
©The Eurographics Association and Blackwell Publishing 2005. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

EUROGRAPHICS 2005 / M. Alexa and J. Marks Volume 24 (2005), Number 3
(Guest Editors)

The Occlusion Camera

Chunhui Mei, Voicu Popescu, and Elisha Sacks

Purdue University

Abstract

We introduce the occlusion camera: a non-pinhole camera with 3D distorted rays. Some of the rays sample surfaces that
are occluded in the reference view, while the rest sample visible surfaces. The extra samples alleviate disocclusion errors.
The silhouette curves are pushed back, so nearly visible samples become visible. A single occlusion camera covers the entire
silhouette of an object, whereas many depth images are required to achieve the same effect. Like regular depth images,
occlusion-camera images have a single layer thus the number of samples they contain is bounded by the image resolution,
and connectivity is defined implicitly. We construct and use occlusion-camera images in hardware. An occlusion-camera
image does not guarantee that all disocclusion errors are avoided. Objects with complex geometry are rendered using the
union of the samples stored by a planar pinhole camera and an occlusion camera depth image.

Categories and Subject Descriptors (according to ACM CCS): I.3.3. [Computer Graphics]—Three-Dimensional Graphics and
Realism.

1. Introduction

Image-based rendering (IBR) creates novel views of a 3D
scene by interpolating between reference color and
geometry samples. One advantage is quality: IBR
algorithms attempt to transfer the high-quality of the
reference images to the desired image. Another advantage
is efficiency: the desired image is rendered using reference
samples, which avoids the full complexity of the scene.

In what are now more than 10 years of IBR great
progress has been made. However, the fundamental
challenges of IBR do not yet have complete solutions. One
challenge is modeling. Gathering the reference color and
geometry samples remains difficult. For this, IBR
researchers have investigated problems traditionally
associated with computer vision such as depth extraction
and registration. Another challenge of IBR is inadequate

sampling. The reference samples do not always suffice for
a good reconstruction of the desired image. Particularly
challenging are view dependent effects. One example is
view dependent appearance due to phenomena such as
reflection, refraction, and blending at depth discontinuities.
Another example is view dependent geometry due to
occlusions as the camera and/ scene objects move.

This paper addresses the problem of disocclusion errors,
which is an artifact due to lacking samples for surfaces that
are visible from the desired view, but not from the
reference view. Disocclusion errors occur even for small
translations of the view. The problem is challenging
because disocclusion errors are scattered in the scene.
Disocclusion errors occur wherever motion parallax occurs,
which, ironically, is one of the most important clues for a
user exploring a 3D scene.

Current methods for alleviating the problem of

Figure 1: When a single depth image is used (A) disocclusion errors occur (B). The occlusion-camera reference image (C)
stores samples for the lid, bottom and sides of the teapot, alleviating the problem of disocclusion errors (D).

B A C D

 C. Mei, V. Popescu, E. Sacks / The Occlusion Camera

©The Eurographics Association and Blackwell Publishing 2005.

disocclusion errors are based on using several reference
views. The approach has diminishing returns: novel views
come at the same price as the first view but contribute
fewer and fewer new samples.

Our approach is based on a novel camera model, the
occlusion camera, which is a non-pinhole generalization of
the planar pinhole camera. A 3D radial distortion centered
at an image plane point called a pole allows the occlusion
camera to see around objects (occluders) along the ray
defined by the pole. This way the occlusion camera also
samples surfaces that are hidden from the reference view
but are close to the silhouette of the occluder and are thus
likely to become disoccluded in nearby views. Occlusion-
camera images alleviate the disocclusion problem
associated with regular depth images (Figure 1). Like depth
images, they have a single layer so the rendering cost is
bounded by their resolution and connectivity is defined
implicitly by the regular grid of samples.

A planar pinhole camera acquires one sample along each
ray. The 3D distortion trades (u, v) image resolution for
resolution along the same ray. The occlusion camera image
stores samples that are on the same ray in the
corresponding planar pinhole camera image. In Figure 1 C,
every lid sample Li has a corresponding body sample Bi that
lies on the same ray in A. The occlusion camera does not
and should not attempt to store all the samples in the scene,
since, like regular depth images, it is asked to provide
view-dependent occlusion culling and level-of-detail. In
Figure 1 C much of the back of the teapot body is missing.
Those samples will not become visible until the view
changes considerably from the reference view, when a new
reference image should be used.

