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Abstract—volumetric 3D displays allow the user to explore a 3D 
scene free of joysticks, keyboards, goggles, or trackers. For non-
trivial scenes, computing and transferring a 3D image to the 
display takes hundreds of seconds, which is a serious bottleneck 
for many applications. We propose to represent the 3D scene 
with an occlusion camera reference image (OCRI). The OCRI is 
a compact scene representation that stores only and all scene 
samples that are visible from a viewing volume centered at a 
reference viewpoint. The OCRI enables computing and 
transferring the 3D image an order of magnitude faster than 
when the entire scene is processed. The OCRI approach can be 
readily applied to several volumetric display technologies; we 
have tested the OCRI approach with good results on a volumetric 
display that creates a 3D image by projecting 2D scene slices onto 
a rotating screen. 
 

Index Terms—Three-Dimensional Displays, computer 
graphics, image-based rendering, rendering acceleration. 

I. INTRODUCTION 
ONVENTIONAL 3D computer graphics applications present 
the scene to the user on a 2D display. The approach has at 

least two fundamental disadvantages. First, the system needs 
to know the view desired by the user. Interfaces that rely on 
trackers or on input devices (e.g. joysticks and keyboards) 
provide only a crude and non-intuitive way for the user to 
select the desired view.  Second, the output image is flat, 
which deprives the user from the important depth cues of 
binocular stereo vision. Special goggles or displays can be 
used to present each eye with a different image, but stereo 
display technologies suffer from disadvantages such as limited 
range of motion, need for strenuous image fusing, and 
uncomfortable eyewear. 

Volumetric 3D displays hold the promise to overcome these 
disadvantages. A sculpture of light provides a truly three 
dimensional replica of the scene of interest. The user naturally 
selects the desired view by gaze, by head motion, and by 
walking around the 3D image. There is no need for 
encumbering eyewear, and the processes of accommodation 
and vergence occur naturally. Although the advantages of 
volumetric 3D displays have been known for a long time, 3D 
display technology continues to suffer from fundamental 
challenges. One challenge is creating an adequate 3D array of 
pixels. The requirements are small pixel volume for good 
spatial resolution, and wide range of intensities, colors, and 
opacities. A second challenge is achieving satisfactory 
performance. Computing and transferring the 3D image to the 
display presently takes hundreds of seconds, which is 
unacceptable for many applications. 

This paper describes a method to accelerate rendering on 

volumetric 3D displays, based on adapting the scene level of 
detail before the 3D image is computed, and on reducing the 
number of 3D image samples that are computed and 
transferred. For example, if the 3D scene represents 
Manhattan, a view that maps the entire island to the volume of 
the 3D display can be safely computed from a coarser 
representation than a view that only shows Times Square. 
Moreover, for a single user that is seated or stands in one 
place, many of the background buildings are completely 
occluded and do not become visible for normal gaze changes 
and head motions. The hidden buildings can be ignored when 
computing the 3D image.  

In the case of complex scenes with numerous occlusions, 
the number of samples that remain hidden despite the 
interpupilary distance and despite the translational component 
of head motions is particularly large. These scenes are also the 
ones that presently require the largest rendering times, so the 
gain obtained by not processing hidden samples is substantial. 
Level of detail adaptation and occlusion culling are classic 
problems in 3D computer graphics. Many algorithms have 
been developed to simplify geometry and to eliminate 
primitives that lie in the shadow of occluders. However, 
quickly establishing a small set of primitives that is sufficient 
for a given view remains an open problem. 

A relatively recent research path in computer graphics is 
image-based rendering (IBR), where the scene is rendered 
from pre-computed or pre-acquired reference images. In one 
variant, the scene is modeled with depth images (DIs), which 
are images enhanced with per-pixel depth [24]. The depth 
information allows reprojecting (3D-warping) the reference 
samples to any novel desired view. A DI provides a good 
level-of-detail solution, which holds for nearby views. 
Unfortunately, the occlusion culling solution of the reference 
image cannot be applied to nearby views. Even small 
translations of the viewpoint produce disocclusion errors, 
which are artifacts due to lack of samples for surfaces that 
become visible but were not sampled by the reference DI. In 
our context, representing the scene with a DI computed from 
the left eye’s viewpoint produces disocclusion errors in the 
image seen by the right eye. 

We have recently introduced occlusion cameras [25, 32], a 
class of non-pinhole cameras which sample not only surfaces 
visible in the reference view, but also surfaces that are likely 
to become visible in nearby views. The resulting occlusion 
camera reference image (OCRI) stores samples that are hidden 
in the reference view but are needed to alleviate disocclusion 
errors when the view translates. We represent the scene with 
an OCRI computed for the user’s reference view, which is the 
average of the left and right eye views in the normal head 
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position. Like a regular DI, the OCRI is a single layer 
representation with the advantages of bounded number of 
samples, implicit connectivity, and efficient incremental 
processing. Another advantage shared with regular DIs is that 
OCRIs adapt the scene’s level of detail to the reference view. 
Unlike a regular DI however, the OCRI has all samples 
needed for a continuum of views centered at the reference 
view. Interpupilary distance and normal head motion do not 
produce disocclusion errors. 

