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Abstract 

We introduce the occlusion camera: a non-pinhole camera with 3D distorted rays.  Some of the rays sample surfaces that 
are occluded in the reference view, while the rest sample visible surfaces.  The extra samples alleviate disocclusion errors.  
The silhouette curves are pushed back, so nearly visible samples become visible.  A single occlusion camera covers the entire 
silhouette of an object, whereas many depth images are required to achieve the same effect.  Like regular depth images, 
occlusion-camera images have a single layer thus the number of samples they contain is bounded by the image resolution, 
and connectivity is defined implicitly. We construct and use occlusion-camera images in hardware. An occlusion-camera 
image does not guarantee that all disocclusion errors are avoided. Objects with complex geometry are rendered using the 
union of the samples stored by a planar pinhole camera and an occlusion camera depth image. 

Categories and Subject Descriptors (according to ACM CCS): I.3.3. [Computer Graphics]—Three-Dimensional Graphics and 
Realism. 

 

 

1.  Introduction 

Image-based rendering (IBR) creates novel views of a 3D 
scene by interpolating between reference color and 
geometry samples. One advantage is quality: IBR 
algorithms attempt to transfer the high-quality of the 
reference images to the desired image. Another advantage 
is efficiency: the desired image is rendered using reference 
samples, which avoids the full complexity of the scene. 

In what are now more than 10 years of IBR great 
progress has been made. However, the fundamental 
challenges of IBR do not yet have complete solutions. One 
challenge is modeling. Gathering the reference color and 
geometry samples remains difficult. For this, IBR 
researchers have investigated problems traditionally 
associated with computer vision such as depth extraction 
and registration. Another challenge of IBR is inadequate 

sampling. The reference samples do not always suffice for 
a good reconstruction of the desired image. Particularly 
challenging are view dependent effects. One example is 
view dependent appearance due to phenomena such as 
reflection, refraction, and blending at depth discontinuities. 
Another example is view dependent geometry due to 
occlusions as the camera and/ scene objects move. 

This paper addresses the problem of disocclusion errors, 
which is an artifact due to lacking samples for surfaces that 
are visible from the desired view, but not from the 
reference view. Disocclusion errors occur even for small 
translations of the view. The problem is challenging 
because disocclusion errors are scattered in the scene. 
Disocclusion errors occur wherever motion parallax occurs, 
which, ironically, is one of the most important clues for a 
user exploring a 3D scene. 

Current methods for alleviating the problem of 

Figure 1: When a single depth image is used (A) disocclusion errors occur (B). The occlusion-camera reference image (C) 
stores samples for the lid, bottom and sides of the teapot, alleviating the problem of disocclusion errors (D). 
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disocclusion errors are based on using several reference 
views. The approach has diminishing returns: novel views 
come at the same price as the first view but contribute 
fewer and fewer new samples. 

Our approach is based on a novel camera model, the 
occlusion camera, which is a non-pinhole generalization of 
the planar pinhole camera. A 3D radial distortion centered 
at an image plane point called a pole allows the occlusion 
camera to see around objects (occluders) along the ray 
defined by the pole. This way the occlusion camera also 
samples surfaces that are hidden from the reference view 
but are close to the silhouette of the occluder and are thus 
likely to become disoccluded in nearby views. Occlusion-
camera images alleviate the disocclusion problem 
associated with regular depth images (Figure 1). Like depth 
images, they have a single layer so the rendering cost is 
bounded by their resolution and connectivity is defined 
implicitly by the regular grid of samples. 

A planar pinhole camera acquires one sample along each 
ray. The 3D distortion trades (u, v) image resolution for 
resolution along the same ray. The occlusion camera image 
stores samples that are on the same ray in the 
corresponding planar pinhole camera image. In Figure 1 C, 
every lid sample Li has a corresponding body sample Bi that 
lies on the same ray in A. The occlusion camera does not 
and should not attempt to store all the samples in the scene, 
since, like regular depth images, it is asked to provide 
view-dependent occlusion culling and level-of-detail. In 
Figure 1 C much of the back of the teapot body is missing. 
Those samples will not become visible until the view 
changes considerably from the reference view, when a new 
reference image should be used. 