The occlusion camera does not guarantee that all
disocclusion errors are avoided. For complex scenes, the set
of samples captured by the occlusion camera is not
necessarily a superset of the set of samples captured by the
corresponding planar pinhole camera. For this we render
such scenes with the union of the sets of samples captured
by the two cameras. The planar pinhole and the occlusion
camera images can be merged efficiently like any two
depth images. The samples contributed by the occlusion
camera image are samples that are almost visible in the
reference view and are thus needed from nearby views. The
combination produces good results for considerable
translations away from the reference viewpoint.

The rays of the occlusion camera are non-concurrent,
non-intersecting segments (Figure 2). There is exactly one
ray through each 3D point in the field of view of the
camera. These two facts imply that, like in the case of
planar pinhole cameras, there is a one-to-one mapping
between a scene plane and the image plane. This implies
that an occlusion camera reference image can be
constructed with the feed-forward graphics pipeline, by
forward projecting vertices and then backward rasterizing
triangles. Occlusion-camera reference images are
constructed efficiently on the GPU.

The paper is organized as follows. We review prior work
in Section 0. Section 0 describes the occlusion camera
model. Section 0 gives the algorithm for constructing
occlusion-camera reference images, and its GPU
implementation. Section 0 describes using occlusion-
camera reference images to render novel views of the
scene. Results and discussion conclude the paper.

2. Prior work

McMillan and Bishop introduced 3D image warping, an
IBR method that models and renders the scene with depth
images [MB95]. The reference image is warped by
projecting its depth-and-color samples onto the desired
view. The desired image can be reconstructed by splatting,
a technique that approximates the footprint of warped
samples, or by connecting the warped samples in a triangle
mesh and rendering the mesh. Using a single depth image
causes disocclusion errors. Warping several depth images
for each view greatly increases the cost of the method.

In post-rendering warping, Mark et al. investigate
accelerating conventional rendering by warping two
reference images [MMB97]. The reference views have to
be very close to the desired view, which requires the
system to update the reference images several times per
second. Even so disocclusion errors occur.

Layered representations handle disocclusion errors by
storing samples that are occluded from the reference view
in additional layers at each pixel. Max proposes rendering
trees using multi-layered z-buffers, which are built with a
modified z-buffer algorithm [MO95]. Occluded samples
are stored at deeper layers rather than being discarded.
Keeping all samples along a ray generates high, uneven
depth complexity, and many samples are never needed in
nearby images. Limiting the number of samples along a ray
requires a method for finding which samples are going to
be visible in nearby views.

Figure 2: Visualization of an actual occlusion camera. The
left/right image shows the rays for the central/bottom row
of pixels. The 3D radial distortion centered at the pole is
applied between two z planes. Each ray is defined by two
segments: COP to near distortion plane (blue) and between
distortion planes (green). The distortion brings the green
segments closer to the pole ray (red). Rays that intersect the
pole ray are clipped (left). The image plane can be placed
anywhere between the COP and the near distortion plane.

©The Eurographics Association and Blackwell Publishing 2005. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

The Layered Depth Image (LDI) [SGH98, CBL99]
solves the problem of choosing which samples to store by
constructing the LDI from depth images from nearby
views. The resulting LDI stores the union of the
construction images, thus each of its samples is going to be
needed at least when the desired view matches the
construction view that contributed the sample. LDI
construction requires rendering the scene multiple times. A
disadvantage common to all layered representations is that
sample connectivity cannot be easily computed and layered
reference images are typically used by splatting.

None of the techniques reviewed so far guarantees the
absence of disocclusion errors. If a surface was not sampled
by any of the depth images used to construct the LDI, a
disocclusion error occurs. The vacuum buffer [PL01]
provides a conservative sample selection method for IBR.
Given a desired view and a set of depth images, the
technique finds the sub-volumes of the view frustum where
disocclusion errors could occur. The method needs the
desired view which implies running a complex z-buffer
algorithm for every frame. Also verifying all view-frustum
sub-volumes that could contain missed surfaces requires
processing many depth images. Since most of the suspected
sub-volumes turn out to be empty, conservatively checking
for disocclusion errors is expensive.