Figures 1-7 illustrate our approach. Figures 1-4 show 
images computed with our volumetric 3D display simulator, 
and Figures 5-7 show actual photographs of our volumetric 
3D display. Both simulated and real 3D displays produce 

spherical images with a diameter of 10”. Figures 1 and 3 show 
a depth image (DI) and an OCRI constructed from the same 
viewpoint. Figure 2 shows the DI and OCRI from a viewpoint 
4” left of the reference viewpoint. The severe disocclusion 
errors that occur for the DI are alleviated by the OCRI. Figure 
4 shows the DI and OCRI from a side view. The OCRI does 
not sample all surfaces in the scene, nor should it. The OCRI 
provides occlusion culling by safely discarding the samples 
that are not needed in nearby views.  The OCRI shrinks the 
“shadow” of the bunny.  Figure 5 shows reference view 
photographs of the 3D images rendered from the DI, OCRI, 
and geometric model. Figures 6 and 7 correspond to Figures 2 
and 4. 

   
Figure 1 Depth image (DI). Figure 2 Images rendered from DI and OCRI, viewpoint 4” left of reference viewpoint. 
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Figure 3 OCRI.  Figure 4 Images rendered from DI and OCRI. Wireframe shows spherical display volume. 

   
Figure 5 3D images rendered from DI (left), OCRI (middle), and original geometric model (right), all photographed from reference view. 
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Figure 6 DI and OCRI 3D images from viewpoint translated 4” left. Figure 7 DI and OCRI 3D images from side view. 
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II. PRIOR WORK 
We describe a method to accelerate rendering on 3D 

displays based on a novel non-pinhole camera model that 
produces reference images less prone to disocclusion errors. 
We limit the discussion of previous work to a brief review of 
3D display technologies, to prior methods for alleviating 
disocclusion errors, and to previous non-pinhole camera 
models. 

A. Three-Dimensional Displays 
Several technologies attempt to go beyond a flat 2D image. 

One approach is to use special eyewear to present each eye 
with a different image. Polarizing glasses, dynamic shutter 
glasses, or head mounted displays make the image appear 3D 
by providing the required parallax between the left and right 
eye images. These technologies are popular with virtual reality 
applications since the synthetic image covers the entire field 
of view of the user, which conveys a sense of immersion. The 
important limitation is the need of special eyewear.  

Autostereoscopic displays [15] produce a 3D image without 
the need of special eyewear. Parallax autostereoscopic 
displays provide different images for the left and right eyes 
using slits [14, 30] or lenslets [5, 13, 21]. The disadvantages 
are reduced resolution and reduced range of supported 
viewpoints. 

Volumetric displays produce a truly three dimensional 
image. One approach is to fill space, for example with a stack 
of transparent LCDs [17]. The approach has the disadvantage 
of limited z resolution. Another approach is to use a varifocal 
mirror whose oscillations are synchronized with a 2D display 
it reflects [41]; the difficulty with such a display is building 
the varifocal mirror. 

Another type of volumetric display technology is based on 
sweeping the display volume. 2D slices of the scene are 
displayed in rapid succession and the eye integrates them into 
a 3D image [1, 7]. The greatest challenge is the mechanical 
scanning, which is noisy, imprecise, and fragile. 

Several emerging technologies show potential for 
producing 3D images. Electroholography [18] produces an 
interference pattern (holographic fringe) which is then 
illuminated to produce a 3D image by diffraction (modulation 
of holographic fringe). The approach is hampered by the 
enormous amount of data resulting from the requirement of 
sampling the fringe with very high spatial frequency. A 
different technology uses a pair of laser beams that excite 
voxels inside a transparent cube of heavy metal fluoride glass 
[6]. Attempts to replace the heavy and expensive medium 
have not been successful so far. Another experimental 
volumetric display [23] has 76,000 voxels that are lit using 
optical fibers as waveguide. 

To the best of our knowledge, the only volumetric displays 
available commercially are those produced by Actuality 
Systems [1] and LightSpace Technologies [17]. All 
volumetric displays convert a 3D scene description into a 3D 
image. Our method produces a simplified description of the 
scene which is then used to compute the 3D image. Therefore, 

in principle, the method can be applied to other volumetric 
display technologies. We demonstrate the effectiveness of our 
method on the Perspecta volumetric display [31], which we 
characterize in detail in Section VII. 

B. Disocclusion errors 
A brute force solution to the problem of disocclusion errors 

is to reconstruct the desired image by warping several depth 
images. The approach has the obvious disadvantage of high 
cost. Disocclusion errors are small groups of missing samples, 
scattered throughout the scene. No single additional depth 
image captures them all. The additional depth images 
contribute only a few new samples. Another important 
disadvantage is that the cost of rendering the desired image 
varies with the number of depth images that have to be 
considered to avoid all disocclusion errors. Such an 
unpredictable cost is a severe limitation for applications that 
rely on a guaranteed minimum frame rate. In a technique 
called post-rendering warping [20], conventional rendering is 
accelerated by warping two reference images. Even when the 
viewpoints of the two reference images are very close to the 
desired viewpoint, disocclusion errors persist. 

Several techniques for alleviating disocclusion errors have 
been developed based on the idea of pre-combining several 
depth images into a layered representation that accommodates 
more than one sample along a ray. Redundant samples are 
detected and discarded. One example is the multi-layered z-
buffer (MLZB) [22]. The approach traces the ray beyond the 
first surface and collects up to a maximum number of k 
samples for each ray. MLZBs can be inefficient since the 
depth complexity can be unnecessarily large at some pixels. In 
other words, some of the samples in the MLZB never become 
visible in any nearby view. 

