reflecting light sources in shiny surfaces by search-
ing for the appropriate eye, normal, and light vec-
tor combination. Reflections on arbitrary reflectors
could be computed using hypothetical hardware that
supports a very large number of lights. Planar reflec-
tors are rendered by mirroring the camera across the
reflector plane and using stenciling or texturing to
confine the reflected world to the reflector [2]–[4].

A. Environment mapping

Interactive rendering systems approximate reflec-
tions on curved reflectors using environment map-
ping [5]–[8]. The environment map is a panorama
of the scene rendered from the centroid of the
reflector. The reflector is rendered by looking up
reflected rays in the environment map using only
their orientation. It is assumed that all reflected rays
originate from the same point. The approximation
works well for objects far from the reflector; for
nearby objects, the errors are substantial. For ex-
ample in Fig. 3, the front columns and the cube
are close to the surface of the reflector. Ray tracing
and SBCs correctly draw the reflections close to the
real objects, whereas environment mapping fails to
convey the proximity of the objects to the reflector.
Other disadvantages of environment mapping are
lack of motion parallax and no support for higher
order reflections.



IEEE TRANSACTIONS ON VISUALIZATION AND GRAPHICS 3

B. Projection methods

Better results can be obtained by solving the
problem of projecting reflected points. Hanrahan
and Mitchell describe a search procedure for the
projection of reflected points if the reflector sur-
face is given by an implicit equation [9]. Ofek
and Rappoport [10] render reflections on tessellated
reflectors by projection followed by feed forward
rasterization. For each reflector, they compute a
reflection subdivision consisting of one cell per re-
flector face. A scene point p is projected by finding
its cell, interpolating the cell vertices to obtain an
approximate reflection point q and surface normal
n, and mirroring the ray p−q around n. The reflec-
tion subdivision is searched using an approximate
representation, called an explosion map.

Our algorithm has several advantages over Ofek
and Rappaport, which is the closest prior work to
ours. SBCs project with high, guaranteed accuracy
specified by the user. The construction algorithm
adaptively constructs a compact space partitioning
that achieves this accuracy for each frame based
on the view point and on the scene complexity.
Explosion maps project approximately, at a fixed
resolution without an error bound. We project higher
order reflections in the same way as first order
reflections, hence with the same cost and accuracy.
Explosion maps render higher order reflections re-
cursively, so the cost is proportional to the reflection
order and the errors accumulate.

C. Image-based methods

The problem of reflections has also been studied
by researchers in image-based modeling and render-
ing (IBMR). Light fields [11], [12] support view-
dependent effects including reflections. A large
number of rays need to be stored even for small
scenes. To alleviate this problem, IBMR techniques
were developed that use some explicit form of
geometry. Surface light fields store all rays origi-
nating at each point of a surface [13], [14]. In view
dependent texture mapping, a surface is sampled
from several directions [15], [16]. Both techniques
work well for surfaces of limited specularity. Highly
reflective surfaces require a dense sampling of the
possible view directions, which translates into an
impractical number of samples.

Lischinski [17] proposes a scene representation
based on layered depth images (LDIs) [18]. The

scene geometry is captured with a set of 3 orthog-
onal LDIs. The view-dependent scene information
is stored in a light field of low resolution LDIs,
which provides glossy reflections. Mirror-like re-
flections are rendered by ray tracing the geometry
LDIs, which alleviates the database size problem
but reduces the performance below interactivity.
Hakura [19] describes parameterized environment
maps which are a set of precomputed reference
reflection images. The images are parameterized
such that they best match in least-mean-squares
sense the true reflection when used as environment
maps. Good reflections are obtained nearby the
reference viewpoints and rendering takes advantage
of the hardware supported environment mapping.
The method has the disadvantage of lengthy pre-
processing (more than 20 minutes per viewpoint)
which restricts its use to 1D parameterizations of
the viewpoint space and to static scenes.