The disocclusion error problem is the dual of the problem
of occlusion culling, which has been much studied in
conventional rendering. The reference depth image
provides an over-aggressive occlusion culling solution for
the desired image. Instead of attempting to undo some of
the culling, we propose to use a camera model that prevents
disocclusion errors in the first place.

Non-pinhole camera models have been studied in
computer vision for 3D imaging applications. Examples
include the pushbroom camera [GH97], which collects rays
in parallel planes by sweeping a line, and the two-slit
camera [Paj02], which captures all rays passing through
two non-coplanar lines. The pushbroom and the two-slit

cameras, as well as the pinhole and orthographic cameras,
are subclasses of the general linear camera that collects
linear combinations of three rays [YM04a]. We discuss
using a general linear camera to address the disocclusion
error problem in the next section.

Computer graphics researchers have also explored non-
pinhole cameras. The light field [LH96] and lumigraph
[GGS*96] are a 2D array of planar pinhole cameras. The
4D ray database is queried during rendering, bypassing the
need for geometry. The method does not have the problem
of disocclusions and supports all view dependent effects.
However the database grows to impractical sizes for large
scenes and large viewing volumes. Light field approaches
that separate sampling geometry from sampling view
dependent appearance use conventional geometric models
[WAA*00], and the problem of disocclusion errors become
the problem of occlusion culling.

Multiple-center-of-projection cameras [RB98] sample the
scene using a vertical slit that slides along a user chosen
path. The interactive approach provides good sampling rate
and coverage control. The resulting depth-and-color images
are view independent, like a model, and fail to provide
occlusion culling and level-of-detail adaptation. Because of
the arbitrary path, 3D points cannot be projected directly
onto the multiple-center-of-projection image and
constructing such an image has to be done by ray tracing.
Camera models developed for multiperspective rendering
[WFH*97, YM04b] produce images that simulate 3D
animation when viewed with a constrained camera motion
but are not suitable for arbitrary views.

3. The occlusion camera model

To avoid disocclusion errors we set out to develop a camera
model that has the following properties:

(1) in addition to visible samples, the camera should also
collect samples close to the silhouette line of the occluder;

(2) each 3D point should project to a unique image plane
location, with a closed form projection equation;

(3) there should be a one-to-one mapping between the
plane of a scene triangle and the image plane.

Properties (2) and (3) ensure images can be rendered with
the new camera using the feed forward graphics pipeline.

Reverse planar pinhole camera model

The first option we investigated was a simple camera
model we called the reverse planar pinhole camera (Figure
4). The perspective foreshortening is reversed between the
near and far planes. The camera is equivalent to a planar
pinhole camera with an opposite view, which collects the
farthest sample along each ray.

Figure 3 shows that the reverse planar pinhole camera has
property (1) above. The image on the right half of the
figure has samples that are beyond the silhouette of the Figure 4: Reverse planar pinhole camera.

Figure 3: Normal (left) and reverse (right) planar pinhole
camera image.

 C. Mei, V. Popescu, E. Sacks / The Occlusion Camera

©The Eurographics Association and Blackwell Publishing 2005.

bunny as seen by a regular pinhole camera: the right side of
the face, the top of the head, and the base are only visible in
the right image. Such a reference image could be used to
render novel nearby views of the bunny, and the originally
hidden samples prevent disocclusion errors. Reverse planar
pinhole camera images can be easily constructed even with
the fixed graphics pipeline by using an opposite-view
camera and flipping the z-test logic, thus the reverse planar
pinhole camera also has properties (2 and 3).

The reverse planar pinhole camera has the advantage of
great simplicity, but has an important disadvantage: the
ability of sampling hidden surfaces decreases considerably
for surfaces that are close to the view direction (red pole
ray in Figure 4). In Figure 5 the scene consists of two
boxes, one vertical and thin, and one horizontal and thick.
The reference view direction is shown with the red arrow.
The reverse planar pinhole camera reference image poorly
samples the left and right faces of the thin box and the top
face of the thick box. Moreover, the sampling rate
decreases towards the front (see line frequency on the
poorly sampled faces in Figure 5). The reverse planar
pinhole camera is a special case of the general linear
camera which captures rays that are a linear combination of
3 rays. Any linear camera has the same problem since,
given a z plane, the amount of reverse foreshortening
decreases to 0 towards the center of the image. We add a
fourth desiderata for the occlusion camera:

(4) The distortion magnitude of a 3D point should be
independent on the point’s (x, y) coordinates).

