
JDT-00073-2005

1

Three-Dimensional Display Rendering Acceleration
Using Occlusion Camera Reference Images

Voicu Popescu, Paul Rosen, and Dan Aliaga

Abstract—volumetric 3D displays allow the user to explore a 3D
scene free of joysticks, keyboards, goggles, or trackers. For non-
trivial scenes, computing and transferring a 3D image to the
display takes hundreds of seconds, which is a serious bottleneck
for many applications. We propose to represent the 3D scene
with an occlusion camera reference image (OCRI). The OCRI is
a compact scene representation that stores only and all scene
samples that are visible from a viewing volume centered at a
reference viewpoint. The OCRI enables computing and
transferring the 3D image an order of magnitude faster than
when the entire scene is processed. The OCRI approach can be
readily applied to several volumetric display technologies; we
have tested the OCRI approach with good results on a volumetric
display that creates a 3D image by projecting 2D scene slices onto
a rotating screen.

Index Terms—Three-Dimensional Displays, computer
graphics, image-based rendering, rendering acceleration.

I. INTRODUCTION
ONVENTIONAL 3D computer graphics applications present
the scene to the user on a 2D display. The approach has at

least two fundamental disadvantages. First, the system needs
to know the view desired by the user. Interfaces that rely on
trackers or on input devices (e.g. joysticks and keyboards)
provide only a crude and non-intuitive way for the user to
select the desired view. Second, the output image is flat,
which deprives the user from the important depth cues of
binocular stereo vision. Special goggles or displays can be
used to present each eye with a different image, but stereo
display technologies suffer from disadvantages such as limited
range of motion, need for strenuous image fusing, and
uncomfortable eyewear.

Volumetric 3D displays hold the promise to overcome these
disadvantages. A sculpture of light provides a truly three
dimensional replica of the scene of interest. The user naturally
selects the desired view by gaze, by head motion, and by
walking around the 3D image. There is no need for
encumbering eyewear, and the processes of accommodation
and vergence occur naturally. Although the advantages of
volumetric 3D displays have been known for a long time, 3D
display technology continues to suffer from fundamental
challenges. One challenge is creating an adequate 3D array of
pixels. The requirements are small pixel volume for good
spatial resolution, and wide range of intensities, colors, and
opacities. A second challenge is achieving satisfactory
performance. Computing and transferring the 3D image to the
display presently takes hundreds of seconds, which is
unacceptable for many applications.

This paper describes a method to accelerate rendering on

volumetric 3D displays, based on adapting the scene level of
detail before the 3D image is computed, and on reducing the
number of 3D image samples that are computed and
transferred. For example, if the 3D scene represents
Manhattan, a view that maps the entire island to the volume of
the 3D display can be safely computed from a coarser
representation than a view that only shows Times Square.
Moreover, for a single user that is seated or stands in one
place, many of the background buildings are completely
occluded and do not become visible for normal gaze changes
and head motions. The hidden buildings can be ignored when
computing the 3D image.

In the case of complex scenes with numerous occlusions,
the number of samples that remain hidden despite the
interpupilary distance and despite the translational component
of head motions is particularly large. These scenes are also the
ones that presently require the largest rendering times, so the
gain obtained by not processing hidden samples is substantial.
Level of detail adaptation and occlusion culling are classic
problems in 3D computer graphics. Many algorithms have
been developed to simplify geometry and to eliminate
primitives that lie in the shadow of occluders. However,
quickly establishing a small set of primitives that is sufficient
for a given view remains an open problem.

A relatively recent research path in computer graphics is
image-based rendering (IBR), where the scene is rendered
from pre-computed or pre-acquired reference images. In one
variant, the scene is modeled with depth images (DIs), which
are images enhanced with per-pixel depth [24]. The depth
information allows reprojecting (3D-warping) the reference
samples to any novel desired view. A DI provides a good
level-of-detail solution, which holds for nearby views.
Unfortunately, the occlusion culling solution of the reference
image cannot be applied to nearby views. Even small
translations of the viewpoint produce disocclusion errors,
which are artifacts due to lack of samples for surfaces that
become visible but were not sampled by the reference DI. In
our context, representing the scene with a DI computed from
the left eye’s viewpoint produces disocclusion errors in the
image seen by the right eye.

We have recently introduced occlusion cameras [25, 32], a
class of non-pinhole cameras which sample not only surfaces
visible in the reference view, but also surfaces that are likely
to become visible in nearby views. The resulting occlusion
camera reference image (OCRI) stores samples that are hidden
in the reference view but are needed to alleviate disocclusion
errors when the view translates. We represent the scene with
an OCRI computed for the user’s reference view, which is the
average of the left and right eye views in the normal head

C

JDT-00073-2005

2

position. Like a regular DI, the OCRI is a single layer
representation with the advantages of bounded number of
samples, implicit connectivity, and efficient incremental
processing. Another advantage shared with regular DIs is that
OCRIs adapt the scene’s level of detail to the reference view.
Unlike a regular DI however, the OCRI has all samples
needed for a continuum of views centered at the reference
view. Interpupilary distance and normal head motion do not
produce disocclusion errors.

Figures 1-7 illustrate our approach. Figures 1-4 show
images computed with our volumetric 3D display simulator,
and Figures 5-7 show actual photographs of our volumetric
3D display. Both simulated and real 3D displays produce

spherical images with a diameter of 10”. Figures 1 and 3 show
a depth image (DI) and an OCRI constructed from the same
viewpoint. Figure 2 shows the DI and OCRI from a viewpoint
4” left of the reference viewpoint. The severe disocclusion
errors that occur for the DI are alleviated by the OCRI. Figure
4 shows the DI and OCRI from a side view. The OCRI does
not sample all surfaces in the scene, nor should it. The OCRI
provides occlusion culling by safely discarding the samples
that are not needed in nearby views. The OCRI shrinks the
“shadow” of the bunny. Figure 5 shows reference view
photographs of the 3D images rendered from the DI, OCRI,
and geometric model. Figures 6 and 7 correspond to Figures 2
and 4.

Figure 1 Depth image (DI). Figure 2 Images rendered from DI and OCRI, viewpoint 4” left of reference viewpoint.