Layered depth images (LDIs) [37] address this issue: the 
layered representation is built from depth images constructed 
from nearby views. This way each sample in the resulting LDI 
is known to be visible in at least one nearby view. LDIs have 
been used to accelerate architectural walkthroughs [35], and 
as building blocks for hierarchical sample-based scene 
representations [4]. One disadvantage of LDIs is the lengthy 
construction time which limits their applicability to dynamic 
scenes, where the reference images have to be updated 
frequently. Another shortcoming is their hardware-unfriendly 
irregular structure, with an unbounded number of samples. 
Lastly, LDIs do not have sample connectivity, and the desired 
image is typically rendered by splatting, a low-quality 
reconstruction technique borrowed from volume rendering 
[42]. 

None of the methods discussed so far for addressing the 
problem of disocclusion errors is conservative. In the case of 
LDIs for example, it can happen that the desired image sees a 
surface sample that is not visible in any of the construction 
depth images and is therefore not present in the LDI. The 
vacuum buffer [33] is a conservative method for deciding 
whether a set of depth images is sufficient to avoid 
disocclusion errors in a desired image. The method keeps 
track of the sub-volumes of the desired view frustum which 
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are yet to be covered by any depth image. The disadvantages 
of the approach are high per-frame cost—since the algorithm 
needs the desired view it needs to run in real time, for every 
frame, and unbounded number of samples—additional depth 
images are needed to eliminate all disocclusion errors. 

The advantages of representing and rendering a 3D scene 
with depth images rather than with a traditional polygonal 
model have been recognized by researchers and developers of 
interactive 3D video technologies (see [38] for a 
comprehensive overview of the state of the art). The depth 
image and the layered depth image have been adopted by the 
MPEG-4 standard via its Animation Framework eXtension 
(AFX), part of the Depth Image-Based Representation (DIBR) 
family [19]. Of course, the DIBR representations inherit the 
disocclusion errors of depth images. 

All previous solutions to the problem of disocclusion errors 
attempt to fill in disocclusion errors once they occur. Instead, 
we take the approach of preventing disocclusion errors. A 
reference image is asked to provide the necessary samples for 
rendering the scene from a continuous range of viewpoints, 
centered at the reference viewpoint. Therefore a reference 
image also needs to store samples that are not visible in the 
reference view. The challenge is to find an efficient method 
for including in the reference image samples that are “about to 
become visible”. Our method is based on a non-pinhole 
camera whose rays go around occluders to gather samples 
which cannot be reached by the rays of a pinhole camera. 
Several non-pinhole cameras have been developed by 
computer vision and computer graphics researchers. 

C. Non-pinhole cameras 
Much of the computer vision arsenal for extracting 

information from images is based on the single viewpoint 
constraint. The main reason for this is that such single 
viewpoint images can be trivially re-sampled to a familiar, 
human-vision-like planar pinhole camera image. Recently, 
researchers began considering camera models whose rays do 
not pass through a common point. The general linear camera 
(GLC) [45] captures all rays that are a linear combination of 
three given construction rays, which are not necessarily 
concurrent. The GLC generalizes two previously studied 
cameras: the pushbroom camera [12], and the two-slit camera 
[29]. The GLC is not sufficiently powerful to address 
disocclusion errors in complex scenes. 
Computer graphics researchers have also studied non-pinhole 
cameras. In computer graphics the cameras are virtual, so 
camera design is free of the constraint that the novel camera 
be physically realizable using actual refractive, reflective, and 
sensing elements. The light field [10, 16] is an important non-
pinhole camera which shows that a 3D scene can be rendered 
without knowledge of its geometry. A light field is a 4D 
database of rays, parameterized using two parallel planes. The 
rays of the desired view are looked up in the database. Light 
fields do not suffer from disocclusion errors, however, they 
are expensive to construct and scale poorly with the scene 
size.  

The multiple-center-of-projection camera [36] samples the  

 

Figure 8 Illustration of the effect of the distortion on the rays of PPHC0. 

 

Figure 9 Illustration of distortion at depth discontinuities. Image plane view 
(left), and view in plane defined by PPHC0, a, and e (right). 

 
scene along a user chosen path. For every viewpoint a single 
column of rays (pixels) is collected. The disadvantage is the 
need for user interaction, and the high construction cost: the 
scene needs to be rendered for every viewpoint along the path. 
We have developed a class of non-pinhole cameras 
specifically for addressing the problem of disocclusion errors. 

III. ALGORITHM OVERVIEW 
Given a 3D scene S and a reference view expressed as a 

planar pinhole camera PPHC0, our algorithm proceeds in the 
following main steps: 
1. Construct an occlusion camera OC0 from PPHC0 and S. 
2. Build a reference image OCRI0 from OC0 and S. 
3. Produce 3D image I3D0  from OCRI0. 

The occlusion camera depends on the reference view and 
the scene geometry it encompasses. Once OC0 is known, S is 
replaced with OCRI0, which provides a view-optimized, 
bounded-cost approximation of the scene. The next three 
sections describe each of the three main steps of the algorithm. 