Occlusion camera model

We have developed an occlusion camera model that has the
desired four properties. The problem of the reverse planar
pinhole camera is avoided (Figure 5, right). We started
from a planar pinhole camera. In order to see around all
sides of an occluder we have added a radial distortion
centered at a pole chosen as the projection of the centroid
of the occluder. The distortion pulls out samples according
to their depth: farther samples are displaced by larger
amounts. This way, two samples that are on the same ray in
the undistorted image move to different distorted image
locations. Hidden samples that are close to the silhouette in
the undistorted image become visible.

In Figure 6, the 3D radial distortion moves the projection
of scene point P from Pu to Pd. The distortion amount is
given by a linear expression in 1/z, where z is the camera-
space z-coordinate of P. Larger z (smaller 1/z) values

produce larger distortion amounts. The distortion occurs in
the image plane, on a direction away from the pole. A
second scene point R that occludes P in the undistorted
planar pinhole camera image is distorted less since it has a
smaller z. Due to the different distortions, projections Pd
and Rd do not coincide, and the sample P is part of the
occlusion camera reference image.

The distortion of the occlusion camera is only apparently
similar to the radial distortion characteristic to real-world
lenses. The fundamental difference is that real-world lenses
do not distort according to the depth of the sample; how far
the ray has traveled to reach the lens is irrelevant.

The occlusion camera model is defined by a planar
pinhole camera PPHC that gives the reference view and a
six-tuple (u0, v0, zn, zf, dn, df) that specifies the 3D
distortion. (u0, v0) give the image plane coordinates of the
pole, (zn, zf) give the near and far z planes between which
the distortion is applied, and (dn, df) give the distortion
magnitudes for points on the planes (zn, zf). The distortion
magnitude varies linearly in 1/z between zn and zf.

The pole (u0, v0) is typically chosen as the PPHC
projection of the centroid of the occluder, zn is chosen
epsilon closer than the closest point of the occluder, zf is
chosen to encompass the bounding box of the scene, and dn
is set to 0. df controls how much the silhouette of the
occluder is receded. Using Figure 1 again, a larger df,
would show more of the back of the teapot in C, and very
large values would have all samples on the back of the
teapot clear the front face. In Figure 8, df is sufficiently
large to get all red checker background samples away from
the cube. To provide room for the displaced samples, the
original reference image resolution is extended by 2df in
each direction to preserve the originally intended field of
view. The occlusion camera images shown in this paper
and in the video have a resolution of 720+200*2 (=1120)
by 480+200*2 (=880).

Figure 5: Reverse planar pinhole camera (left) and 3D
radially distorted camera image (right).

Figure 6 The 3D radial distortion is applied between
near and far distortion planes. The projection of P is
displaced from Pu to Pd. A closer sample R, seen along
the same ray in the undistorted image, is displaced less,
from Pu to Rd. A, P, and C all project at Pd in the
distorted image. The planar pinhole camera ray (COP,
Pd) has segment AB replaced with AC.

COP

Im
ag

e
pl

an
e

N
ea

r
di

st
. p

la
ne

Fa
r d

is
t

pl
an

e

PPd

Pu

pole

C

A

RRd

zn zf

B

Cu

©The Eurographics Association and Blackwell Publishing 2005. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

Projection equation

Given a 3D point P(x, y, z), between zn and zf its occlusion
camera (PPHC, (u0, v0, zn, zf, dn, df)) image plane
coordinates (ud, vd) are given by Equation 1.

Equation 1: Occlusion camera projection.

The undistorted coordinates (uu, vu) decide the direction
but do not affect the distortion magnitude, which is
completely defined by z. Points closer than zn project at
their undistorted PPHC projection. Because of our choice
of zf there are no points beyond zf.