SI
M

U
L

A
T

O
R

 IM
A

G
E

S

Figure 3 OCRI. Figure 4 Images rendered from DI and OCRI. Wireframe shows spherical display volume.

Figure 5 3D images rendered from DI (left), OCRI (middle), and original geometric model (right), all photographed from reference view.

PH
O

T
O

G
R

A
PH

S
O

F
 3

D
 D

IS
PL

A
Y

Figure 6 DI and OCRI 3D images from viewpoint translated 4” left. Figure 7 DI and OCRI 3D images from side view.

JDT-00073-2005

3

II. PRIOR WORK
We describe a method to accelerate rendering on 3D

displays based on a novel non-pinhole camera model that
produces reference images less prone to disocclusion errors.
We limit the discussion of previous work to a brief review of
3D display technologies, to prior methods for alleviating
disocclusion errors, and to previous non-pinhole camera
models.

A. Three-Dimensional Displays
Several technologies attempt to go beyond a flat 2D image.

One approach is to use special eyewear to present each eye
with a different image. Polarizing glasses, dynamic shutter
glasses, or head mounted displays make the image appear 3D
by providing the required parallax between the left and right
eye images. These technologies are popular with virtual reality
applications since the synthetic image covers the entire field
of view of the user, which conveys a sense of immersion. The
important limitation is the need of special eyewear.

Autostereoscopic displays [15] produce a 3D image without
the need of special eyewear. Parallax autostereoscopic
displays provide different images for the left and right eyes
using slits [14, 30] or lenslets [5, 13, 21]. The disadvantages
are reduced resolution and reduced range of supported
viewpoints.

Volumetric displays produce a truly three dimensional
image. One approach is to fill space, for example with a stack
of transparent LCDs [17]. The approach has the disadvantage
of limited z resolution. Another approach is to use a varifocal
mirror whose oscillations are synchronized with a 2D display
it reflects [41]; the difficulty with such a display is building
the varifocal mirror.

Another type of volumetric display technology is based on
sweeping the display volume. 2D slices of the scene are
displayed in rapid succession and the eye integrates them into
a 3D image [1, 7]. The greatest challenge is the mechanical
scanning, which is noisy, imprecise, and fragile.

Several emerging technologies show potential for
producing 3D images. Electroholography [18] produces an
interference pattern (holographic fringe) which is then
illuminated to produce a 3D image by diffraction (modulation
of holographic fringe). The approach is hampered by the
enormous amount of data resulting from the requirement of
sampling the fringe with very high spatial frequency. A
different technology uses a pair of laser beams that excite
voxels inside a transparent cube of heavy metal fluoride glass
[6]. Attempts to replace the heavy and expensive medium
have not been successful so far. Another experimental
volumetric display [23] has 76,000 voxels that are lit using
optical fibers as waveguide.

To the best of our knowledge, the only volumetric displays
available commercially are those produced by Actuality
Systems [1] and LightSpace Technologies [17]. All
volumetric displays convert a 3D scene description into a 3D
image. Our method produces a simplified description of the
scene which is then used to compute the 3D image. Therefore,

in principle, the method can be applied to other volumetric
display technologies. We demonstrate the effectiveness of our
method on the Perspecta volumetric display [31], which we
characterize in detail in Section VII.

B. Disocclusion errors
A brute force solution to the problem of disocclusion errors

is to reconstruct the desired image by warping several depth
images. The approach has the obvious disadvantage of high
cost. Disocclusion errors are small groups of missing samples,
scattered throughout the scene. No single additional depth
image captures them all. The additional depth images
contribute only a few new samples. Another important
disadvantage is that the cost of rendering the desired image
varies with the number of depth images that have to be
considered to avoid all disocclusion errors. Such an
unpredictable cost is a severe limitation for applications that
rely on a guaranteed minimum frame rate. In a technique
called post-rendering warping [20], conventional rendering is
accelerated by warping two reference images. Even when the
viewpoints of the two reference images are very close to the
desired viewpoint, disocclusion errors persist.

Several techniques for alleviating disocclusion errors have
been developed based on the idea of pre-combining several
depth images into a layered representation that accommodates
more than one sample along a ray. Redundant samples are
detected and discarded. One example is the multi-layered z-
buffer (MLZB) [22]. The approach traces the ray beyond the
first surface and collects up to a maximum number of k
samples for each ray. MLZBs can be inefficient since the
depth complexity can be unnecessarily large at some pixels. In
other words, some of the samples in the MLZB never become
visible in any nearby view.

Layered depth images (LDIs) [37] address this issue: the
layered representation is built from depth images constructed
from nearby views. This way each sample in the resulting LDI
is known to be visible in at least one nearby view. LDIs have
been used to accelerate architectural walkthroughs [35], and
as building blocks for hierarchical sample-based scene
representations [4]. One disadvantage of LDIs is the lengthy
construction time which limits their applicability to dynamic
scenes, where the reference images have to be updated
frequently. Another shortcoming is their hardware-unfriendly
irregular structure, with an unbounded number of samples.
Lastly, LDIs do not have sample connectivity, and the desired
image is typically rendered by splatting, a low-quality
reconstruction technique borrowed from volume rendering
[42].

None of the methods discussed so far for addressing the
problem of disocclusion errors is conservative. In the case of
LDIs for example, it can happen that the desired image sees a
surface sample that is not visible in any of the construction
depth images and is therefore not present in the LDI. The
vacuum buffer [33] is a conservative method for deciding
whether a set of depth images is sufficient to avoid
disocclusion errors in a desired image. The method keeps
track of the sub-volumes of the desired view frustum which

JDT-00073-2005

4

are yet to be covered by any depth image. The disadvantages
of the approach are high per-frame cost—since the algorithm
needs the desired view it needs to run in real time, for every
frame, and unbounded number of samples—additional depth
images are needed to eliminate all disocclusion errors.

The advantages of representing and rendering a 3D scene
with depth images rather than with a traditional polygonal
model have been recognized by researchers and developers of
interactive 3D video technologies (see [38] for a
comprehensive overview of the state of the art). The depth
image and the layered depth image have been adopted by the
MPEG-4 standard via its Animation Framework eXtension
(AFX), part of the Depth Image-Based Representation (DIBR)
family [19]. Of course, the DIBR representations inherit the
disocclusion errors of depth images.