The occlusion camera does not guarantee that all 
disocclusion errors are avoided. For complex scenes, the set 
of samples captured by the occlusion camera is not 
necessarily a superset of the set of samples captured by the 
corresponding planar pinhole camera. For this we render 
such scenes with the union of the sets of samples captured 
by the two cameras. The planar pinhole and the occlusion 
camera images can be merged efficiently like any two 
depth images. The samples contributed by the occlusion 
camera image are samples that are almost visible in the 
reference view and are thus needed from nearby views. The 
combination produces good results for considerable 
translations away from the reference viewpoint. 

The rays of the occlusion camera are non-concurrent, 
non-intersecting segments (Figure 2). There is exactly one 
ray through each 3D point in the field of view of the 
camera. These two facts imply that, like in the case of 
planar pinhole cameras, there is a one-to-one mapping 
between a scene plane and the image plane. This implies 
that an occlusion camera reference image can be 
constructed with the feed-forward graphics pipeline, by 
forward projecting vertices and then backward rasterizing 
triangles. Occlusion-camera reference images are 
constructed efficiently on the GPU. 

The paper is organized as follows. We review prior work 
in Section 0. Section 0 describes the occlusion camera 
model. Section 0 gives the algorithm for constructing 
occlusion-camera reference images, and its GPU 
implementation. Section 0 describes using occlusion-
camera reference images to render novel views of the 
scene. Results and discussion conclude the paper. 

2. Prior work 

McMillan and Bishop introduced 3D image warping, an 
IBR method that models and renders the scene with depth 
images [MB95]. The reference image is warped by 
projecting its depth-and-color samples onto the desired 
view. The desired image can be reconstructed by splatting, 
a technique that approximates the footprint of warped 
samples, or by connecting the warped samples in a triangle 
mesh and rendering the mesh. Using a single depth image 
causes disocclusion errors. Warping several depth images 
for each view greatly increases the cost of the method. 

In post-rendering warping, Mark et al. investigate 
accelerating conventional rendering by warping two 
reference images [MMB97]. The reference views have to 
be very close to the desired view, which requires the 
system to update the reference images several times per 
second. Even so disocclusion errors occur. 

Layered representations handle disocclusion errors by 
storing samples that are occluded from the reference view 
in additional layers at each pixel. Max proposes rendering 
trees using multi-layered z-buffers, which are built with a 
modified z-buffer algorithm [MO95]. Occluded samples 
are stored at deeper layers rather than being discarded. 
Keeping all samples along a ray generates high, uneven 
depth complexity, and many samples are never needed in 
nearby images. Limiting the number of samples along a ray 
requires a method for finding which samples are going to 
be visible in nearby views. 

Figure 2: Visualization of an actual occlusion camera. The 
left/right image shows the rays for the central/bottom row 
of pixels. The 3D radial distortion centered at the pole is 
applied between two z planes. Each ray is defined by two 
segments: COP to near distortion plane (blue) and between 
distortion planes (green). The distortion brings the green 
segments closer to the pole ray (red). Rays that intersect the 
pole ray are clipped (left). The image plane can be placed 
anywhere between the COP and the near distortion plane. 
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The Layered Depth Image (LDI) [SGH98, CBL99] 
solves the problem of choosing which samples to store by 
constructing the LDI from depth images from nearby 
views. The resulting LDI stores the union of the 
construction images, thus each of its samples is going to be 
needed at least when the desired view matches the 
construction view that contributed the sample. LDI 
construction requires rendering the scene multiple times. A 
disadvantage common to all layered representations is that 
sample connectivity cannot be easily computed and layered 
reference images are typically used by splatting. 

None of the techniques reviewed so far guarantees the 
absence of disocclusion errors. If a surface was not sampled 
by any of the depth images used to construct the LDI, a 
disocclusion error occurs. The vacuum buffer [PL01] 
provides a conservative sample selection method for IBR. 
Given a desired view and a set of depth images, the 
technique finds the sub-volumes of the view frustum where 
disocclusion errors could occur. The method needs the 
desired view which implies running a complex z-buffer 
algorithm for every frame. Also verifying all view-frustum 
sub-volumes that could contain missed surfaces requires 
processing many depth images. Since most of the suspected 
sub-volumes turn out to be empty, conservatively checking 
for disocclusion errors is expensive. 