All 3D points in the view frustum of PPHC have exactly
one projection onto the image plane, except for the points
on the pole ray. For such points the distortion direction is
undefined. In the limit, each of these points projects on a
circle centered at the pole with a radius given by the
distortion magnitude corresponding to the point’s z (Figure
1 A, Figure 9).

Occlusion camera rays (unprojection)

Using the projection equation one can define the rays of the
occlusion camera as the loci of scene points that project to
the same occlusion camera image plane location. The
points that project at an occlusion camera image plane
location (ud, vd) are found by varying z from zn to zf. For a
given z the distortion magnitude d(z) is computed according

to Equation 1 and then the 3D point P is computed
according to the following equations.

Equation 2: Occlusion camera ray.

The distortion direction is now computed using the
known distorted coordinates. The distortion is applied in
the opposite direction to find the undistorted coordinates
(uu, vu). The point P is obtained as the point on PPHC ray
(uu, vu) that is at distance z. For z’s smaller than zn, the point
is found directly on the PPHC ray w/o distortion.

Since 1/z is linear in screen space, and since the distortion
also varies linearly in 1/z, the rays of the occlusion camera
are straight between zn and zf. Using Figure 6 again and
assuming dn = 0, the occlusion camera ray at Pd consists of
segments (COP, A) and (A, C). The distortion replaces (A,
B) with (A, C). df equals the length of segment (Cu, Pd).

In Equation 2 the undistortion is not allowed to cross the
pole. The undistortion amount cannot be larger than the

distance from (ud, vd) to (u0, v0). This effectively clips the
ray segments at the pole ray, as seen in Figure 2 left. Not
all (ud, vd, z) triples correspond to a scene point.

Figure 7 shows how the rays of the planar pinhole camera
are broken at the near distortion plane. The yellow
rectangle on the near distortion plane is gradually morphed
into the star shape on the far distortion plane. A larger df
would collapse the rectangle to a point.

The occlusion camera sees around an occluder along all
image plane directions, thus has property (1) (see Figure 8).
The occlusion camera is not a pinhole camera, since the
lines of the ray segments are not concurrent. However, the
occlusion camera does not suffer of projection ambiguity
(Equation 1) and thus possesses property (2). This is an
important difference when compared to non-pinhole
cameras models used to describe the non-zero aperture of
real-world cameras and its consequences on focus and
depth of field. Property (4) follows from Equation 1. The
occlusion camera has property (3) as explained next.

4. Occlusion camera image construction

A straight forward way of constructing an occlusion camera
image is to render the scene triangles conventionally using
the planar pinhole camera PPHC and then to distort every
sample created before z-buffering. This forward mapping
approach has to solve the problem of maintaining surface
continuity. This problem has been studied extensively in
IBR ([MB95, PZB*00, PEL*00, RL00]). A possible
solution is splatting, a technique that replaces the point
samples with surface elements that overlap, which prevents
gaps. Another solution is to connect the samples using the
connectivity implicitly defined in the undistorted image and
to rasterize the distorted mesh conventionally.

4.1. Occlusion camera triangle rasterization

We avoid the difficulties of forward mapping by rasterizing

Figure 7: Visualization of an actual occlusion camera. ()

)(
),(
),(

),(),(

)(
11
11

)(),,(

00

00 zd
vvuu
vvuu

vuvu

dd
zz
zz

dzd

PPPHCzvu

uu

uu
uudd

nf
fn

n
n

uu

−−
−−

+=

−
−
−

+=

=

Figure 8: Occlusion camera captures 5 faces of the cube
and complete background (left). Disocclusion errors are
avoided (middle). Right: comparison to using depth image.

),(.)(

)(
),(
),(

),(),(
00

00

uu

dd

dd
dduu

vuRayPPHCzPlaneP

zd
vvuu
vvuu

vuvu

I=

−−
−−

−=

 C. Mei, V. Popescu, E. Sacks / The Occlusion Camera

©The Eurographics Association and Blackwell Publishing 2005.

the triangles directly in the distorted domain with the
following steps:

- Estimate triangle bounding box in distorted domain
- For each pixel (ud, vd) in the bounding box
 - Compute undistorted (uu, vu) and z
 - Zbuffer (ud, vd, z)
 - Evaluate edge equations using (uu, vu)
 - Compute color c
 - Set (ud, vd, c)

Since the edges of the distorted triangle are curved, we
estimate the bounding box by distorting a few points on the
perimeter. The undistorted coordinates (uu, vu) and z are
computed simultaneously according to Equation 3.