Like IBMR methods, the SBC approach uses
discrete representations of functions that are difficult
to compute, which are then interpolated. Whereas
IBMR methods rely on sampling the plenoptic func-
tion, SBCs sample the complex projection function
of vertices in scenes with reflectors. In this anal-
ogy, the IBMR reference images correspond to the
SBCs. Reference images become obsolete when a
diffuse object moves and recomputing them requires
handling the scene at its full complexity. SBCs are
better suited for rendering highly specular reflec-
tions because they are independent of the diffuse
part of the scene.

D. Hybrid methods

Between projection and IBMR, hybrid methods
separate the geometry from the illumination of the
reflector. Heidrich [20] captures the geometry of the
reflector in a light field that maps rays to rays, rather
than rays to colors. For a given view, the geometry
light field provides the reflected rays that are then
colored using an environment map, a regular light
field, or ray tracing. The approach trades perfor-
mance for accuracy. Cabral [21] combines BRDFs
with lighting environments in precomputed radiance
environment maps. Although hybrid methods allow
one to modify the reflector and the illumination
independently, they suffer from the other IBMR
method disadvantages discussed above because the
illumination is captured with images.
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E. Ray tracing

Reflections can be computed accurately using ray
tracing [22], [23], a general technique that produces
high quality images. The ray tracing pipeline is
less efficient than the feed forward pipeline because
considerable computational effort has to be spent
to decide which primitive affects a given output
image pixel. Numerous research efforts are targeted
at accelerating ray tracing. Wald [24], [25] has
demonstrated real-time ray tracing on small scenes
on a single general-purpose CPU with vector float-
ing point extensions. Hardware has been developed
to accelerate off-line ray tracing [26]. Complex
scenes were ray traced at interactive rates on shared
memory parallel computers [27] and on clusters
[25]. The fixed function pipeline implemented in
commodity graphics accelerators has been replaced
with a pipeline that offers programmability at the
vertex and fragment levels. The programs that could
originally be executed to process vertices and frag-
ments were too simple to implement ray tracing
[28]. The programmability of GPUs has advanced
sufficiently to allow limited ray tracing. But for the
foreseeable future, GPUs will remain primarily feed
forward rendering engines.

F. Non-pinhole camera models

Our solution for rendering reflections is based on
a general, non-pinhole camera. Non-pinhole camera
models have been studied in computer vision for 3D
imaging applications. Examples include the push-
broom camera [29] and the two-slit camera [30],
which are special cases of a linear camera [31] that
collects linear combinations of three rays. A linear
camera cannot model the entire set of reflected
rays defined by a pinhole and a set of curved
reflectors. Computer graphics researchers have also
explored non-pinhole cameras. Other than the light
field discussed above, examples include multiple-
center-of-projection cameras [32], multiperspective
panoramas for cel animation [33], and image-based
lenses for modeling real cameras [20]. None of these
are suitable for rendering reflections.

The image-based lens technique is related to
SBCs. The rays exiting a real lens are approximated
with a set of pinhole cameras. However, the scene is
rendered with each pinhole camera and the images
are blended together. This is appropriate for simu-
lating real lens effects, such as non-zero aperture,

where the projection of a vertex is ambiguous. But
projecting every vertex in every pinhole camera is
prohibitive for interactive reflection rendering. The
contribution of SBCs is to decompose a set of
reflected rays into a set of non-overlapping pinhole
cameras. This allows us to project reflected vertices
quickly and thus to render reflections interactively.

III. ALGORITHM OVERVIEW

The input to our reflection rendering algorithm
is a scene description, a desired view, a reflection
order cutoff, a down-sampling factor, and a projec-
tion accuracy in desired image pixels. The scene
consists of diffuse and reflective objects modeled
with triangle meshes. Fig. 5 shows the main steps
of the algorithm.

render reflections

SBC
build

meshes
render

reflected rays
generate

Fig. 5. Algorithm overview.

A. Render meshes

The reflective and diffuse meshes are rendered
in hardware with z-buffering. Diffuse meshes are
rendered as usual to generate their final image.
Reflective meshes are rendered in the stencil buffer.
The stencil is set to the id of the reflector to confine
the reflection to the visible part of the reflector.
Fig. 6 (left) illustrates this step on a scene with two
spherical reflectors.