The disocclusion error problem is the dual of the problem 
of occlusion culling, which has been much studied in 
conventional rendering. The reference depth image 
provides an over-aggressive occlusion culling solution for 
the desired image. Instead of attempting to undo some of 
the culling, we propose to use a camera model that prevents 
disocclusion errors in the first place.  

Non-pinhole camera models have been studied in 
computer vision for 3D imaging applications. Examples 
include the pushbroom camera [GH97], which collects rays 
in parallel planes by sweeping a line, and the two-slit 
camera [Paj02], which captures all rays passing through 
two non-coplanar lines. The pushbroom and the two-slit 

cameras, as well as the pinhole and orthographic cameras, 
are subclasses of the general linear camera that collects 
linear combinations of three rays [YM04a]. We discuss 
using a general linear camera to address the disocclusion 
error problem in the next section. 

Computer graphics researchers have also explored non-
pinhole cameras. The light field [LH96] and lumigraph 
[GGS*96] are a 2D array of planar pinhole cameras. The 
4D ray database is queried during rendering, bypassing the 
need for geometry. The method does not have the problem 
of disocclusions and supports all view dependent effects. 
However the database grows to impractical sizes for large 
scenes and large viewing volumes. Light field approaches 
that separate sampling geometry from sampling view 
dependent appearance use conventional geometric models 
[WAA*00], and the problem of disocclusion errors become 
the problem of occlusion culling. 

Multiple-center-of-projection cameras [RB98] sample the 
scene using a vertical slit that slides along a user chosen 
path. The interactive approach provides good sampling rate 
and coverage control. The resulting depth-and-color images 
are view independent, like a model, and fail to provide 
occlusion culling and level-of-detail adaptation. Because of 
the arbitrary path, 3D points cannot be projected directly 
onto the multiple-center-of-projection image and 
constructing such an image has to be done by ray tracing. 
Camera models developed for multiperspective rendering 
[WFH*97, YM04b] produce images that simulate 3D 
animation when viewed with a constrained camera motion 
but are not suitable for arbitrary views. 

3. The occlusion camera model 

To avoid disocclusion errors we set out to develop a camera 
model that has the following properties: 

(1) in addition to visible samples, the camera should also 
collect samples close to the silhouette line of the occluder; 

(2) each 3D point should project to a unique image plane 
location, with a closed form projection equation; 

(3) there should be a one-to-one mapping between the 
plane of a scene triangle and the image plane. 

Properties (2) and (3) ensure images can be rendered with 
the new camera using the feed forward graphics pipeline. 

Reverse planar pinhole camera model 

The first option we investigated was a simple camera 
model we called the reverse planar pinhole camera (Figure 
4). The perspective foreshortening is reversed between the 
near and far planes. The camera is equivalent to a planar 
pinhole camera with an opposite view, which collects the 
farthest sample along each ray.  

Figure 3 shows that the reverse planar pinhole camera has 
property (1) above. The image on the right half of the 
figure has samples that are beyond the silhouette of the Figure 4: Reverse planar pinhole camera. 

Figure 3: Normal (left) and reverse (right) planar pinhole
camera image. 



            C. Mei, V. Popescu, E. Sacks / The Occlusion Camera 

©The Eurographics Association and Blackwell Publishing 2005. 
 

bunny as seen by a regular pinhole camera: the right side of 
the face, the top of the head, and the base are only visible in 
the right image.  Such a reference image could be used to 
render novel nearby views of the bunny, and the originally 
hidden samples prevent disocclusion errors. Reverse planar 
pinhole camera images can be easily constructed even with 
the fixed graphics pipeline by using an opposite-view 
camera and flipping the z-test logic, thus the reverse planar 
pinhole camera also has properties (2 and 3). 