All previous solutions to the problem of disocclusion errors
attempt to fill in disocclusion errors once they occur. Instead,
we take the approach of preventing disocclusion errors. A
reference image is asked to provide the necessary samples for
rendering the scene from a continuous range of viewpoints,
centered at the reference viewpoint. Therefore a reference
image also needs to store samples that are not visible in the
reference view. The challenge is to find an efficient method
for including in the reference image samples that are “about to
become visible”. Our method is based on a non-pinhole
camera whose rays go around occluders to gather samples
which cannot be reached by the rays of a pinhole camera.
Several non-pinhole cameras have been developed by
computer vision and computer graphics researchers.

C. Non-pinhole cameras
Much of the computer vision arsenal for extracting

information from images is based on the single viewpoint
constraint. The main reason for this is that such single
viewpoint images can be trivially re-sampled to a familiar,
human-vision-like planar pinhole camera image. Recently,
researchers began considering camera models whose rays do
not pass through a common point. The general linear camera
(GLC) [45] captures all rays that are a linear combination of
three given construction rays, which are not necessarily
concurrent. The GLC generalizes two previously studied
cameras: the pushbroom camera [12], and the two-slit camera
[29]. The GLC is not sufficiently powerful to address
disocclusion errors in complex scenes.
Computer graphics researchers have also studied non-pinhole
cameras. In computer graphics the cameras are virtual, so
camera design is free of the constraint that the novel camera
be physically realizable using actual refractive, reflective, and
sensing elements. The light field [10, 16] is an important non-
pinhole camera which shows that a 3D scene can be rendered
without knowledge of its geometry. A light field is a 4D
database of rays, parameterized using two parallel planes. The
rays of the desired view are looked up in the database. Light
fields do not suffer from disocclusion errors, however, they
are expensive to construct and scale poorly with the scene
size.

The multiple-center-of-projection camera [36] samples the

Figure 8 Illustration of the effect of the distortion on the rays of PPHC0.

Figure 9 Illustration of distortion at depth discontinuities. Image plane view
(left), and view in plane defined by PPHC0, a, and e (right).

scene along a user chosen path. For every viewpoint a single
column of rays (pixels) is collected. The disadvantage is the
need for user interaction, and the high construction cost: the
scene needs to be rendered for every viewpoint along the path.
We have developed a class of non-pinhole cameras
specifically for addressing the problem of disocclusion errors.

III. ALGORITHM OVERVIEW
Given a 3D scene S and a reference view expressed as a

planar pinhole camera PPHC0, our algorithm proceeds in the
following main steps:
1. Construct an occlusion camera OC0 from PPHC0 and S.
2. Build a reference image OCRI0 from OC0 and S.
3. Produce 3D image I3D0 from OCRI0.

The occlusion camera depends on the reference view and
the scene geometry it encompasses. Once OC0 is known, S is
replaced with OCRI0, which provides a view-optimized,
bounded-cost approximation of the scene. The next three
sections describe each of the three main steps of the algorithm.

IV. OCCLUSION CAMERA

A. Occlusion camera class
An occlusion camera is constructed for a given scene and a
given reference view, and has the following properties:
a. Disocclusion. Some rays of the camera sample surfaces

that are not visible in the reference view, but are likely to
become visible in nearby views.

b. Single layer. The camera acquires a 2D image; at each
pixel, the image stores the depth and color of the closest
surface sample along the ray at that pixel.

JDT-00073-2005

5

Figure 10 Visualization of distortion magnitude variation.

c. Unambiguous projection. A 3D point projects to at most

a single image location (no two rays intersect).
d. Efficient projection. The projection of a 3D point is

computed in a constant number of steps.
The first property ensures that the OCRI is less prone to
disocclusion errors than a regular depth image. Because of the
second property, the OCRI has a bounded number of samples.
The depth and color samples can be trivially connected in a
regular mesh by connecting each sample to its neighbors.

The last two properties ensure that the OCRI can be
constructed efficiently with the feed-forward graphics pipeline
(FFGP). The FFGP has two main stages: projection, when the
geometric primitive is projected onto the image plane, and

rasterization, when pixels covered by the primitive are
identified and set to appropriate values. The FFGP is efficient
because, unlike the ray tracing pipeline [43, 9], it only
considers pixel/primitive pairs that are likely to yield an
intersection (a color sample). The FFGP is the approach of
choice in interactive computer graphics and it is supported in
hardware [28, 26, 27, 2].

If the occlusion camera provides fast, unambiguous
projection, the OCRI can be constructed efficiently with the
FFGP. Assuming that the scene is modeled with triangles,
each triangle is projected by projecting its vertices, and then
the projected triangle is rasterized to produce the reference
image samples.

We demonstrated the occlusion camera concept with the
single-pole occlusion camera (SPOC) [25], which is limited to
a single, relatively simple occluder. To overcome this
limitation we introduce a second member of the occlusion
camera class.

B. Depth discontinuity occlusion camera
1) Overview

 Given a 3D scene S and a reference view PPHC0, the goal is
to devise a camera that sees slightly more than what PPHC0
sees; in other words, hidden samples that are close to the
boundary of their occluder should be part of the image
gathered by the camera. We achieve this by redirecting
(distorting) the rays of the PPHC0 that pass close to a depth
discontinuity. The problems of the SPOC are avoided by
defining the distortion at a fine level, using a distortion map.
A distortion map pixel (location) stores distortion information
for the PPHC0 ray defined by that pixel.

Let A be a hidden point of the background that is close to
the silhouette of the bunny as seen in the depth image in
Figure 1. The distortion changes the projection of A from the
undistorted location a given by PPHC0 to ad (Figure 9). The
distortion moves the sample perpendicularly to the depth
discontinuity, and away from the occluder. In Figure 9—left,
the depth discontinuity has normal n at pixel e. The distortion
does not change the projection of the bunny sample A’ that is
seen along the same PPHC0 ray as A. This way the sample A
clears the occluder and remains visible in the final OCRI.