Equation 3: Occlusion camera triangle rasterization.

For a given triangle t, 1/z is linear in undistorted screen
space. The coefficients A, B, and C are computed by
solving the linear system of 3 equations 1/zti = Auti + Bvti +
C, where i = 0, 1, and 2, and (uti, vti, zti) is the PPHC
projection of vertex i of t. The 1/z expression is plugged
into the distortion magnitude equation (see Equation 1) to
compute D, E, and F. These coefficients define the linear
variation of the distortion magnitude in undistorted screen
space. The undistorted coordinates (uu, vu) are the distorted
coordinates (ud, vd) minus the distortion vector. The
direction of the distortion vector is known since (ud, vd) and
(u0, v0) are known. The last of the four equations is a linear
system of two equations with two unknowns uu and vu,
which once known are used to recover z from the first
equation. Once the triangle sample is known, rasterization
proceeds as usual. Edge equations are evaluated in the
undistorted domain where edges are straight.

Equation 3 provides a unique triangle-plane point for
each (ud, vd) pair, except for the case in which the plane is
aligned with one of the occlusion camera rays (silhouette
triangle). Silhouette triangles collapse to a segment, just
like silhouette triangles do for regular pinhole cameras. (A
silhouette triangle in the undistorted image is a triangle
whose plane passes through the center of projection of the
planar pinhole camera.) The unique solution in the general
case allows establishing a backward mapping from the
distorted image plane to the triangle plane.

The most expensive part of the rasterization is the 2D
vector normalization required to compute the distortion
direction at each pixel. We have implemented the
rasterization algorithm described on the GPU.

4.2. Hardware implementation

In order to implement a novel rasterization algorithm one
needs to have programmability at triangle level. Existing
GPUs feature programmability only at vertex and fragment
level. Vertex programs cannot access vertex data for the
other two vertices shared by a triangle. For this the data of
all vertices is passed to the GPU for every vertex. Another
difficulty comes from the fact that the edges of the
projected triangle are curved. Our solution is to render each
triangle by issuing a quad drawing command which
rasterizes the bounding box of the curved-edge triangle.

The vertex program computes:
- the 2D vertices of the quad as the distorted-domain
bounding box of a set of triangle perimeter points,
- the coefficients D, E, F (see Equation 3),
- the edge equations,
- and all the other linear expressions needed for regular
rasterization (i.e. screen space or model space interpolation
of texture coordinates, color, and normals).

Using the parameters passed by the vertex program, the
fragment program computes the undistorted coordinates
(uu, vu), performs the sidedness tests, shades and textures,
and then returns color and z. Figure 9 shows examples of
occlusion camera images rendered with our GPU programs.

5. Rendering with occlusion-camera images

Triangle mesh rendering

The occlusion camera image stores a single layer of depth-
and-color samples. Once the occlusion camera image is
constructed we read the color and z-buffer back and build a
triangle mesh by unprojecting the samples to create 3D
vertices (Equation 2). The mesh is rendered in hardware
with per-vertex color and can be re-lighted.

We have also implemented a technique for rendering
using the occlusion camera image that avoids reading back
to main memory. The reference image is transferred to
GPU memory and is processed using a vertex program that
undistorts the depth and color samples forming triangles
which are rasterized to render the desired view.

()

()

)(
),(
),(),(),(

),(
),(
),(),(),(

,

,1

00

00

00

00

FEvDu
vvuu
vvuuvuvu

vud
vvuu
vvuuvuvu

FEvDuvud

CBvAuvu
z

uu
dd

dd
dduu

uu
dd

dd
dduu

uuuu

uuuu

++
−−
−−

−=

−−
−−

−=

++=

++=

Figure 9: Occlusion camera images generated on the
GPU at 11fps (bunny, 70Ktris) and 3fps/0.6fps (Happy
Buddha, 293Ktris/1Mtris).