The reverse planar pinhole camera has the advantage of 
great simplicity, but has an important disadvantage: the 
ability of sampling hidden surfaces decreases considerably 
for surfaces that are close to the view direction (red pole 
ray in Figure 4). In Figure 5 the scene consists of two 
boxes, one vertical and thin, and one horizontal and thick. 
The reference view direction is shown with the red arrow. 
The reverse planar pinhole camera reference image poorly 
samples the left and right faces of the thin box and the top 
face of the thick box. Moreover, the sampling rate 
decreases towards the front (see line frequency on the 
poorly sampled faces in Figure 5). The reverse planar 
pinhole camera is a special case of the general linear 
camera which captures rays that are a linear combination of 
3 rays. Any linear camera has the same problem since, 
given a z plane, the amount of reverse foreshortening 
decreases to 0 towards the center of the image. We add a 
fourth desiderata for the occlusion camera: 

(4) The distortion magnitude of a 3D point should be 
independent on the point’s (x, y) coordinates). 

Occlusion camera model 

We have developed an occlusion camera model that has the 
desired four properties. The problem of the reverse planar 
pinhole camera is avoided (Figure 5, right). We started 
from a planar pinhole camera. In order to see around all 
sides of an occluder we have added a radial distortion 
centered at a pole chosen as the projection of the centroid 
of the occluder. The distortion pulls out samples according 
to their depth: farther samples are displaced by larger 
amounts. This way, two samples that are on the same ray in 
the undistorted image move to different distorted image 
locations. Hidden samples that are close to the silhouette in 
the undistorted image become visible. 

In Figure 6, the 3D radial distortion moves the projection 
of scene point P from Pu to Pd. The distortion amount is 
given by a linear expression in 1/z, where z is the camera-
space z-coordinate of P. Larger z (smaller 1/z) values 

produce larger distortion amounts. The distortion occurs in 
the image plane, on a direction away from the pole. A 
second scene point R that occludes P in the undistorted 
planar pinhole camera image is distorted less since it has a 
smaller z. Due to the different distortions, projections Pd 
and Rd do not coincide, and the sample P is part of the 
occlusion camera reference image. 

The distortion of the occlusion camera is only apparently 
similar to the radial distortion characteristic to real-world 
lenses. The fundamental difference is that real-world lenses 
do not distort according to the depth of the sample; how far 
the ray has traveled to reach the lens is irrelevant. 

The occlusion camera model is defined by a planar 
pinhole camera PPHC that gives the reference view and a 
six-tuple (u0, v0, zn, zf, dn, df) that specifies the 3D 
distortion. (u0, v0) give the image plane coordinates of the 
pole, (zn, zf) give the near and far z planes between which 
the distortion is applied, and (dn, df) give the distortion 
magnitudes for points on the planes (zn, zf). The distortion 
magnitude varies linearly in 1/z between zn and zf. 

The pole (u0, v0) is typically chosen as the PPHC 
projection of the centroid of the occluder, zn is chosen 
epsilon closer than the closest point of the occluder, zf is 
chosen to encompass the bounding box of the scene, and dn 
is set to 0. df controls how much the silhouette of the 
occluder is receded. Using Figure 1 again, a larger df, 
would show more of the back of the teapot in C, and very 
large values would have all samples on the back of the 
teapot clear the front face. In Figure 8, df is sufficiently 
large to get all red checker background samples away from 
the cube. To provide room for the displaced samples, the 
original reference image resolution is extended by 2df in 
each direction to preserve the originally intended field of 
view. The occlusion camera images shown in this paper 
and in the video have a resolution of 720+200*2 (=1120) 
by 480+200*2 (=880). 

Figure 5: Reverse planar pinhole camera (left) and 3D 
radially distorted camera image (right). 

Figure 6 The 3D radial distortion is applied between 
near and far distortion planes. The projection of P is 
displaced from Pu to Pd. A closer sample R, seen along 
the same ray in the undistorted image, is displaced less, 
from Pu to Rd. A, P, and C all project at Pd in the 
distorted image. The planar pinhole camera ray (COP, 
Pd) has segment AB replaced with AC. 
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Projection equation 

Given a 3D point P(x, y, z), between zn and zf its occlusion 
camera (PPHC, (u0, v0, zn, zf, dn, df)) image plane 
coordinates (ud, vd) are given by Equation 1. 

Equation 1: Occlusion camera projection. 