Figure 8 illustrates the distortion by visualizing the rays of
the resulting occlusion camera. The original rays of PPHC0
are unaffected until the depth of the occluder, zn. The rays
close to the depth discontinuity are moved in a direction
normal to the depth discontinuity, towards the occluder
(which causes the samples to move away from the occluder).
The distortion increases linearly in 1/z from zn to the depth zf
of the occluded object, which makes that the rays of the
occlusion camera are line segments between zn and zf. Rays to
the left of A0 and to the right of A1 are not affected by the
distortion. Some distorted rays are implicitly clipped by the
ray of A0—this simply means that a sample at OCRI location b
cannot be farther than zb. The entire view frustum of PPHC0 is
sampled by the rays of the occlusion camera.

2) Distortion map construction
The occlusion camera is defined by the reference view

PPHC0 and a distortion map DMAP0 that distorts its rays.
Each distortion map locations stores a distortion sample
specified with a five-tuple (du, dv, zn, zf, df). The 2D unit vector
(du, dv) gives the direction of the distortion, and the distortion
magnitude increases from 0 at depth zn to df at zf. The
distortion map DMAP0 is constructed as follows.
1. Render S with PPHC0, producing z-buffer ZB.
2. Detect depth discontinuities in ZB.
3. For each depth discontinuity pixel e, splat e in DMAP0.
4. For each depth discontinuity pixel e, adjust splat size.
5. For each DMAP0 location, set distortion five-tuple.

At step one, the scene is rendered in hardware and the z-
buffer is read back. At step two, depth discontinuity pixels are
detected as pixels where the second order depth variation
exceeds a threshold [34].

At step three, a first pass over the depth discontinuity pixels
is taken to set the neighborhood of the depth discontinuities

Figure 11 Asymmetrical splats. The scene consists of two rectangular
occluding floating in front of a background. Symmetrical splats (left) cannot
entirely disocclude the background since the space between the two
occluders is too small. Asymmetrical splats (right) need less image area for
the same disocclusion effect and completely disocclude the background.

JDT-00073-2005

6

where the distortion acts. For each depth discontinuity pixel e,
a circular splat of radius D is written into DMAP0. D is a user
chosen parameter that specifies how far behind the occluder
the occlusion camera should reach. This value might be later
decreased for some depth discontinuities to accommodate
conflicting distortion requirements, as described later.

When a splat sample lands at a DMAP0 location p which is
already occupied, the splat whose center is closest to p wins.
During the construction phase, the distortion map stores at
every location 3 more scalars, in addition to the 5 needed to
specify the distortion sample. Two of these additional values
specify the coordinates cu and cv of the splat that owns the
location, and are used in the splat arbitration described above.
The third additional value specifies the current radius of the
splat, which starts out as D.

During step four, a second and last pass over the depth
discontinuity pixels reduces the radii of the splats to avoid
overlap with conflicting splats. Two splats conflict if they
affect the same DMAP0 location and if they have distortion
directions that form an angle larger than a user chosen
threshold. We use in practice threshold of 900.

Reducing the splat size is necessary in order to avoid losing
visible samples. Consider the case of a thin gap. The left edge
of the gap moves samples towards the right, and the right edge
towards the left. The distortion directions form an angle of
180o. The gap is smaller than D and not adjusting the size of
the splat causes the samples to compete for the same OCRI
location and to lose some of them to z-buffering. Once the
radius r has been determined, all distortion samples owned by
the splat and located farther than r are deleted (reset).

In the last step five, a pass over DMAP0 sets the distortion
samples for each location that is under the influence of a depth
discontinuity pixel, as indicated by valid cu and cv values. The
direction (du, dv) of the distortion at DMAP0 location p is
given by the depth discontinuity normal at (cu, cv). The depth
discontinuity direction is approximated by least squares fitting
a line to a neighborhood of depth discontinuity pixels,
centered at (cu, cv). The normal points away from the occluder,
towards the samples with larger z’s. The near and far depths zn
and zf between which the distortion acts are given by the
depths of the two samples creating the depth discontinuity.

 The distortion magnitude depends on the distance from p to

Figure 12 (Top) Depth image (left) used to render the scene from a side
view (right). (Bottom) OCRI constructed with asymmetrical splats
(magnified fragment, left) and same side view (right).

Figure 13 Volumetric 3D display used to validate the OCRI approach
(left) and typical viewing distance of 50” (right).

the depth discontinuity pixel (cu, cv). If the radius of the splat
at (cu, cv) is r, and the signed distance from p to (cu, cv) is x, df
is set as (r-x)/2. The distortion magnitude starts out as r for
x=-r/2, and tapers off linearly to 0 at x=+r/2. Figure 10 shows
the effect of the distortion in the image plane of PPHC0 in the
neighborhood of a vertical depth discontinuity. The +-r
neighborhood is shown shaded in grey. The depth
discontinuity separates the neighborhood in two equal parts,
shaded in light and dark grey. The occluder covers the darker
right half. Before the distortion, vertical bars 5-9 are hidden.
The distortion compresses and shifts them to the right half of
the light grey region. In order to make room, the originally
visible samples between bars 1-5 are compressed and shifted
to the left half of the light grey region.

 The resulting occlusion camera trades (u, v) resolution for
resolution along the same reference view ray. The hidden
samples are accommodated in the single layer OCRI by
compressing the image close to the depth discontinuities. In
Figure 10 the sampling rate is half that in the original image.

3) Asymmetrical splats
For complex scenes, numerous conflicting splats have centers
closely located from one another, which reduces the effective
splat radius r, and with it, the disocclusion capability of the
resulting occlusion camera. There just isn’t enough room in
the image to accommodate the hidden samples (Figure 11). In
such cases, we increase the disocclusion efficiency of the
occlusion camera by reducing the image area required to
disocclude a given number of hidden samples.

We achieve this with asymmetrical splats. If the asymmetry
factor is α, the distortion magnitude df varies linearly from r to
0, as the signed distance x to the edge increases from –r to r/α.
The expression for df is given by

Equation 1 Distortion magnitude variation for asymmetrical splats.