Fig. 6. Frame buffer after mesh rendering with non-zero stencil
values visualized in yellow (left). First order (top) and second order
(bottom) reflected rays.
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B. Generate reflected rays

Reflected rays are generated from the desired
view. The reflected rays are stored in a 2D map,
which is typically down-sampled to half or quarter
desired image resolution. Fig. 6 (right) shows a
half resolution ray map with first and second order
rays. A ray is represented by its tail, head, and first
reflector point; these are [a1, e1, a1], [a3, b3, a3], and
[b4, e4, a4] in Fig. 4. First order rays are computed
on the GPU. Higher order rays are computed by
ray tracing the reflectors alone, without the diffuse
objects. Thus, the cost is proportional to the reflector
complexity, which is typically a small fraction of the
scene complexity.

C. Build cameras and render reflections

Section 4 describes how SBCs are built from the
ray map and Section 5 describes how they are used
to render reflections. Fig. 7 shows the output.

Fig. 7. Output image (top) and ray traced image (bottom).

IV. SAMPLE-BASED CAMERA CONSTRUCTION

An SBC defines a mapping from a scene point to
its reflections in the desired view. The SBC is built
from the ray map. The rays are first partitioned into
reflection groups. A reflection group R1R2 · · ·Rn

comprises all the rays with the same reflection
history. The reflection history of a reflected ray r
is the list of reflectors encountered by the desired
view ray that generates r. A projection function is
computed for each reflection group. For example
in Fig. 8, p is projected to first reflector point a1

in reflection group A and to a2 in AB. The SBC
mapping is the union of the projection functions of
its reflection groups.

Fig. 8. Sample-based camera projection.

A reflection group projection function is defined
by a set of pinhole cameras whose frustums en-
compass the rays of the group. Our example shows
a camera for the AB reflection group with center
of projection cb, image plane b0b1, and frustum
e0b0b1e1. A scene point is handled by the camera
whose frustum contains it: the point is projected
onto the camera image plane then is mapped to
the first reflector. The example camera projects p
to b2 on image plane b0b1 then maps b2 to a2 on A.
A scene point that is not contained in any camera
frustum does not project.

A camera is constructed for a set of rays as
follows. The center of projection, o, is the least-
squares fit of a point that lies on the rays. The
equation for a ray with tail t and direction vector d
is o×d = t×d, which yields three scalar equations
in ox, oy, oz. The image plane is fitted to the ray
tails. The view frustum is chosen to contain the
tails and the heads. The mapping from the image
plane to the first reflector is a quadratic, f(u, v),
that is constructed by least-squares fitting the rays
to their first reflector points. Each ray generates the
equations f(ut, vt) = q and f(uh, vh) = q in which
q is the first reflector point and (ut, vt) and (uh, vh)
are the tail and head image plane projections.

The cameras are stored in the leaves of a BSP tree
[34]. Fig. 9 shows the BSP tree for the A reflection
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group of Fig. 8. It has 6 internal nodes with splitting
planes 0–5 and stores cameras c0–c6 at its 7 leaves.

Fig. 9. Binary space partitioning and its tree.

BuildBSP(rays, Accuracy)
phc = FitPinholeCamera(rays)
if Error(phc, rays) < Accuracy

return Leaf(phc)
(plane, posSet, negSet) = Split(rays)
if split fails

return Leaf(rays)
leftChild = BuildBSP(posSet, Accuracy)
rightChild = BuildBSP(negSet, Accuracy)
return Node(plane, leftChild, rightChild)

Fig. 10. BSP construction algorithm.