IV. OCCLUSION CAMERA 

A. Occlusion camera class 
An occlusion camera is constructed for a given scene and a 
given reference view, and has the following properties: 
a. Disocclusion. Some rays of the camera sample surfaces 

that are not visible in the reference view, but are likely to 
become visible in nearby views. 

b. Single layer. The camera acquires a 2D image; at each 
pixel, the image stores the depth and color of the closest 
surface sample along the ray at that pixel. 
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Figure 10 Visualization of distortion magnitude variation. 

 
c. Unambiguous projection.  A 3D point projects to at most 

a single image location (no two rays intersect). 
d. Efficient projection. The projection of a 3D point is 

computed in a constant number of steps. 
The first property ensures that the OCRI is less prone to 
disocclusion errors than a regular depth image. Because of the 
second property, the OCRI has a bounded number of samples. 
The depth and color samples can be trivially connected in a 
regular mesh by connecting each sample to its neighbors.  

The last two properties ensure that the OCRI can be 
constructed efficiently with the feed-forward graphics pipeline 
(FFGP). The FFGP has two main stages: projection, when the 
geometric primitive is projected onto the image plane, and  

rasterization, when pixels covered by the primitive are 
identified and set to appropriate values. The FFGP is efficient 
because, unlike the ray tracing pipeline [43, 9], it only 
considers pixel/primitive pairs that are likely to yield an 
intersection (a color sample). The FFGP is the approach of 
choice in interactive computer graphics and it is supported in 
hardware [28, 26, 27, 2]. 

If the occlusion camera provides fast, unambiguous 
projection, the OCRI can be constructed efficiently with the 
FFGP. Assuming that the scene is modeled with triangles, 
each triangle is projected by projecting its vertices, and then 
the projected triangle is rasterized to produce the reference 
image samples. 

We demonstrated the occlusion camera concept with the 
single-pole occlusion camera (SPOC) [25], which is limited to 
a single, relatively simple occluder. To overcome this 
limitation we introduce a second member of the occlusion 
camera class. 

B. Depth discontinuity occlusion camera 
1) Overview 

 Given a 3D scene S and a reference view PPHC0, the goal is 
to devise a camera that sees slightly more than what PPHC0 
sees; in other words, hidden samples that are close to the 
boundary of their occluder should be part of the image 
gathered by the camera. We achieve this by redirecting 
(distorting) the rays of the PPHC0 that pass close to a depth 
discontinuity. The problems of the SPOC are avoided by 
defining the distortion at a fine level, using a distortion map. 
A distortion map pixel (location) stores distortion information 
for the PPHC0 ray defined by that pixel. 

Let A be a hidden point of the background that is close to 
the silhouette of the bunny as seen in the depth image in 
Figure 1. The distortion changes the projection of A from the 
undistorted location a given by PPHC0 to ad (Figure 9). The 
distortion moves the sample perpendicularly to the depth 
discontinuity, and away from the occluder. In Figure 9—left, 
the depth discontinuity has normal n at pixel e. The distortion 
does not change the projection of the bunny sample A’ that is 
seen along the same PPHC0 ray as A. This way the sample A 
clears the occluder and remains visible in the final OCRI. 

Figure 8 illustrates the distortion by visualizing the rays of 
the resulting occlusion camera. The original rays of PPHC0 
are unaffected until the depth of the occluder, zn. The rays 
close to the depth discontinuity are moved in a direction 
normal to the depth discontinuity, towards the occluder 
(which causes the samples to move away from the occluder). 
The distortion increases linearly in 1/z from zn to the depth zf 
of the occluded object, which makes that the rays of the 
occlusion camera are line segments between zn and zf. Rays to 
the left of A0 and to the right of A1 are not affected by the 
distortion. Some distorted rays are implicitly clipped by the 
ray of A0—this simply means that a sample at OCRI location b 
cannot be farther than zb. The entire view frustum of PPHC0 is 
sampled by the rays of the occlusion camera. 

2) Distortion map construction 
The occlusion camera is defined by the reference view 

PPHC0 and a distortion map DMAP0 that distorts its rays. 
Each distortion map locations stores a distortion sample 
specified with a five-tuple (du, dv, zn, zf, df). The 2D unit vector 
(du, dv) gives the direction of the distortion, and the distortion 
magnitude increases from 0 at depth zn to df at zf. The 
distortion map DMAP0 is constructed as follows. 
1. Render S with PPHC0, producing z-buffer ZB. 
2. Detect depth discontinuities in ZB. 
3. For each depth discontinuity pixel e, splat e in DMAP0. 
4. For each depth discontinuity pixel e, adjust splat size. 
5. For each DMAP0 location, set distortion five-tuple. 

At step one, the scene is rendered in hardware and the z-
buffer is read back. At step two, depth discontinuity pixels are 
detected as pixels where the second order depth variation 
exceeds a threshold [34].  

At step three, a first pass over the depth discontinuity pixels 
is taken to set the neighborhood of the depth discontinuities 

  

  

Figure 11 Asymmetrical splats. The scene consists of two rectangular 
occluding floating in front of a background. Symmetrical splats (left) cannot 
entirely disocclude the background since the space between the two 
occluders is too small. Asymmetrical splats (right) need less image area for 
the same disocclusion effect and completely disocclude the background. 