When the splats are symmetrical, α equals 1 and the

expression for df becomes (r-x)/2, as derived earlier. The splat
asymmetry is a powerful tool for increasing the disocclusion
capability of the occlusion camera. Figure 12 shows a scene
consisting of several rectangular occluders that float in front
of a checkered background. The background is heavily
occluded. When the side view is rendered from a regular

α
11

)(
+

+
−=

rxrxd f

JDT-00073-2005

7

Figure 14 Photographs of the 3D display showing the Happy Buddha
statues scene. The 3D image was rendered from a DI (left column) and
from an OCRI (right column). The photographs were taken from the
reference viewpoint (row 1), and from 4” above the reference viewpoint
(row 2). Side view shows the “shadows” shrunk by the OCRI (row 3).

depth image, severe disocclusion errors occur. When using
asymmetrical splats (α = 2), virtually the entire background is
captured. Asymmetrical splats decrease the sampling rate near
depth discontinuities (α + 1) times, since an r + r/ α region is
compressed into an r/ α region. The decrease in resolution can
be alleviated an increase the reference image resolution.

V. OCCLUSION CAMERA REFERENCE IMAGE CONSTRUCTION
The scene is rendered with the occlusion camera OC0 =

(PPHC0, DMAP0) to create the reference image OCRI0. Each
triangle mesh of the scene S is projected with OC0 and then
the projected mesh is rasterized in hardware. A triangle mesh
is projected by projecting each of its vertices. A vertex V is
projected with the following equation.

Equation 2 Projection with occlusion camera.

The occlusion camera is a non-pinhole camera which does

not preserve lines and planes. To control the approximation
error introduced by conventional rasterization, we subdivide
each triangle until the screen space edge lengths of the
resulting triangles are smaller than a user chosen threshold. In

practice, we use a threshold of 1 pixel.
The subdivision stopping criterion directly impacts the

OCRI construction time. For many scenes coarser
subdivisions are acceptable. Consider a scene like the one in
Figure 12, except that it has a single rectangular occluder, of
width 10 pixels. If the maximum tolerable edge length is 20
pixels, it can happen that no background triangle vertex is
distorted, and the OCRI is equivalent to a regular depth image.
However, a threshold of 5 pixels will produce the same (good)
results as a threshold of 1 pixel.

VI. RENDERING USING THE OCRI
The OCRI provides a good approximation of the scene,

tailored to the reference view. The OCRI is converted to a 3D
triangle mesh, which is then used by the volumetric display
driver to render the 3D image, in lieu of the original scene
model. Each sample in the OCRI corresponds to a 3D point
with color. To recover the 3D point from the OCRI sample,
one needs to be able to unproject the sample back in 3D. The
distorted coordinates (ud, vd, z) and the distortion five-tuple
are not sufficient to recover the undistorted coordinates of the
sample, since the distortion is not invertible.

For this we augment the OCRI with an additional two
channels per pixel that store the distortion vector used to
create the sample. The values of these channels are computed
during OCRI construction by rendering the scene meshes a
second time with the distortion vector components stored in
the red and green channels of vertex color. The hardware
interpolates these values during rasterization and stores the
distortion vector for every pixel in the frame buffer.

Given (ud, vd, z) and the distortion vector (δu, δv), the
undistorted coordinates (uu, vu) are computed as (ud - δu, vd –
δv). The model space 3D point is obtained by unprojecting the
pixel (uu, vu) to depth z with PPHC0.

VII. ROTATING SCREEN VOLUMETRIC 3D DISPLAY
As stated earlier, all 3D displays transform the geometry

and color scene description into a 3D image. Our method
reduces the complexity of the scene by adapting the level of
detail and by safely discarding surfaces that are not visible in
any view of interest to the user. Therefore, our method is
applicable to a variety of 3D displays.

Available to us is a volumetric display (Figure 13) that
builds a 3D image one slice at the time, with a rotating screen
[31]. The screen has a radius of 5”, it is diffuse and
semitransparent, and it rotates with an angular velocity of
720rpm. Since both faces of the screen carry an image, the
refresh rate is 24Hz, which corresponds to 180o rotation. The
display projects onto the screen the intersection between the
scene and the plane of the screen 198 times for every complete
rotation. The optical path is folded using 3 mirrors M0-M2.
The mirrors and screen are enclosed in an inner glass sphere
that rotates with the screen; the glass sphere is enclosed in a
stationary outer glass sphere. The display is not perfectly
balanced which causes it to wobble. We estimate the
amplitude of the wobbling to be 0.5cm. Each slice has a

⎣ ⎦ ⎣ ⎦

()

)(),(),(),(

,

,
11
11

,0

),(),,,,(
)(),,(

0

0

zdddvuvu

zzd

zzzd
zz
zz

zz

zd

vuDMAPdzzdd
VPPHCzvu

vuuudd

ff

fnf
fn

n

n

uuffnvu

uu

+=

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤≤
−
−

<

=

=
=

JDT-00073-2005

8

DI OCRI Geometry
Scenes Tris

(x103)
Time

(s)
Tris

(x103)
Ctime
(s)

Time
(s)

Tris
(x103)

Time
(s)

Bunny 612 12.0 612 2.73 11.8 321 8.02

Bunny QR 37.8 .766 37.8 .875 .75 321 7.81

Buddha
statues 612 11.4 612 12.1 11.5 4,603 131

Thai statue 612 12.5 612 20.3 13.9 10,252 292

Table 1 Rendering performance measures for various scenes.

resolution of 768x768. The color resolution is 32bit RGBA
but it is compressed to 3bit RGB. The reduced image
brightness requires dimming the ambient lights when the
display is in use (Figure 13).

The application runs on a host computer (IBM, Intel
chipset, Windows XP operating system) connected to the
display with an SCSI interface. The display manufacturer has
provided a driver that supports OpenGL. The timing
information reported in this paper was obtained with a display
driver v1.5. The 3D image maps the model space unit sphere
to the volume of the display.

The photographs shown throughout this paper were taken
with a digital camera with the following settings: no ambient
lights, aperture F2.8, exposure time 1/25s, and simulated film
sensitivity ISO400. Our camera does not offer 1/24s as one of
the possible exposure times, which would have allowed
acquiring a complete 3D image. We used the slightly shorter
exposure time since the wobbling produces excessive
blurriness if the shutter remains open more than 180o and the
screen revisits a part of the 3D image. The slightly shorter
exposure time misses (1/24-1/25)*(12*360o) = 7.2o of the 3D
image. We took several snapshots for every position to place
the missing 3D image sector in a convenient location (see
black stripe that splits the vertical plane in Figure 5—left or
the horizontal plane in Figure 6).