A reflection group is decomposed into a BSP tree
of cameras by the algorithm in Fig. 10. The first
step is to fit a camera to the set of rays in the
group. If the fit is accurate, the camera is stored in
a leaf node. The approximation error is estimated
as the maximum error at the heads and tails of the
rays. This error is the distance in pixels between the
projections onto the desired view of the true and
approximate first reflection points. If the fit fails,
a plane is chosen heuristically to split the input
roughly in half. It passes through the centroid of
the ray tails, is parallel to the mean reflected ray
direction, and is perpendicular to the diameter of
the tails. The rays that intersect the positive/negative
half spaces are assigned to the left/right subsets. A
ray is assigned to both subsets if its unit frustum
intersects the plane. The unit frustum of ray (u, v)
in ray map coordinates is the set of four rays
(u ± 1, v ± 1). For example, the overlap between
cameras c3 and c4 in Fig. 9 is due to the unit frustum
that intersects plane 4. Splitting fails when either
subset equals the input set; the rays are stored in a
list at the leaf. Otherwise, the recursive case occurs.

The first reflector point of scene point p is found
by first traversing the BSP tree to find the leaf
that contains p. If the leaf contains a camera, the
first reflector point is computed by the two-step
procedure above. If the leaf contains a ray list, the
unit frustum that contains p is found and the first
reflector points of its rays are interpolated.

V. RENDERING REFLECTIONS

A reflection is generated for every diffuse object
in every reflection group. The diffuse meshes are
projected into the desired view then are rasterized
in hardware.

Fig. 11. Visibility cases.

A. Projection

A diffuse mesh vertex is projected into a reflec-
tion group by computing the first reflection point
then offsetting along the desired view ray for correct
visibility. Fig. 11 shows the visibility ordering along
a reflection path from C to A to B and beyond.
There are three visibility cases.

1) The closest scene point or reflector surface is
visible (v0

0 occludes a, which occludes v0
1).

2) Within a reflection group, the point closest to
the last reflector surface is visible (v1

0 occludes
v1

1).
3) Between reflection groups, lower order points

are visible (v1
1 occludes v2

0).
Case 1 is handled by z-buffering in Section III-
A. Cases 2 and 3 are handled by offsetting the
first reflector point (a) along its desired view ray
(ca). For a k-order reflection of v, the offset is
(k − 1 + z/D)g where z is the distance from v to
the reflection camera image plane, D is the scene
diameter, and g is the depth range per reflection
order. We choose g equal to D/(kmax + 1) and set
yon to 2D.
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Fig. 12. Jagged reflection edges (left) alleviated by subdivision
(middle, right).

B. Rasterization

A triangle is rendered when all three vertices
project and is discarded when none project. A trian-
gle is called mixed when one or two vertices project.
Discarding mixed triangles creates jagged reflection
edges. We solve this problem by subdividing mixed
triangles whose area exceeds a threshold (Fig. 12).

When a reflected triangle is rasterized, its true,
curved edges are approximated with straight edges.
This approximation is acceptable only for small
triangles. As a preprocess, we subdivide the scene
triangles to limit the edge lengths.

C. Lighting and shading

SBCs render reflections by computing a reflected
mesh for each diffuse mesh. The reflected mesh is
placed and distorted to form the correct reflection
when seen from the desired view. Lighting and
shading that does not depend on the vertex scene
position (lighting baked into vertex colors, diffuse
directional lighting, and texture mapping) is unaf-
fected by reflection and is carried out with the data
(vertex colors, texture coordinates, normals) used
for the unreflected mesh.

We support point light sources and specular light-
ing with GPU shaders that take into account the
original position of the reflected vertices and the
true eye vector. Fig. 13 shows a scene with a point
light source L that is rendered with our method. The
sphere D has a specular highlight at hD, whereas its
reflection on R has a highlight at hRD. The mirror
has a specular highlight at hR. The eye vector at
hRD is given by p− hRD and not by C − hRD. The
highlights on the sphere correctly occur at different
locations.

D. Reflector surface properties

SBCs provide a projection function for vertices
that reflect from curved surfaces. This allows us

Fig. 13. Reflection with specular lighting.

to compute reflections by feed-forward rendering
the reflected objects, which was previously possible
only for planar reflectors. Because of the feed-
forward approach, SBCs handle perfect, mirror-like
reflectors directly (Fig. 14a). Such reflectors are
challenging because reflection artifacts stand out
and because they require a high sampling density in
the case of image-based reflection rendering meth-
ods (light fields, view-dependent texture mapping).