JDT-00073-2005 
 

6

where the distortion acts. For each depth discontinuity pixel e, 
a circular splat of radius D is written into DMAP0. D is a user 
chosen parameter that specifies how far behind the occluder 
the occlusion camera should reach. This value might be later 
decreased for some depth discontinuities to accommodate 
conflicting distortion requirements, as described later.  

When a splat sample lands at a DMAP0 location p which is 
already occupied, the splat whose center is closest to p wins. 
During the construction phase, the distortion map stores at 
every location 3 more scalars, in addition to the 5 needed to 
specify the distortion sample. Two of these additional values 
specify the coordinates cu and cv of the splat that owns the 
location, and are used in the splat arbitration described above. 
The third additional value specifies the current radius of the 
splat, which starts out as D.  

During step four, a second and last pass over the depth 
discontinuity pixels reduces the radii of the splats to avoid 
overlap with conflicting splats. Two splats conflict if they 
affect the same DMAP0 location and if they have distortion 
directions that form an angle larger than a user chosen 
threshold. We use in practice threshold of 900. 

Reducing the splat size is necessary in order to avoid losing 
visible samples. Consider the case of a thin gap. The left edge 
of the gap moves samples towards the right, and the right edge 
towards the left. The distortion directions form an angle of 
180o. The gap is smaller than D and not adjusting the size of 
the splat causes the samples to compete for the same OCRI 
location and to lose some of them to z-buffering. Once the 
radius r has been determined, all distortion samples owned by 
the splat and located farther than r are deleted (reset).  

In the last step five, a pass over DMAP0 sets the distortion 
samples for each location that is under the influence of a depth 
discontinuity pixel, as indicated by valid cu and cv values. The 
direction (du, dv) of the distortion at DMAP0 location p is 
given by the depth discontinuity normal at (cu, cv). The depth 
discontinuity direction is approximated by least squares fitting 
a line to a neighborhood of depth discontinuity pixels, 
centered at (cu, cv). The normal points away from the occluder, 
towards the samples with larger z’s. The near and far depths zn 
and zf between which the distortion acts are given by the 
depths of the two samples creating the depth discontinuity. 

 The distortion magnitude depends on the distance from p to 
  

  

  

Figure 12 (Top) Depth image (left) used to render the scene from a side 
view (right). (Bottom) OCRI constructed with asymmetrical splats 
(magnified fragment, left) and same side view (right). 

  

Figure 13 Volumetric 3D display used to validate the OCRI approach 
(left) and typical viewing distance of 50” (right). 

 
the depth discontinuity pixel (cu, cv). If the radius of the splat 
at (cu, cv) is r, and the signed distance from p to (cu, cv) is x, df 
is set as (r-x)/2. The distortion magnitude starts out as r for 
x=-r/2, and tapers off linearly to 0 at x=+r/2. Figure 10 shows 
the effect of the distortion in the image plane of PPHC0 in the 
neighborhood of a vertical depth discontinuity. The +-r 
neighborhood is shown shaded in grey. The depth 
discontinuity separates the neighborhood in two equal parts, 
shaded in light and dark grey. The occluder covers the darker 
right half. Before the distortion, vertical bars 5-9 are hidden. 
The distortion compresses and shifts them to the right half of 
the light grey region. In order to make room, the originally 
visible samples between bars 1-5 are compressed and shifted 
to the left half of the light grey region. 

 The resulting occlusion camera trades (u, v) resolution for 
resolution along the same reference view ray. The hidden 
samples are accommodated in the single layer OCRI by 
compressing the image close to the depth discontinuities. In 
Figure 10 the sampling rate is half that in the original image. 

3) Asymmetrical splats 
For complex scenes, numerous conflicting splats have centers 
closely located from one another, which reduces the effective 
splat radius r, and with it, the disocclusion capability of the 
resulting occlusion camera. There just isn’t enough room in 
the image to accommodate the hidden samples (Figure 11). In 
such cases, we increase the disocclusion efficiency of the 
occlusion camera by reducing the image area required to 
disocclude a given number of hidden samples. 

We achieve this with asymmetrical splats. If the asymmetry 
factor is α, the distortion magnitude df varies linearly from r to 
0, as the signed distance x to the edge increases from –r to r/α. 
The expression for df is given by 

 

Equation 1 Distortion magnitude variation for asymmetrical splats. 
 
When the splats are symmetrical, α equals 1 and the 

expression for df becomes (r-x)/2, as derived earlier. The splat 
asymmetry is a powerful tool for increasing the disocclusion 
capability of the occlusion camera. Figure 12 shows a scene 
consisting of several rectangular occluders that float in front 
of a checkered background. The background is heavily 
occluded. When the side view is rendered from a  regular  
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Figure 14 Photographs of the 3D display showing the Happy Buddha 
statues scene. The 3D image was rendered from a DI (left column) and 
from an OCRI (right column). The photographs were taken from the 
reference viewpoint (row 1), and from 4” above the reference viewpoint 
(row 2).  Side view shows the “shadows” shrunk by the OCRI (row 3). 

 
depth image, severe disocclusion errors occur. When using 
asymmetrical splats (α = 2), virtually the entire background is 
captured. Asymmetrical splats decrease the sampling rate near 
depth discontinuities (α + 1) times, since an r + r/ α region is 
compressed into an r/ α region. The decrease in resolution can 
be alleviated an increase the reference image resolution.  