VIII. RESULTS AND DISCUSSION
We have tested our approach on several 3D scenes, both

with our volumetric display simulator and the actual
volumetric display: the bunny (Figures 1-7), the vertical bars
(Figure 12), the four Happy Buddha statues (Figure 14), the
Unity, the auditorium, and the Thai statue (Figure 15) scenes.

OCRIs prove to be a robust solution to the problem of
disocclusion errors, and can handle complex scenes. We
measure the disocclusion errors present in a frame by
rendering a ground truth image from geometry and counting
how many ground truth image samples are not present in the
frame. We rendered sequences of frames by moving the
viewpoint on the edges of an 8” cube centered at the reference
viewpoint. The disocclusion errors measured when using the

 DI LDI LF ULF RPS OCRI

Construction
time (s) 0.12 3.84 30.72 3.84 6.84 11.5

Memory size
(MB) 2.6 3 332.8 41.6 76 5.2

Table 2 Construction performance comparison.

OCRI were, on average, 4.5% of those measured when using a
depth image as reference.

The OCRI provides efficient projection and is constructed
with the help of graphics hardware. Table 1 reports the 3D
image rendering times and the number of triangles for each of
three scenes (bunny, Happy Buddha statues, and Thai statue),
and for each of three scene representations (depth image,
OCRI, and geometry). The OCRI approach has three main
steps: the occlusion camera model is computed first, then the
OCRI is constructed by rendering the scene with the occlusion
camera, and then finally the 3D image is produced from the
triangle mesh defined by the OCRI. The table reports the
aggregate time for steps 1 and 2 as Ctime, and the time for step
3 as Time. The resolution of the desired image and that of the
reference image is 720x480. The depth image and the OCRI
always generate the same number of triangles since the OCRI
has a single layer where it stores the hidden samples at the
cost of reducing the sampling rate for the visible surfaces.

In the case of the bunny scene, the depth image and the
OCRI generate more triangles than present in the original
model, with the consequence of a larger 3D image rendering
time. For the bunny, creating a depth image or an OCRI at this
resolution is wasteful—the new vertices do not bring any new
information since they are computed by interpolation. Once a
more suitable resolution is selected (180x120, see row Bunny
QR in the table), the speedup is considerable. For the DI
representation, we define the speedup as the ratio between the
time needed to render the 3D image from the original
geometric model and from the depth image. For the OCRI
representation we compute the speedup by dividing by the
sum of Ctime and Time. Therefore the speedup is 7.81/0.766 =
10.2 for the DI and 7.81/(0.875+0.75) = 4.8 for the OCRI.

For the Happy Buddha statues scene, the speedup is 11.5
for the DI and 5.5 for the OCRI. For the 10 million triangles
Thai statue, rendering the 3D image from the DI or the OCRI
brings a speedup of 23 and 8.5, respectively. The advantage of
the DI and of the OCRI increases with the complexity of the
scene, since the DI and the OCRI generate the same number
of triangles (e.g. 612,000) regardless of the complexity of the
original scene model.

The DI approach is more efficient since it does not incur the
cost of OCRI construction, but it suffers from disocclusion
errors. We will work on reducing the OCRI construction time.
Step one has a cost proportional to ED2+WH, where E is the
number of depth discontinuity pixels, D is the user chosen
maximum distortion region radius (D = 30 in our
experiments), and W and H give the width and height of the

JDT-00073-2005

9

Figure 15 Frames rendered from DI (left) and OCRI (right) for the unity
church (top), auditorium (middle) and Thai statue (bottom) scenes.

reference image. The occlusion camera construction takes
uniformly about 1s for our scenes, consequently most of Ctime
goes to step two. Our current implementation projects the
scene meshes in software (on the CPU of the host computer)
using the distortion map, and then rasterizes the projected
meshes on the graphics card. As future work we will move the
entire second step on the GPU (graphics processing unit), by
taking advantage of the vertex level programmability of recent
GPUs. This will virtually eliminate the OCRI construction
time Ctime and will make the performance of the OCRI similar
to that of the depth image. Note that the times of the third step
of OCRI construction (third OCRI column in Table 1) are
comparable to the DI times (second DI column in Table 1).

OCRIs are one of many possible 3D representations. Table
2 gives an approximate comparison between OCRIs and depth
images (DIs), layered depth images (LDIs), light fields (LF),
unstructured light fields (ULF), and ray-phase space (RPS)
representation. The comparison is based on the four Happy
Buddha statues scene, which our NVIDIA Quadro FX 3400
graphics card renders at ~8Hz, hence the 0.12s DI
construction time. Constructing and LDI for such a scene
requires first rendering and then merging approximately 4 x 4
= 16 construction depth images [37, 35, 4], at a time cost of 16
x 0.12 x 2 = 3.84s. The LF construction time is 16 x 16 x 0.12
= 30.72s, figure obtained with a rather modest back plane
resolution (16x16). Constructing the ULF [8, 3] requires
fewer images (32 for the table entry) since user interaction or
a heuristic is used to identify the most important views.

The ray-phase space representation [40] is a 4D plenoptic
representation which instead of using two planes in front of
the desired viewpoints for parameterization, uses a 2D
parameterized surface that surrounds the scene of interest, and
then a 2D parameterization of the outgoing rays for each

surface point. The approach is similar to surface light fields
[44] and to models developed for general imaging systems
[11]. In our case, a natural parameterization surface is the
sphere described by the revolving screen, whose visible area is
approximately 38% of the area of a sphere with a radius of 5
inches, or 120 square inches. For an average sampling rate of
one point per square millimeter and 16 x 16 rays for each
point, the total number of rays is 19 million. Generating these
rays requires rendering the scene at least 57 times, for a
construction time of 6.84s, which ignores the cost of
rearranging the rays according to the ray-phase
parameterization.

For the 720x480 resolution, the 8 bit R, G, B, A channels
and the 32 bit floating point z channel amount to 2.6MB. The
16 floats needed to store the view are negligible. The LDI
adds only a few non-redundant samples. The uncompressed
LF requires considerable storage space. Compression could
reduce the memory consumption 10 or 100 fold, with the
corresponding compression and decompression time costs and
loss of quality [16]. The ULF has a more manageable
uncompressed size, but is less redundant and thus compresses
less well. The 19 million color samples of the RPS
representation translate to 76MB.