Reflectors with a diffuse component are readily
handled in the SBC framework. The diffuse com-
ponent and the reflection are blended with a simple
shader. The images ci in Fig. 14 show Fresnel
reflections with blending weights proportional to the
square of the dot product of the eye vector and the
surface normal. The weights are scaled linearly to
the specularity interval [sf

min, s
f
max]. In images di,

the reflection weight is attenuated with the square
of the distance between the reflected object and the
reflector surface. This distance is already computed
during SBC projection for visibility purposes. As
the distance increases from 0 to dM , the specular-
ity decreases quadratically between sa

max and sa
min.

Fig. 14b combines the two effects.

E. Antialiasing

Curved reflectors considerably minify distant
parts of the scene, which makes the problem of
antialiasing challenging in ray tracing, particularly
for higher order reflections when the angle between
neighboring rays grows large. Rendering reflections
with the feed forward approach simplifies antialias-
ing. Each triangle is processed, which eliminates the
danger of sub-sampling the geometry, and textures
are correctly minified by mip-mapping.

VI. REFLECTION MORPHING

We switch to reflection morphing mode when
the ray map is too large for us to build the SBC
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(a) (b)

(c1) (d1)

(c2) (d2)

(c3) (d3)

Fig. 14. Reflector surface properties: (a) perfect reflector; (b)
reflector with diffuse component; (c1–c3) Fresnel reflections with
sf

min/sf
max of 0.0/0.5 (c1), 0.0/1.0 (c2), and 0.5/1.0 (c3); (d1–d3)

Reflection attenuation with dM /sa
min/sa

min of 0.15/0.0/0.25 (d1),
0.3/0.0/0.25 (d2), and 0.3/0.0/0.5 (d3).

on the fly or when higher order reflections are
desired, which entails ray tracing the reflected rays.
A regular 3D grid is attached to each reflector. Each
grid cell is divided into 6 disjoint tetrahedrons. At
every grid node, a panoramic SBC is built from
a cube ray map to cover all view directions. The
construction algorithm is as before. The grid of
SBCs for reflector R handles all reflection groups
that begin with R.

Reflections are rendered on each reflector using
the four SBCs at the vertices of the tetrahedron that
contains the current viewpoint. A vertex is projected

with each SBC and the four projections are blended
barycentrically. Static vertices that reflect on static
reflectors are optimized: their four projections are
reused with varying weights while the viewpoint
stays within a tetrahedron. For moving reflectors,
scene vertices are first transformed into the reflector
coordinate system and are then projected. Higher
order reflections are supported only if their reflectors
have no relative motion, since such motion renders
the reflected rays obsolete.

A vertex is ambiguous if it projects in some
SBCs of its tetrahedron, but not in others. Such
vertices cannot be morphed. Discarding triangles
with ambiguous vertices produces visible artifacts
(Fig. 15). The intersection of the four reference
reflections is insufficient to render the desired view
reflection. Ambiguous vertices are problematic at
curvature discontinuities because there is a signifi-
cant disparity between the four reference reflections.
They also occur at reflector silhouettes, but the
impact is negligible because the disparity between
the four reference reflections is small.

(a) (b) (c)

Fig. 15. Ambiguous vertices problem: four reference reflections
(top), incorrect reflection (a), extended reflector for ray map con-
struction in wireframe (b), and resulting correct reflection (c).

We handle ambiguous vertices in two ways. The
first method uses extended reflectors during camera
construction (Fig. 15). The reflectors are extended in
small increments until no tail or head in any ray map
is ambiguous. This approach takes into account the
actual shape of the reflector and the scene bounding
box, which is used to clip the reflected rays. The
second method extends the field of view of the BSP
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leaf cameras, which provides projections for points
outside the ray maps.

VII. DISCUSSION

We conclude the paper with results on the quality
and speed of sample-based cameras followed by
plans for future work.