V. OCCLUSION CAMERA REFERENCE IMAGE CONSTRUCTION 
The scene is rendered with the occlusion camera OC0 = 

(PPHC0, DMAP0) to create the reference image OCRI0. Each 
triangle mesh of the scene S is projected with OC0 and then 
the projected mesh is rasterized in hardware. A triangle mesh 
is projected by projecting each of its vertices. A vertex V is 
projected with the following equation. 

 
Equation 2 Projection with occlusion camera. 

 
The occlusion camera is a non-pinhole camera which does 

not preserve lines and planes. To control the approximation 
error introduced by conventional rasterization, we subdivide 
each triangle until the screen space edge lengths of the 
resulting triangles are smaller than a user chosen threshold. In 

practice, we use a threshold of 1 pixel.  
The subdivision stopping criterion directly impacts the 

OCRI construction time. For many scenes coarser 
subdivisions are acceptable. Consider a scene like the one in 
Figure 12, except that it has a single rectangular occluder, of 
width 10 pixels. If the maximum tolerable edge length is 20 
pixels, it can happen that no background triangle vertex is 
distorted, and the OCRI is equivalent to a regular depth image. 
However, a threshold of 5 pixels will produce the same (good) 
results as a threshold of 1 pixel. 

VI. RENDERING USING THE OCRI 
The OCRI provides a good approximation of the scene, 

tailored to the reference view. The OCRI is converted to a 3D 
triangle mesh, which is then used by the volumetric display 
driver to render the 3D image, in lieu of the original scene 
model. Each sample in the OCRI corresponds to a 3D point 
with color. To recover the 3D point from the OCRI sample, 
one needs to be able to unproject the sample back in 3D. The 
distorted coordinates (ud, vd, z) and the distortion five-tuple 
are not sufficient to recover the undistorted coordinates of the 
sample, since the distortion is not invertible. 

For this we augment the OCRI with an additional two 
channels per pixel that store the distortion vector used to 
create the sample. The values of these channels are computed 
during OCRI construction by rendering the scene meshes a 
second time with the distortion vector components stored in 
the red and green channels of vertex color. The hardware 
interpolates these values during rasterization and stores the 
distortion vector for every pixel in the frame buffer. 

Given (ud, vd, z) and the distortion vector (δu, δv), the 
undistorted coordinates (uu, vu) are computed as (ud - δu, vd – 
δv). The model space 3D point is obtained by unprojecting the 
pixel (uu, vu) to depth z with PPHC0. 

VII. ROTATING SCREEN VOLUMETRIC 3D DISPLAY 
As stated earlier, all 3D displays transform the geometry 

and color scene description into a 3D image. Our method 
reduces the complexity of the scene by adapting the level of 
detail and by safely discarding surfaces that are not visible in 
any view of interest to the user. Therefore, our method is 
applicable to a variety of 3D displays. 

Available to us is a volumetric display (Figure 13) that 
builds a 3D image one slice at the time, with a rotating screen 
[31]. The screen has a radius of 5”, it is diffuse and 
semitransparent, and it rotates with an angular velocity of 
720rpm. Since both faces of the screen carry an image, the 
refresh rate is 24Hz, which corresponds to 180o rotation. The 
display projects onto the screen the intersection between the 
scene and the plane of the screen 198 times for every complete 
rotation. The optical path is folded using 3 mirrors M0-M2. 
The mirrors and screen are enclosed in an inner glass sphere 
that rotates with the screen; the glass sphere is enclosed in a 
stationary outer glass sphere. The display is not perfectly 
balanced which causes it to wobble. We estimate the 
amplitude of the wobbling to be 0.5cm. Each slice has a  
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DI OCRI Geometry 
Scenes Tris 

(x103) 
Time 

(s) 
Tris 

(x103) 
Ctime 
(s) 

Time 
(s) 

Tris
(x103)

Time
(s) 

Bunny 612 12.0 612 2.73 11.8 321 8.02

Bunny QR 37.8 .766 37.8 .875 .75 321 7.81

Buddha 
statues 612 11.4 612 12.1 11.5 4,603 131 

Thai statue 612 12.5 612 20.3 13.9 10,252 292 

Table 1 Rendering performance measures for various scenes. 

 
resolution of 768x768. The color resolution is 32bit RGBA 
but it is compressed to 3bit RGB. The reduced image 
brightness requires dimming the ambient lights when the 
display is in use (Figure 13). 

The application runs on a host computer (IBM, Intel 
chipset, Windows XP operating system) connected to the 
display with an SCSI interface. The display manufacturer has 
provided a driver that supports OpenGL. The timing 
information reported in this paper was obtained with a display 
driver v1.5. The 3D image maps the model space unit sphere 
to the volume of the display. 

The photographs shown throughout this paper were taken 
with a digital camera with the following settings: no ambient 
lights, aperture F2.8, exposure time 1/25s, and simulated film 
sensitivity ISO400. Our camera does not offer 1/24s as one of 
the possible exposure times, which would have allowed 
acquiring a complete 3D image. We used the slightly shorter 
exposure time since the wobbling produces excessive 
blurriness if the shutter remains open more than 180o and the 
screen revisits a part of the 3D image. The slightly shorter 
exposure time misses (1/24-1/25)*(12*360o) = 7.2o of the 3D 
image. We took several snapshots for every position to place 
the missing 3D image sector in a convenient location (see 
black stripe that splits the vertical plane in Figure 5—left or 
the horizontal plane in Figure 6). 