The OCRI requires twice the storage since the points are
perturbed and the x and y coordinates need to be store
explicitly (whereas in the DI or LDI, they are provided
implicitly by the pixel coordinates). We have charged 8
additional bytes for per pixel floating point x and y, however a
slimmer 2 byte fixed point representation would work equally
well. Whereas DIs and OCRIs compress well using the
coherence of the single layer, the variable depth of the multi-
layered LDI pixels hinder compression. Note that the
distortion map is only needed during construction.

The plenoptic representations are not supported by our 3D
display. On a regular LCD, the scene can be rendered at
refresh rate (60 Hz for our system) when using the DI, LDI, or
OCRI. The LF and ULF representations have been shown to
support frame rates as high as 20Hz. Quality wise, the OCRI
produces images comparable to those rendered using the
original geometry. DIs suffer from disocclusion errors. LDIs
produce lower quality images since they lack connectivity and
are rendered by splatting [37, 35, 4]. Estimating the size and
shape of the splats cannot be done both efficiently and
accurately. The splats are typically overestimated and modeled
as rectangles or disks, which produces blockiness. Typical
artifacts when rendering from plenoptic representations are
coarseness (due to low spatial sampling resolution, as it is the
case for the numbers chosen for this table), and compressions
artifacts.

In conclusion, OCRIs, like DIs and LDIs, capture the scene
well and are compact since they use the depth and the diffuse
surface assumption to reuse color samples over a continuum
of nearby views. OCRIs do away with disocclusion errors, the
major disadvantage of depth images, while the The plenoptic
representations have the advantage of not requiring geometry,
and can be acquired with a tracked camera. The plenoptic

JDT-00073-2005

10

representations do provide limited support for view dependent
effects, such as glossiness. Highly reflective surfaces are not
supported since these entail the need of a very high spatial
sampling resolution.

IX. CONCLUSION
We have described a novel occlusion camera that distorts

the reference rays at depth discontinuities to reach behind
occluders and to avoid disocclusion errors. We have
demonstrated the effectiveness of the occlusion camera
reference image for accelerating the rendering on a volumetric
3D display. The OCRI provides an efficient scene
representation by adapting the level of detail to the reference
view and by discarding samples that are not visible in any
nearby views. A 3D image built from an OCRI supports
disocclusion error free viewing for a fixed user. The OCRI
stores most of the samples needed to form complete left and
right eye images under normal head translations.

The OCRI brings a substantial speedup over rendering the
3D image from the complete geometric model. However, the
frame rate is still far from interactive. Possible approaches for
further increasing the 3D image rendering performance are
simplification of the mesh produced by the OCRI, taking
advantage of GPU versatility for efficiently converting
triangles into the 3D image, and progressive refinement.

Volumetric displays cannot reproduce opaque surfaces, and
the limitation will remain for the foreseeable future. Depth
images and OCRIs remove hidden surfaces and improve the
readability of 3D images that visualize surfaces. In some
scientific visualization applications, the scene of interest
contains opacity data. We will extend our approach to such
data: a front volume becomes opaque if it is of sufficient
thickness, case in which the data behind it can be safely
eliminated, improving performance.

One of the great advantages of our display is its natural
support for collaborative applications. Two or more users can
simultaneously view the 3D image, each with the proper
perspective, without the requirement of encumbering head
gear. As presented, the OCRI approach works only for a
single viewer. We will investigate creating occlusion cameras
that provide all samples needed for two reference views.

Our solution for alleviating disocclusion errors is based on
creating a custom non-pinhole camera with fast projection.
This allows harnessing the impressive power of modern GPUs
for solving a problem far from the classical computer graphics
problem of providing perspective views of a 3D scene. We
believe that the same methodology can be applied to solving
other challenging problems in computer graphics and beyond.

ACKNOWLEDGMENTS
We would like to thank Chunhui Mei and Elisha Sacks for

their contributions to the development of the single-pole
occlusion camera, on which this work builds. This work
would not have been possible without the help of Christoph
Hoffmann. This work was supported by the NSF through
grant CNS-0417458, by Intel and Microsoft through

equipment and software donations, and by the Computer
Science Department of Purdue University. The bunny, Happy
Buddha, and Thai statue models were obtained from the
Stanford 3D Scanning Repository [39].

REFERENCES
[1] Actuality Systems http://www.actuality-systems.com/
[2] ATI http://www.ati.com/
[3] C. Buhler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen.

“Unstructured Lumigraph Rendering”. In Proc. of SIGGRAPH 2001.
[4] C. F. Chang, G. Bishop, and A. Lastra, “LDI Tree: A Hierarchical

Representation for Image-Based Rendering,” in Proc. of SIGGRAPH’99.
[5] Dimension Technologies, http://www.dti3d.com/
[6] E. Downing et al, “A Three-Color, Solid-State, Three-Dimensional

Display,” Science 273, 5279, August 1996.
[7] G. Favalora et al, “100 Million-voxel volumetric display,” in Proc. of

SPIE 16th Annual International Symposium on Aerospace/Defense
Sensing, Simulation, and Controls, 2002.

[8] T. Fujii, T. Kimoto, and M. Tanimoto, “A new flexible acquisition
system of ray-space data for arbitrary objects”, IEEE Trans. Circuits
Syst. Video Technol., vol. 10, pp. 218-224. Mar. 2000.

[9] A. Glassner, “An Introduction to Ray tracing,” Morgan Kaufman, 1989.
[10] S. Gortler, R. Grzeszczuk, R. Szeliski and M. Cohen, “The Lumigraph,”

in Proc. of SIGGRAPH 96, 43-54.
[11] D. Grossberg and S. Nayar. A General Imaging Model and a Method for

Finding its Parameters. In Proceedings of ICCV 2001.
[12] R. Gupta and R.I. Hartley, “Linear Pushbroom Cameras,” IEEE Trans.