A. Quality

Rendering reflections with an SBC entails ap-
proximations in the projection of reflected vertices
and in the rasterization of reflected triangles.

The projection accuracy depends on whether the
vertex maps to a BSP tree leaf with a pinhole
camera or a leaf with a ray list. Pinhole cameras
are guaranteed to project with the input accuracy
(1 pixel for the images in this paper; see Fig. 17).
Ray list projection interpolates between the four
closest rays in the list, so the accuracy is one ray
map pixel or better, which corresponds to d desired
image pixels for a down-sampling factor of d.

Fig. 16 shows the effect of the ray map resolution
on the reflection quality. (The same reflection is
rendered in Fig. 14b with a 360x240/2 ray map.) For
low resolutions, the pinhole camera fitting fails and
most BSP tree leaves contain ray lists. Reflectors
with strong diffuse components can be rendered
with the 90x60/8 ray map, and good results are ob-
tained on mirror-like reflectors with down-sampling
factors of 4 or less.

In reflection morphing mode, the barycentric
blending introduces an error that grows with the
disparity between the four reference reflections. The
error is largest when the reference SBC viewpoints
are close to the reflector, but even then it remains
small (5 pixels for our scenes).

During rasterization, the curved edges of a
reflected triangle are approximated with straight
edges, and the reflection inside the triangle is ap-
proximated by model space interpolation. We have
found it easy to control this error with a fixed,
uniform subdivision of the diffuse meshes.

Fig. 17 compares SBC and environment mapped
reflections to ray tracing. The SBC provides a
virtually perfect reflection. Small differences are
visible at edges and on the near tiles of the floor
whose triangles are large, hence less accurately
rasterized. The environment mapped image is com-
pletely wrong: the reflections of the particle, of

(a) (b)

(c) (d)

Fig. 16. SBC reflections with ray map resolutions/down-sampling
factors of (a) 22x15/32, (b) 45x30/16, (c) 90x60/8, (d) 180x120/4.

Fig. 17. Projection accuracy: (top) the head (diagonal red cross)
and tail (straight green cross) of a few reflected rays are projected
onto the desired image pixel grid (white) using their leaf camera; the
approximate projections are within one pixel of the shared correct
projection (blue square); (left) difference between SBC and ray traced
images in Fig. 3; (right) difference between environment mapped and
ray traced images.
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the columns, and of the part of the floor near the
reflector are tens to hundreds of pixels from their
correct locations.

B. Speed

The reflection rendering time goes to ray map
generation, SBC construction, and vertex projection.

Ray map generation: Maps of first-order re-
flected rays are generated in hardware by rendering
the surfaces of the reflectors with a GPU program
that encodes the direction (two fractional numbers)
in the four color bytes. Z, color, and stencil are read
back to obtain the tails, heads, and reflector ids
of the reflected rays. 360x240/180x120 ray maps
are generated in 27ms/9ms when every ray hits
a reflector (the entire desired view is covered by
reflectors). Timing data was obtained on a 3.4GHz
3GB Pentium 4 Xeon PC with a 256MB Quadro
FX 3400 NVIDIA graphics card. The time needed
to trace higher order reflected rays depends on the
complexity of the reflector.

SBC construction: The splitting plane heuris-
tic generates balanced trees for our test scenes.
Constructing a balanced BSP tree from n input
reflected rays takes n log n time and the traversal
to find the first reflector point takes log n time.
Fig. 19 gives SBC construction statistics for the
reflectors and the views shown in Figs. 18, 14, 7,
and 1. Each table entry is split in two: the left/right
figures are for a quarter/half resolution ray map. The
SBCs have a maximum size of a few MB; SBC
construction performance is 10–15 Hz when using
quarter resolution ray maps.

Fig. 18. Sample reflection.

In reflection morphing mode, we construct the
SBCs as a preprocess. A 17x17 layer of the 17x17x8
grid used for our test scene is computed in an hour.
Two layers fit in memory and are loaded at startup.

Fig. 19. SBC construction performance for four test scenes.