The undistorted coordinates (uu, vu) decide the direction 
but do not affect the distortion magnitude, which is 
completely defined by z. Points closer than zn project at 
their undistorted PPHC projection. Because of our choice 
of zf there are no points beyond zf. 

All 3D points in the view frustum of PPHC have exactly 
one projection onto the image plane, except for the points 
on the pole ray. For such points the distortion direction is 
undefined. In the limit, each of these points projects on a 
circle centered at the pole with a radius given by the 
distortion magnitude corresponding to the point’s z (Figure 
1 A, Figure 9). 

Occlusion camera rays (unprojection) 

Using the projection equation one can define the rays of the 
occlusion camera as the loci of scene points that project to 
the same occlusion camera image plane location. The 
points that project at an occlusion camera image plane 
location (ud, vd) are found by varying z from zn to zf. For a 
given z the distortion magnitude d(z) is computed according  

to Equation 1 and then the 3D point P is computed 
according to the following equations. 

 

 

 

Equation 2: Occlusion camera ray. 

The distortion direction is now computed using the 
known distorted coordinates. The distortion is applied in 
the opposite direction to find the undistorted coordinates 
(uu, vu). The point P is obtained as the point on PPHC ray 
(uu, vu) that is at distance z. For z’s smaller than zn, the point 
is found directly on the PPHC ray w/o distortion. 

Since 1/z is linear in screen space, and since the distortion 
also varies linearly in 1/z, the rays of the occlusion camera 
are straight between zn and zf. Using Figure 6 again and 
assuming dn = 0, the occlusion camera ray at Pd consists of 
segments (COP, A) and (A, C). The distortion replaces (A, 
B) with (A, C). df equals the length of segment (Cu, Pd). 

In Equation 2 the undistortion is not allowed to cross the 
pole. The undistortion amount cannot be larger than the 

distance from (ud, vd) to (u0, v0). This effectively clips the 
ray segments at the pole ray, as seen in Figure 2 left. Not 
all (ud, vd, z) triples correspond to a scene point. 

Figure 7 shows how the rays of the planar pinhole camera 
are broken at the near distortion plane. The yellow 
rectangle on the near distortion plane is gradually morphed 
into the star shape on the far distortion plane. A larger df 
would collapse the rectangle to a point. 

The occlusion camera sees around an occluder along all 
image plane directions, thus has property (1) (see Figure 8). 
The occlusion camera is not a pinhole camera, since the 
lines of the ray segments are not concurrent. However, the 
occlusion camera does not suffer of projection ambiguity 
(Equation 1) and thus possesses property (2). This is an 
important difference when compared to non-pinhole 
cameras models used to describe the non-zero aperture of 
real-world cameras and its consequences on focus and 
depth of field. Property (4) follows from Equation 1. The 
occlusion camera has property (3) as explained next. 

4. Occlusion camera image construction 

A straight forward way of constructing an occlusion camera 
image is to render the scene triangles conventionally using 
the planar pinhole camera PPHC and then to distort every 
sample created before z-buffering. This forward mapping 
approach has to solve the problem of maintaining surface 
continuity. This problem has been studied extensively in 
IBR ([MB95, PZB*00, PEL*00, RL00]). A possible 
solution is splatting, a technique that replaces the point 
samples with surface elements that overlap, which prevents 
gaps. Another solution is to connect the samples using the 
connectivity implicitly defined in the undistorted image and 
to rasterize the distorted mesh conventionally. 

4.1. Occlusion camera triangle rasterization 

We avoid the difficulties of forward mapping by rasterizing 

Figure 7: Visualization of an actual occlusion camera. ( )
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Figure 8: Occlusion camera captures 5 faces of the cube 
and complete background (left). Disocclusion errors are 
avoided (middle). Right: comparison to using depth image.
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the triangles directly in the distorted domain with the 
following steps: 

- Estimate triangle bounding box in distorted domain 
- For each pixel (ud, vd) in the bounding box 
        - Compute undistorted (uu, vu) and z 
        - Zbuffer (ud, vd, z) 
        - Evaluate edge equations using (uu, vu) 
        - Compute color c 
        - Set (ud, vd, c) 

Since the edges of the distorted triangle are curved, we 
estimate the bounding box by distorting a few points on the 
perimeter. The undistorted coordinates (uu, vu) and z are 
computed simultaneously according to Equation 3.  