Pattern Analysis and Machine Intell., vol. 19, no. 9 963–975, 1997.
[13] A. Isaksen, L. McMillan, and S. Gortler, “Dynamically reparameterized

light fields,” in Proc. of SIGGRAPH 2000.
[14] H. E. Ives, “A camera for making parallax panoramagrams,” Journal of

Optical Society of America, 17, Dec. 1928, pp. 435-439.
[15] M. Halle, “Autostereoscopic displays in computer graphics,” in Proc. of

SIGGRAPH 97, 31(2), May 1997, pp 58-62.
[16] M. Levoy and P. Hanrahan, “Light Field Rendering,” in Proc. of

SIGGRAPH 96, 31-42, 1996.
[17] LightSpace Technologies. http://www.lightspacetech.com/
[18] M. Lucente, “Interactive three-dimensional holographic displays: seeing

the future in depth,” in Proc. of ACM SIGGRAPH 97, 31(2), May 1997.
[19] L. Levkovich-Maslyuk et al., “Depth Image-Based Representation and

Compression for Static and Animated 3-D Objects”, in IEEE
Transactions on Circuits and Systems for Video Technology, Vol. 14,
NO. 7, pp. 1032-1045.

[20] W. Mark, L. McMillan, and G. Bishop, “Post-Rendering 3D Warping,”
in Proc. of 1997 Symposium on Interactive 3D Graphics, 1997.

[21] W. Matusik, H. Pfister, “3D TV: a scalable system for real-time
acquisition, transmission, and autostereoscopic display of dynamic
scenes,” in Proc. of SIGGRAPH 2004.

[22] N. Max and K. Oshaki, “Rendering trees from precomputed z-buffer
views,” in Rendering Techniques ’95: Proceedings of the Eurographics
Rendering Workshop 1995, 45–54, Dublin, June 1995.

[23] D. McFarlane, “A true volumetric 3D display,” available at
http://www.utdallas.edu/~dlm/A%20True%20Volumetric%20Three%20
Dimensional%20Display.htm

[24] L. McMillan and G. Bishop, “Plenoptic modeling: an image-based
rendering system,” in Proc. of SIGGRAPH ‘95, pp. 39-46.

[25] C. Mei, V. Popescu, and E. Sacks, “The Occlusion Camera,” in Proc. of
Eurographics 2005, Computer Graphics Forum, vol. 24, issue 3, 2005.

[26] Microsoft DirectX, http://www.microsoft.com/windows/directx/
[27] NVIDIA Corporation http://www.nvidia.com/
[28] OpenGL http://www.opengl.org/
[29] T. Pajdla, “Geometry of Two-Slit Camera,” Research Report CTU–

CMP–2002–02.
[30] K. Perlin, S. Paxin, J. Kollin, “An autostereoscopic display,” in Proc. of

SIGGRAPH 2000, pp. 319-326.
[31] Perspecta Display, by Actuality Systems.

http://www.actualitysystems.com/site/content/perspecta_display1-9.html
[32] V. Popescu and D. Aliaga, “The Depth Discontinuity Occlusion

Camera,” to appear in Proc. of ACM Symposium on Interactive 3D
Graphics and Games, 2006.

JDT-00073-2005

11

[33] V. Popescu and A. Lastra, “The Vacuum Buffer,” in Proc. of ACM
Symposium on Interactive 3D Graphics, Chapel Hill, 2001.

[34] V. Popescu et al, “The WarpEngine: An Architecture for the Post-
Polygonal Age,” in Proc. of SIGGRAPH 2000.

[35] V. Popescu, A. Lastra and M. Oliveira, “Efficient Warping for
Architectural Walkthroughs Using Layered Depth Images,” in Proc. of
IEEE Visualization 1998.

[36] P. Rademacher and G. Bishop, “Multiple-center-of-Projection Images,”
in proc of SIGGRAPH ’98, 199–206.

[37] J. Shade, et al, “Layered Depth Images,” in Proc. of SIGGRAPH 98,
231- 242.

[38] A. Smolic and P. Kauff, “Interactive 3-D video representation and
coding technologies”, in Proceedings of the IEEE, vol. 93, issues 1, pp.
98-110, Jan 2006.

[39] The Stanford 3D Scanning Repository,
http://graphics.stanford.edu/data/3Dscanrep/

[40] A. Stern and B. Javidi, “Ray phase space approach for 3D imaging and
3D optical data representation”, IEEE/OSA journal of display
technology, vol. 1(1), pp. 141-150, Sept. 2005

[41] A.C. Traub, “Stereoscopic Display Using Varifocal Mirror Oscillations,”
Applied Optics, Vol. 6, No. 6, June 1967, pp. 1085-1087.

[42] L. Westover, “Footprint evaluation for volume rendering,” in Proc. of
SIGGRAPH 1990, volume 24(4), pp. 367-376.

[43] T. Whitted, “An improved illumination model for shaded display,”
Communications of the ACM, v. 23, n.6, pp 343-349.

[44] D. N. Wood. et al. 2000. “Surface light fields for 3D photography”.
Proceedings, SIGGRAPH ’00, ACM Press, pp. 287-296.

[45] J. Yu and L. McMillan, “General Linear Cameras”, in Proc. of the 8th
European Conf. on Computer Vision (ECCV), 2004, Volume 2, 14-27.

Voicu Popescu received a B.S. degree in computer
science from the Technical University of Cluj-
Napoca, Romania in 1995, and a Ph.D. degree in
computer science from the University of North
Carolina at Chapel Hill, USA in 2001.
 He is an assistant professor with the Computer
Science Department, Purdue University. His research
interests lie in the areas of computer graphics,
computer vision, and visualization. His current
projects include perceptual evaluation of rendered
imagery and 3D displays, research and development

of 3D scene acquisition systems, research of algorithms for fast and accurate
rendering of view-dependent effects, and research and development of next
generation distance learning systems.

Paul Rosen received a B.S. degree in computer
science from Purdue University West Lafayette,
Indiana in 2004.
He is a Graduate Research Assistant with the
Computer Science Department, Purdue University.
His research interests lie in the areas of computer
graphics, 3D displays, image based rendering, and
3D scene acquisition and reconstruction.

Dan Aliaga received a B.S. degree in computer
science from Brown University in 1991, and a Ph.D.
degree in computer science from the University of
North Carolina at Chapel Hill, USA in 1999.
 He is an assistant professor with the Computer
Science Department, Purdue University. His
research interests lie in the areas of computer
graphics, computer vision, and visualization. His
research interests lie in the areas of computer
graphics, computer vision, and scientific
visualization.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