Vertex projection: In run time mode, vertex
projection is performed in hardware. After the BSP
is computed on the CPU, the BSP trees are packed
and loaded into texture memory using the vertex
texture technique. The vertex program first executes
a loop that finds the leaf to which the vertex belongs.
If no leaf is found, the vertex is discarded. Once the
leaf is known, its data is used to move the vertex
to the offset first reflector point. The average vertex
projection performance is 20 million vertices per
second (Mv/s) for pinhole camera leaves and 2.5
Mv/s for ray list leaves. Compared to projecting
on the CPU, the GPU brings a 5 fold speedup.
The longer ray list time is due to the sequential
processing of the rays.

In reflection morphing mode, the projection is
performed on the CPU and the projections of static
vertices are reused. The average static/dynamic ver-
tex projection performance is 12.5/1 Mv/s.

Overall performance: In run-time mode, per-
formance is dictated by SBC construction. The au-
tomobile and teapot body scenes are rendered with
average frame rates of 6 and 8 Hz, and the bunny
is rendered at 15 fps. In reflection morphing mode,
performance is dictated by the number of vertices.
The teapot body and two spheres scenes have 10,000
vertices (20,000 triangles) and are rendered at 60/30
fps for 720x480/1440x960 output resolutions.

C. Compound reflectors

SBCs assume that each scene point has at most
one reflection in each reflection group. This con-
dition is satisfied if the rays of a reflection group
do not intersect inside the scene volume. Convex
reflectors satisfy this condition. We can handle con-
cave reflectors when we can split them into pieces
whose rays do not intersect. Fig. 1 was rendered by
subdividing the automobile into 7 parts (Fig. 20a)
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that generate 7 reflection groups. We use the same
approach to store refraction rays, which allows us
to render refractions with SBCs (Fig. 20b).

(a) (b)

Fig. 20. (a) automobile reflector subdivision; (b) refraction through
bi-convex glass lens.

Some reflectors are rendered adequately by envi-
ronment mapping, hence do not warrant the added
cost of sample-based cameras. The two methods can
coexist. Fig. 21 shows images where some reflectors
are rendered with environment mapping (teapot lid,
handle, and spout, and automobile bumper and
wheel caps) while the others are rendered with an
SBC.

Fig. 21. Hybrid reflections.

D. Conclusion

Sample-based cameras produce high quality re-
flections on curved reflectors at interactive rates by
projecting reflected vertices efficiently then shading
and rasterizing with graphics hardware. They pro-
duce images of ray tracing quality, and are more

efficient because they avoid searching for the scene
point visible at a pixel.

SBCs are more compact than image-based meth-
ods because they sample the projection function
instead of sampling the reflections. A BSP tree
of pinhole cameras is a powerful, versatile way
of encoding a projection function. The number of
cameras decreases with the curvature of the reflector
surface and equals one for planar reflectors. Image-
based methods are more efficient for complex static
scenes with low specularity reflectors, since they
do not require one to render the scene for every
reflection. SBCs are better for dynamic scenes and
for scenes with highly specular reflectors.

E. Future work

SBCs provide a new framework for accurately
rendering view dependent effects at interactive rates.
We will extend this work in several directions.

The SBC provides the requisite per-pixel data
(reflected scene points, eye vectors, and reflector
normals) for realistic simulation of many types of
surfaces. We will extend our set of shaders to handle
noisy, bumpy, and glossy reflective surfaces by
integrating normal maps into the SBC framework.

We will attempt to remove the restriction of one
projection per reflection group. One approach is to
partition the reflected rays into disjoint sets, in part
by splitting individual rays. Another approach is
to find all the reflected unit frustums that contain
a given scene point. We would need to group the
reflections of the three vertices of a triangle to form
reflected triangles. Alternately, we could dispense
with connectivity and render reflections by splatting.

We aim to improve the performance of the algo-
rithm. SBC construction and projection have good
asymptotic running times. One approach to improve
performance is to reduce the number of reflected
rays by selecting a subset that adequately captures
the reflections in the current view. Another approach
is to implement SBC construction in hardware.
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