©The Eurographics Association and Blackwell Publishing 2005. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

Merging

An occlusion camera images is less prone to disocclusion
errors than a regular depth image since it also stores
samples that are close to the silhouette as seen from the
reference view. Such samples are visible in nearby views,
filling in the gaps that would otherwise form, and extending
the range of views for which the reference image is usable.

Occlusion camera images do not guarantee that all
needed samples are present. It can happen that even some
samples visible from the reference view are missing from
the occlusion camera image. In the Buddha occlusion
camera image shown in Figure 9 the feet of the statue are
not visible, although they are part of a regular depth image.
We avoid this problem by rendering a regular depth image
DI together with the samples of the corresponding
occlusion camera image OCI that are not part of DI.

We have implemented an occlusion-camera-image set-
difference operator which also accepts depth images as
operands since they are a special case of occlusion camera
image. A sample in the first image is unprojected and the
resulting 3D point is projected onto the image plane of the
second image. If the z’s are similar the sample is marked as
shared (Figure 10). Rendering DI + (OCI – DI) guarantees
that no DI samples are lost while avoiding disocclusion
errors (Figure 11, and Figure 12, and Figure 13).

6. Results, discussion, and future work

We have presented a technique for alleviating disocclusion
errors. Occlusion-camera images share the advantages of
depth images: they have a single layer, which bounds the
complexity (even when used in conjunction with a depth
image) and provides implicit connectivity, and are
constructed and used in hardware. The distortion parameter
allows handling occlusions on a continuous scale and
provides an effective heuristic for deciding whether a
surface point is likely to be visible in nearby views.

Our current GPU implementation constructs occlusion
camera images from geometry at the average rate of
700Ktris per second (see Figure 9). The timing data
reported in this paper was measured on a Pentium 4 2GHz
1GB system with an NVIDIA GeForce 6800 256MB AGP
graphics card. The models used are courtesy of the Stanford
3D Scanning Repository [Sta05]. The occlusion camera
image construction time is dominated by the time spent in
the fragment program. We will investigate speeding up our

implementation by deriving a tighter approximation of the
bounding box of the distorted triangle.

The 256MB of GPU memory currently allow processing
1Mtris at a time. The lack of programmability at triangle
level prevents us from reusing vertices in the case of shared
vertex meshes, and forces us to draw triangles individually.
Moreover the vertex data needs to be replicated four times
for each of the vertices of the quad needed to rasterize the
curved-edge triangle. Removing this programmability
limitation would provide a considerable reduction in
memory needs. The Thai statue shown in Figure 13 has
10Mtris and its occlusion camera image was constructed on
the CPU in 20 minutes. The original model is rendered by
the fixed graphics pipeline at 2fps. The OCI + (OCI-DI)
samples are rendered at refresh rate (40fps for our system).

The occlusion camera gathers samples all around the
silhouette of the occluder without requiring rendering the
scene multiple times, and without decreasing the sampling
rate along the main view direction. Multiple depth image
approaches, including LDIs, require rendering the scene
several times. Typically an LDI is built from at least four
reference images captured from viewpoints that box the
reference viewpoint. An additional central image is needed
to satisfy the sampling rate requirement.

In this paper we have considered the case of occluders. In
order to address disocclusion errors occurring at the edges
of a portal (e.g. a window in an architectural model), the
maximum distortion should occur on the near plane and no
distortion should occur on the far plane. The frame of the
portal is enlarged in the occlusion camera reference image
and more of the interior of the adjacent cell is sampled.

Path prediction can also be used to tune the occlusion
camera model for improved disocclusion error avoidance.
A predicted future view defines epipolar lines in the current
view. All occlusions and disocclusions occur along epipolar
lines. Placing the pole at the epipole generates occlusion
camera images that alleviate most disocclusion errors.

Our current approach requires handling objects
individually. In the single object case good results are
obtained by placing the distortion pole at the projection of
the center of the object. Handling complex inside-looking-
out scenes by subdivision into objects can lead to a high
depth complexity. We will investigate more complex

Figure 11: Samples contributed by the OCI are shown in
pink in the middle image.

Figure 10: Set difference on occlusion camera images.