VIII.  RESULTS AND DISCUSSION 
We have tested our approach on several 3D scenes, both 

with our volumetric display simulator and the actual 
volumetric display: the bunny (Figures 1-7), the vertical bars 
(Figure 12), the four Happy Buddha statues (Figure 14), the 
Unity, the auditorium, and the Thai statue (Figure 15) scenes. 

OCRIs prove to be a robust solution to the problem of 
disocclusion errors, and can handle complex scenes. We 
measure the disocclusion errors present in a frame by 
rendering a ground truth image from geometry and counting 
how many ground truth image samples are not present in the 
frame. We rendered sequences of frames by moving the 
viewpoint on the edges of an 8” cube centered at the reference 
viewpoint. The disocclusion errors measured when using the  

 DI LDI LF ULF RPS OCRI

Construction 
time (s) 0.12 3.84 30.72 3.84 6.84 11.5 

Memory size 
(MB) 2.6 3 332.8 41.6 76 5.2 

Table 2 Construction performance comparison. 

 
OCRI were, on average, 4.5% of those measured when using a 
depth image as reference. 

The OCRI provides efficient projection and is constructed 
with the help of graphics hardware. Table 1 reports the 3D 
image rendering times and the number of triangles for each of 
three scenes (bunny, Happy Buddha statues, and Thai statue), 
and for each of three scene representations (depth image, 
OCRI, and geometry). The OCRI approach has three main 
steps: the occlusion camera model is computed first, then the 
OCRI is constructed by rendering the scene with the occlusion 
camera, and then finally the 3D image is produced from the 
triangle mesh defined by the OCRI. The table reports the 
aggregate time for steps 1 and 2 as Ctime, and the time for step 
3 as Time. The resolution of the desired image and that of the 
reference image is 720x480. The depth image and the OCRI 
always generate the same number of triangles since the OCRI 
has a single layer where it stores the hidden samples at the 
cost of reducing the sampling rate for the visible surfaces. 

In the case of the bunny scene, the depth image and the 
OCRI generate more triangles than present in the original 
model, with the consequence of a larger 3D image rendering 
time. For the bunny, creating a depth image or an OCRI at this 
resolution is wasteful—the new vertices do not bring any new 
information since they are computed by interpolation. Once a 
more suitable resolution is selected (180x120, see row Bunny 
QR in the table), the speedup is considerable. For the DI 
representation, we define the speedup as the ratio between the 
time needed to render the 3D image from the original 
geometric model and from the depth image. For the OCRI 
representation we compute the speedup by dividing by the 
sum of Ctime and Time. Therefore the speedup is 7.81/0.766 = 
10.2 for the DI and 7.81/(0.875+0.75) = 4.8 for the OCRI. 

For the Happy Buddha statues scene, the speedup is 11.5 
for the DI and 5.5 for the OCRI. For the 10 million triangles 
Thai statue, rendering the 3D image from the DI or the OCRI 
brings a speedup of 23 and 8.5, respectively. The advantage of 
the DI and of the OCRI increases with the complexity of the 
scene, since the DI and the OCRI generate the same number 
of triangles (e.g. 612,000) regardless of the complexity of the 
original scene model. 

The DI approach is more efficient since it does not incur the 
cost of OCRI construction, but it suffers from disocclusion 
errors. We will work on reducing the OCRI construction time. 
Step one has a cost proportional to ED2+WH, where E is the 
number of depth discontinuity pixels, D is the user chosen 
maximum distortion region radius (D = 30 in our 
experiments), and W and H give the width and height of the  
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Figure 15 Frames rendered from DI (left) and OCRI (right) for the unity 
church (top), auditorium (middle) and Thai statue (bottom) scenes. 

 
reference image. The occlusion camera construction takes 
uniformly about 1s for our scenes, consequently most of Ctime 
goes to step two. Our current implementation projects the 
scene meshes in software (on the CPU of the host computer) 
using the distortion map, and then rasterizes the projected 
meshes on the graphics card. As future work we will move the 
entire second step on the GPU (graphics processing unit), by 
taking advantage of the vertex level programmability of recent 
GPUs. This will virtually eliminate the OCRI construction 
time Ctime and will make the performance of the OCRI similar 
to that of the depth image. Note that the times of the third step 
of OCRI construction (third OCRI column in Table 1) are 
comparable to the DI times (second DI column in Table 1). 

OCRIs are one of many possible 3D representations. Table 
2 gives an approximate comparison between OCRIs and depth 
images (DIs), layered depth images (LDIs), light fields (LF), 
unstructured light fields (ULF), and ray-phase space (RPS)  
representation. The comparison is based on the four Happy 
Buddha statues scene, which our NVIDIA Quadro FX 3400 
graphics card renders at ~8Hz, hence the 0.12s DI 
construction time. Constructing and LDI for such a scene 
requires first rendering and then merging approximately 4 x 4  
= 16 construction depth images [37, 35, 4], at a time cost of 16 
x 0.12 x 2 = 3.84s. The LF construction time is 16 x 16 x 0.12 
= 30.72s, figure obtained with a rather modest back plane 
resolution (16x16). Constructing the ULF [8, 3] requires 
fewer images (32 for the table entry) since user interaction or 
a heuristic is used to identify the most important views.  