Equation 3: Occlusion camera triangle rasterization. 

For a given triangle t, 1/z is linear in undistorted screen 
space. The coefficients A, B, and C are computed by 
solving the linear system of 3 equations 1/zti = Auti + Bvti + 
C, where i = 0, 1, and 2, and (uti, vti, zti) is the PPHC 
projection of vertex i of t. The 1/z expression is plugged 
into the distortion magnitude equation (see Equation 1) to 
compute D, E, and F. These coefficients define the linear 
variation of the distortion magnitude in undistorted screen 
space. The undistorted coordinates (uu, vu) are the distorted 
coordinates (ud, vd) minus the distortion vector. The 
direction of the distortion vector is known since (ud, vd) and 
(u0, v0) are known. The last of the four equations is a linear 
system of two equations with two unknowns uu and vu, 
which once known are used to recover z from the first 
equation. Once the triangle sample is known, rasterization 
proceeds as usual. Edge equations are evaluated in the 
undistorted domain where edges are straight.  

Equation 3 provides a unique triangle-plane point for 
each (ud, vd) pair, except for the case in which the plane is 
aligned with one of the occlusion camera rays (silhouette 
triangle). Silhouette triangles collapse to a segment, just 
like silhouette triangles do for regular pinhole cameras. (A 
silhouette triangle in the undistorted image is a triangle 
whose plane passes through the center of projection of the 
planar pinhole camera.) The unique solution in the general 
case allows establishing a backward mapping from the 
distorted image plane to the triangle plane. 

The most expensive part of the rasterization is the 2D 
vector normalization required to compute the distortion 
direction at each pixel. We have implemented the 
rasterization algorithm described on the GPU. 

4.2. Hardware implementation 

In order to implement a novel rasterization algorithm one 
needs to have programmability at triangle level. Existing 
GPUs feature programmability only at vertex and fragment 
level. Vertex programs cannot access vertex data for the 
other two vertices shared by a triangle. For this the data of 
all vertices is passed to the GPU for every vertex. Another 
difficulty comes from the fact that the edges of the 
projected triangle are curved. Our solution is to render each 
triangle by issuing a quad drawing command which 
rasterizes the bounding box of the curved-edge triangle.  

The vertex program computes: 
- the 2D vertices of the quad as the distorted-domain 
bounding box of a set of triangle perimeter points, 
-  the coefficients D, E, F (see Equation 3), 
-  the edge equations, 
- and all the other linear expressions needed for regular 
rasterization (i.e. screen space or model space interpolation 
of texture coordinates, color, and normals). 

Using the parameters passed by the vertex program, the 
fragment program computes the undistorted coordinates 
(uu, vu), performs the sidedness tests, shades and textures, 
and then returns color and z. Figure 9 shows examples of 
occlusion camera images rendered with our GPU programs. 

5. Rendering with occlusion-camera images 

Triangle mesh rendering 

The occlusion camera image stores a single layer of depth-
and-color samples. Once the occlusion camera image is 
constructed we read the color and z-buffer back and build a 
triangle mesh by unprojecting the samples to create 3D 
vertices (Equation 2). The mesh is rendered in hardware 
with per-vertex color and can be re-lighted. 

We have also implemented a technique for rendering 
using the occlusion camera image that avoids reading back 
to main memory. The reference image is transferred to 
GPU memory and is processed using a vertex program that 
undistorts the depth and color samples forming triangles 
which are rasterized to render the desired view. 
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Figure 9: Occlusion camera images generated on the 
GPU at 11fps (bunny, 70Ktris) and 3fps/0.6fps (Happy 
Buddha, 293Ktris/1Mtris). 



©The Eurographics Association and Blackwell Publishing 2005. Published by Blackwell 
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, 
MA 02148, USA. 

 

Merging 

An occlusion camera images is less prone to disocclusion 
errors than a regular depth image since it also stores 
samples that are close to the silhouette as seen from the 
reference view. Such samples are visible in nearby views, 
filling in the gaps that would otherwise form, and extending 
the range of views for which the reference image is usable. 