 C. Mei, V. Popescu, E. Sacks / The Occlusion Camera

©The Eurographics Association and Blackwell Publishing 2005.

occlusion camera models generated by 3D distortions
controlled by more than one pole and also by line segments
and curves in the image plane.

The ray pattern of the occlusion camera and the regular
images produced indicate that the approach could probably
be used to support several geometry processing tools such
as view independent simplification, surface
parameterization and 3D morphing.

7. Acknowledgments

This work was supported by the Purdue University
Visualization Center, and by NSF grants SCI-0417458 and
CCR-0306214. We thank the anonymous reviewers.
References

[CBL99] C-F Chang, G. Bishop, and A. Lastra. LDI Tree:
A Hierarchical Representation for Image-Based Rendering,
Proc. SIGGRAPH’99, (1999).
[GGS*96] S. Gortler, R. Grzeszczuk, R. Szeliski, M.
Cohen. The Lumigraph. Proc. of SIGGRAPH 96, 43-54.
[GH97] R. Gupta, R. I. Hartley. Linear Pushbroom
Cameras. IEEE Trans. Pattern Analysis and Machine Intell.
vol. 19, no. 9 (1997) 963–975.
[LH96] M. Levoy, and P. Hanrahan. Light Field Rendering.
Proc. of SIGGRAPH 96, 31-42 (1996).
[MB95] L. McMillan and G. Bishop. Plenoptic modeling:
An image-based rendering system. In Proc. SIGGRAPH
'95, pages 39-46, 1995.

[MMB97] W. Mark, L. McMillan, G. Bishop. Post-
Rendering 3D Warping. Proceedings of 1997 Symposium
on Interactive 3D Graphics (Providence, Rhode Island,
April 27-30, 1997).
[MO95] N. Max and K. Ohsaki. Rendering trees from
precomputed z-buffer views. In Rendering Techniques ’95:
Proceedings of the Eurographics Rendering Workshop
1995, 45–54, Dublin, June 1995.
[Paj02] T. Pajdla. Geometry of Two-Slit Camera. Research
Report CTU–CMP–2002–02, 2002.
[PEL*00] V. Popescu, J. Eyles, A. Lastra, et al. The
WarpEngine: An architecture for the post-polygonal age.
Proc. ACM SIGGRAPH, 2000.
[PL01] V. Popescu, A. Lastra. The Vacuum Buffer. In
Proceedings of ACM Symposium on Interactive 3D
Graphics, Chapel Hill, 2001.
[PZB*00] H. Pfister, M. Zwicker, J. V. Baar, M. Gross.
Surfels: Surface Elements as Rendering Primitives. Proc. of
SIGGRAPH 2000, 335-342 (2000).
[RB98] P. Rademacher, G. Bishop. Multiple-center-of-
Projection Images. Proc. ACM SIGGRAPH ’98 (1998)199–
206.
[RL00] S. Rusinkiewicz, M. Levoy. QSplat: A
Multiresolution Point Rendering System for Large Meshes.
Proc. SIGGRAPH 2000.
[SGH98] J. Shade, S. Gortler, L. He, et al. Layered Depth
Images, In Proceedings of SIGGRAPH 98, 231-242.
[Sta05] The Stanford 3D Scanning Repository,
http://graphics.stanford.edu/data/3Dscanrep/
[WAA*00] D. N. Wood, D. I. Azuma, K. Aldinger, et al.
Surface light fields for 3D photography. Proceedings,
SIGGRAPH ’00, ACM Press, pp. 287-296.
[WFH*97] D. N. Wood, A. Finkelstein, J. F. Hughes, et al.
Multiperspective Panoramas for Cel Animation. Proc.
ACM SIGGRAPH ’97 (1997) 243-250.
 [YM04a] J. Yu, and L. McMillan. General Linear Cameras
In 8th European Conference on Computer Vision (ECCV),
2004, Volume 2, 14-27.
[YM04b] J. Yu, and L. McMillan. A Framework for
Multiperspective Rendering. In Proceedings of
Eurographics Symposium on Rendering (EGSR), 2004.

Figure 13: Thai statue model.

Figure 12: Happy Buddha model. The same occlusion
camera reference image alleviates disocclusion errors on all
sides of the statue.