The ray-phase space representation [40] is a 4D plenoptic 
representation which instead of using two planes in front of 
the desired viewpoints for parameterization, uses a 2D 
parameterized surface that surrounds the scene of interest, and 
then a 2D parameterization of the outgoing rays for each 

surface point. The approach is similar to surface light fields 
[44] and to models developed for general imaging systems 
[11]. In our case, a natural parameterization surface is the 
sphere described by the revolving screen, whose visible area is 
approximately 38% of the area of a sphere with a radius of 5 
inches, or 120 square inches. For an average sampling rate of 
one point per square millimeter and 16 x 16 rays for each 
point, the total number of rays is 19 million. Generating these 
rays requires rendering the scene at least 57 times, for a 
construction time of 6.84s, which ignores the cost of 
rearranging the rays according to the ray-phase 
parameterization. 

For the 720x480 resolution, the 8 bit R, G, B, A channels 
and the 32 bit floating point z channel amount to 2.6MB. The 
16 floats needed to store the view are negligible. The LDI 
adds only a few non-redundant samples. The uncompressed 
LF requires considerable storage space. Compression could 
reduce the memory consumption 10 or 100 fold, with the 
corresponding compression and decompression time costs and 
loss of quality [16]. The ULF has a more manageable 
uncompressed size, but is less redundant and thus compresses 
less well. The 19 million color samples of the RPS 
representation translate to 76MB. 

The OCRI requires twice the storage since the points are 
perturbed and the x and y coordinates need to be store 
explicitly (whereas in the DI or LDI, they are provided 
implicitly by the pixel coordinates). We have charged 8 
additional bytes for per pixel floating point x and y, however a 
slimmer 2 byte fixed point representation would work equally 
well. Whereas DIs and OCRIs compress well using the 
coherence of the single layer, the variable depth of the multi-
layered LDI pixels hinder compression. Note that the 
distortion map is only needed during construction. 

The plenoptic representations are not supported by our 3D 
display. On a regular LCD, the scene can be rendered at 
refresh rate (60 Hz for our system) when using the DI, LDI, or 
OCRI. The LF and ULF representations have been shown to 
support frame rates as high as 20Hz. Quality wise, the OCRI 
produces images comparable to those rendered using the 
original geometry. DIs suffer from disocclusion errors. LDIs 
produce lower quality images since they lack connectivity and 
are rendered by splatting [37, 35, 4]. Estimating the size and 
shape of the splats cannot be done both efficiently and 
accurately. The splats are typically overestimated and modeled 
as rectangles or disks, which produces blockiness. Typical 
artifacts when rendering from plenoptic representations are 
coarseness (due to low spatial sampling resolution, as it is the 
case for the numbers chosen for this table), and compressions 
artifacts.  

In conclusion, OCRIs, like DIs and LDIs, capture the scene 
well and are compact since they use the depth and the diffuse 
surface assumption to reuse color samples over a continuum 
of nearby views. OCRIs do away with disocclusion errors, the  
major disadvantage of depth images, while the The plenoptic 
representations have the advantage of not requiring geometry, 
and can be acquired with a tracked camera. The plenoptic 
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representations do provide limited support for view dependent 
effects, such as glossiness. Highly reflective surfaces are not 
supported since these entail the need of a very high spatial 
sampling resolution. 

IX. CONCLUSION 
We have described a novel occlusion camera that distorts 

the reference rays at depth discontinuities to reach behind 
occluders and to avoid disocclusion errors. We have 
demonstrated the effectiveness of the occlusion camera 
reference image for accelerating the rendering on a volumetric 
3D display. The OCRI provides an efficient scene 
representation by adapting the level of detail to the reference 
view and by discarding samples that are not visible in any 
nearby views. A 3D image built from an OCRI supports 
disocclusion error free viewing for a fixed user. The OCRI 
stores most of the samples needed to form complete left and 
right eye images under normal head translations. 

The OCRI brings a substantial speedup over rendering the 
3D image from the complete geometric model. However, the 
frame rate is still far from interactive. Possible approaches for 
further increasing the 3D image rendering performance are 
simplification of the mesh produced by the OCRI, taking 
advantage of GPU versatility for efficiently converting 
triangles into the 3D image, and progressive refinement. 

Volumetric displays cannot reproduce opaque surfaces, and 
the limitation will remain for the foreseeable future. Depth 
images and OCRIs remove hidden surfaces and improve the 
readability of 3D images that visualize surfaces. In some 
scientific visualization applications, the scene of interest 
contains opacity data. We will extend our approach to such 
data: a front volume becomes opaque if it is of sufficient 
thickness, case in which the data behind it can be safely 
eliminated, improving performance. 

One of the great advantages of our display is its natural 
support for collaborative applications. Two or more users can 
simultaneously view the 3D image, each with the proper 
perspective, without the requirement of encumbering head 
gear. As presented, the OCRI approach works only for a 
single viewer. We will investigate creating occlusion cameras 
that provide all samples needed for two reference views. 

Our solution for alleviating disocclusion errors is based on 
creating a custom non-pinhole camera with fast projection. 
This allows harnessing the impressive power of modern GPUs 
for solving a problem far from the classical computer graphics 
problem of providing perspective views of a 3D scene. We 
believe that the same methodology can be applied to solving 
other challenging problems in computer graphics and beyond. 
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