Occlusion camera images do not guarantee that all 
needed samples are present. It can happen that even some 
samples visible from the reference view are missing from 
the occlusion camera image. In the Buddha occlusion 
camera image shown in Figure 9 the feet of the statue are 
not visible, although they are part of a regular depth image. 
We avoid this problem by rendering a regular depth image 
DI together with the samples of the corresponding 
occlusion camera image OCI that are not part of DI.  

We have implemented an occlusion-camera-image set-
difference operator which also accepts depth images as 
operands since they are a special case of occlusion camera 
image.  A sample in the first image is unprojected and the 
resulting 3D point is projected onto the image plane of the 
second image. If the z’s are similar the sample is marked as 
shared (Figure 10). Rendering DI + (OCI – DI) guarantees 
that no DI samples are lost while avoiding disocclusion 
errors (Figure 11, and Figure 12, and Figure 13). 

6. Results, discussion, and future work 

We have presented a technique for alleviating disocclusion 
errors. Occlusion-camera images share the advantages of 
depth images: they have a single layer, which bounds the 
complexity (even when used in conjunction with a depth 
image) and provides implicit connectivity, and are 
constructed and used in hardware. The distortion parameter 
allows handling occlusions on a continuous scale and 
provides an effective heuristic for deciding whether a 
surface point is likely to be visible in nearby views. 

Our current GPU implementation constructs occlusion 
camera images from geometry at the average rate of 
700Ktris per second (see Figure 9). The timing data 
reported in this paper was measured on a Pentium 4 2GHz 
1GB system with an NVIDIA GeForce 6800 256MB AGP 
graphics card. The models used are courtesy of the Stanford 
3D Scanning Repository [Sta05]. The occlusion camera 
image construction time is dominated by the time spent in 
the fragment program. We will investigate speeding up our 

implementation by deriving a tighter approximation of the 
bounding box of the distorted triangle. 

The 256MB of GPU memory currently allow processing 
1Mtris at a time. The lack of programmability at triangle 
level prevents us from reusing vertices in the case of shared 
vertex meshes, and forces us to draw triangles individually. 
Moreover the vertex data needs to be replicated four times 
for each of the vertices of the quad needed to rasterize the 
curved-edge triangle. Removing this programmability 
limitation would provide a considerable reduction in 
memory needs. The Thai statue shown in Figure 13 has 
10Mtris and its occlusion camera image was constructed on 
the CPU in 20 minutes. The original model is rendered by 
the fixed graphics pipeline at 2fps. The OCI + (OCI-DI) 
samples are rendered at refresh rate (40fps for our system). 

The occlusion camera gathers samples all around the 
silhouette of the occluder without requiring rendering the 
scene multiple times, and without decreasing the sampling 
rate along the main view direction. Multiple depth image 
approaches, including LDIs, require rendering the scene 
several times. Typically an LDI is built from at least four 
reference images captured from viewpoints that box the 
reference viewpoint. An additional central image is needed 
to satisfy the sampling rate requirement. 

In this paper we have considered the case of occluders. In 
order to address disocclusion errors occurring at the edges 
of a portal (e.g. a window in an architectural model), the 
maximum distortion should occur on the near plane and no 
distortion should occur on the far plane. The frame of the 
portal is enlarged in the occlusion camera reference image 
and more of the interior of the adjacent cell is sampled. 

Path prediction can also be used to tune the occlusion 
camera model for improved disocclusion error avoidance. 
A predicted future view defines epipolar lines in the current 
view. All occlusions and disocclusions occur along epipolar 
lines. Placing the pole at the epipole generates occlusion 
camera images that alleviate most disocclusion errors. 

Our current approach requires handling objects 
individually. In the single object case good results are 
obtained by placing the distortion pole at the projection of 
the center of the object. Handling complex inside-looking-
out scenes by subdivision into objects can lead to a high 
depth complexity. We will investigate more complex 

Figure 11: Samples contributed by the OCI are shown in 
pink in the middle image.  

Figure 10: Set difference on occlusion camera images.
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occlusion camera models generated by 3D distortions 
controlled by more than one pole and also by line segments 
and curves in the image plane. 

The ray pattern of the occlusion camera and the regular 
images produced indicate that the approach could probably 
be used to support several geometry processing tools such 
as view independent simplification, surface 
parameterization and 3D morphing. 

7. Acknowledgments 

This work was supported by the Purdue University 
Visualization Center, and by NSF grants SCI-0417458 and 
CCR-0306214. We thank the anonymous reviewers. 
References 

[CBL99] C-F Chang, G. Bishop, and A. Lastra. LDI Tree: 
A Hierarchical Representation for Image-Based Rendering, 
Proc. SIGGRAPH’99, (1999). 
[GGS*96] S. Gortler, R. Grzeszczuk, R. Szeliski,  M. 
Cohen. The Lumigraph. Proc. of SIGGRAPH 96, 43-54. 
[GH97] R. Gupta, R. I. Hartley. Linear Pushbroom 
Cameras. IEEE Trans. Pattern Analysis and Machine Intell. 
vol. 19, no. 9 (1997) 963–975. 
[LH96] M. Levoy, and P. Hanrahan. Light Field Rendering. 
Proc. of SIGGRAPH 96,  31-42 (1996). 
[MB95] L. McMillan and G. Bishop. Plenoptic modeling: 
An image-based rendering system. In Proc. SIGGRAPH 
'95, pages 39-46, 1995.  

[MMB97] W. Mark, L. McMillan, G. Bishop. Post-
Rendering 3D Warping. Proceedings of 1997 Symposium 
on Interactive 3D Graphics (Providence, Rhode Island, 
April 27-30, 1997). 
[MO95] N. Max and K. Ohsaki. Rendering trees from 
precomputed z-buffer views. In Rendering Techniques ’95: 
Proceedings of the Eurographics Rendering Workshop 
1995, 45–54, Dublin, June 1995. 
[Paj02] T. Pajdla. Geometry of Two-Slit Camera. Research 
Report CTU–CMP–2002–02, 2002. 
[PEL*00] V. Popescu, J. Eyles, A. Lastra, et al. The 
WarpEngine: An architecture for the post-polygonal age. 
Proc. ACM SIGGRAPH, 2000. 
[PL01] V. Popescu, A. Lastra. The Vacuum Buffer. In 
Proceedings of ACM Symposium on Interactive 3D 
Graphics, Chapel Hill, 2001. 
[PZB*00] H. Pfister, M. Zwicker, J. V. Baar, M. Gross. 
Surfels: Surface Elements as Rendering Primitives. Proc. of 
SIGGRAPH 2000, 335-342 (2000).   
[RB98] P. Rademacher, G. Bishop. Multiple-center-of-
Projection Images. Proc. ACM SIGGRAPH ’98 (1998)199–
206. 
[RL00] S. Rusinkiewicz, M. Levoy. QSplat: A 
Multiresolution Point Rendering System for Large Meshes. 
Proc. SIGGRAPH 2000. 
[SGH98] J. Shade, S. Gortler,  L. He, et al. Layered Depth 
Images, In Proceedings of SIGGRAPH 98, 231-242. 
[Sta05] The Stanford 3D Scanning Repository, 
http://graphics.stanford.edu/data/3Dscanrep/ 
[WAA*00] D. N. Wood, D. I. Azuma, K. Aldinger, et al. 
Surface light fields for 3D photography. Proceedings, 
SIGGRAPH ’00, ACM Press, pp. 287-296. 
[WFH*97] D. N. Wood, A. Finkelstein, J. F. Hughes, et al. 
Multiperspective Panoramas for Cel Animation. Proc. 
ACM SIGGRAPH ’97 (1997) 243-250. 
 [YM04a] J. Yu, and L. McMillan. General Linear Cameras 
In 8th European Conference on Computer Vision (ECCV), 
2004, Volume 2, 14-27. 
[YM04b] J. Yu, and L. McMillan. A Framework for 
Multiperspective Rendering. In Proceedings of 
Eurographics Symposium on Rendering (EGSR), 2004. 

Figure 13: Thai statue model. 

Figure 12: Happy Buddha model. The same occlusion
camera reference image alleviates disocclusion errors on all
sides of the statue. 


