
Appeared: IEEE Visualization '98, Oct 18-23, 1998.

Efficient Warping for Architectural Walkthroughs

Using Layered Depth Images
Voicu Popescu, Anselmo Lastra, Daniel Aliaga, Manuel de Oliveira Neto

University of North Carolina at Chapel Hill

Abstract
This paper presents efficient image-based rendering techniques
used in the context of an architectural walkthrough system. Portals
(doors and windows) are rendered by warping layered depth
images (LDIs). In a preprocessing phase, for every portal, a
number of pre-rendered images are combined into a LDI. The
resulting LDI stores, exactly once, all surfaces visible in at least
one of the images used in the construction, so most of the
exposure errors are efficiently eliminated. The LDI can be warped
in the McMillan occlusion compatible ordering. A substantial
increase in performance is obtained by warping in parallel. Our
parallelization scheme achieves good load balancing, scales with
the number of processors, and preserves the occlusion compatible
ordering. A fast, conservative reference-image-space clipping
algorithm also reduces the warping effort.

CR Categories and Subject Descriptors: I.3.1 [Computer
Graphics]: Hardware Architecture - Parallel processing; I.3.3
[Computer Graphics]: Picture/image Generation - Viewing
Algorithms; I.3.8 [Computer Graphics]: Applications.

Additional Keywords: image-based rendering, parallel warping,
occlusion compatible ordering for discrete images, portal, cell,
exposure error, layered depth image, clipping, architectural
walkthrough.

1 INTRODUCTION
In an architectural walkthrough, the scene is naturally divided into
cells (rooms) linked by portals (doors, windows, etc.). A number
of methods have been developed to compute which cells and
which portals are visible in a certain view [Airey90]. However, in
the case of complex models with a large number of geometric
primitives, conventionally rendering all the visible cells is too
slow to maintain interactive rates. The performance is
considerably improved if the only primitives rendered are the ones
in the current cell and each visible portal is rendered by warping a
pre-rendered image [Aliaga97]. Important artifacts, called
exposure errors, occur when a desired view exposes parts of the
scene that are not represented in the image to be warped. To
address this problem, layered depth images (LDIs) are used.

{popescu, lastra, aliaga, oliveira}@cs.unc.edu
Computer Science Department, Sitterson Hall, CB#3175
Chapel Hill, NC 27599-3175

LDIs [Gortler97] have, like ordinary images, a set of parameters
that define the reference view. Unlike ordinary images, they store
information about surfaces that are not visible in the reference
view but might become exposed. This drastically reduces the
occurrence of exposure errors. Since the portal that is rendered
with the LDI may be viewed from many directions, the LDI is in
general wider than it needs to be for any single viewpoint. A
recursive clipping algorithm is used to reduce the size of the LDI
that has to be warped.

While the conventional graphics hardware is rendering the
geometric model of the current cell, the general-purpose
processors of the system are available for warping. Any good
parallelization scheme has to take into account that pixels are
frequently warped into the same location of the desired image.
Epipolar geometry in the context of 3-D warping [McMillan95A],
[McMillan97] shows how points move in the image when they are
warped. In order to understand which pixels may occlude each
other, this theory has to be carefully adapted to the warping of
discrete images where samples have an associated non-zero area.
If different processors warp such pixels without due care,
visibility errors will occur. We overcome these problems and our
parallelization scheme achieves good load balancing and scales
with the number of processors.

2 PREVIOUS WORK
An early technique used to speed up architectural walkthroughs
was to compute the visible cells for every desired view and render
only those cells [Airey90]. For models with a great deal of
geometry, this technique alone is not sufficient.

To reduce the amount of rendered geometry, one can use textures
at the portals [Aliaga97]. In order to get approximately correct
images, a large number of textures have to be used. With few
textures, this technique exhibits a “popping” effect, and a lack of
motion parallax.

More recently, image warping was used to solve these two
problems [Rafferty98]. A number of images with depth were pre-
rendered from a certain number of viewpoints uniformly
distributed on a semicircle in front of the portal. At run time, one
or two such images are warped for every portal. Each image is
warped in occlusion compatible order [McMillan95B], a way of
ensuring correct visibility without depth comparison. When a
single image is warped, exposure errors are common.
Unfortunately, McMillan’s algorithm does not guarantee correct
visibility when multiple images are warped to the desired view.
Furthermore, warping two images incurs redundant work since
many of the samples are identical.

The use of layered depth images [Gortler97, Max95] is an elegant
solution to many of the problems of the previous methods.
Exposure errors are drastically reduced, and the more images that
are used to build the LDI, the less likely it is that such errors
occur. Also, the amount of work done when warping a LDI is

comparable to the amount of work required to warp a regular
image extended with depth; LDIs can be warped in occlusion
compatible order, therefore requiring no depth comparison at run
time.

3 ARCHITECTURAL WALKTHROUGH
SYSTEM
Our architectural walkthrough system is similar to that described
by [Rafferty98]. The current cell is rendered using geometry, but
distant portals are rendered using images, in our case LDIs. When
the viewpoint approaches a portal, the next cell is rendered using
geometry. Thus, geometry is used for nearby objects, while more
distant ones are rendered from images.

3.1. Constructing the LDIs
A LDI is constructed as a preprocessing step. Consider a portal,
and a semicircle in front of it (Figure 1). The first step is to render
2n+1 images with depth, with their centers of projection (COP)
equally spaced along the semicircle and with the view oriented
toward the center of the portal. Figure 1 depicts a situation for
n = 6.

First, the central image, indexed 0, is stored in the LDI. Then, the
remaining twelve images, in order from 1 to 12, are warped to the
plane of the central image. If a sample lands at an empty location,
it is stored, and its generalized disparity (equivalent to depth)
[McMillan97] with respect to the LDI is computed and stored; if,
however, the sample lands at an occupied location, it is stored
only if it represents a different surface. In order to decide whether
the surfaces are distinct, the range values of the two samples are
compared. If the difference in range is greater than some
threshold, the sample is stored in a new layer. If the range
difference is not large enough, but the colors are different, the
new sample is also stored in a new layer. This ensures that enough
samples are stored in the LDI for the surfaces that are not well
sampled by the central view (the LDI view). The cost is the poor
filtering of these surfaces when seen from views close to the
central view.

The construction of LDIs is prone to all errors inherent in the
warping operation: the reconstruction is not perfect, and the
visible samples are forced to land at integer coordinates in the
desired image. These errors are amplified by the warping of the
LDI. Under the assumption that the portal's desired view
parameters are usually close to the reference view parameters,
such errors are minimized when the images close to the
construction view are used first in the construction of the LDI.

When the portal is frequently viewed at acute angles, it would be
worthwhile to construct LDIs viewing the portal from different
angles. The trade off for the gain in quality is additional storage.

3.2. Warping LDIs
Although a LDI stores information about hidden surfaces, it
behaves like a single image when warped, since there is only one
set of view parameters. This section shows how the occlusion
compatible ordering algorithm can be adapted to LDIs, and
describes a parallel implementation for it.

3.2.1. Occlusion Compatible Traversal

As [Gortler97] observes, occlusion compatible traversal works
correctly for LDIs if the locations of the LDI are visited in the

order described by [McMillan95B] and the layers are warped in
back to front order.

To see that this is true, it is necessary to examine two cases. The
first case occurs when samples from two LDI locations (at any
layers) warp to the same location in the final image. This is
equivalent to warping a single-layer image with samples at the
same depth as those in the LDI. [McMillan96] proves this correct.
The second case, samples warped from different layers at the
same location of the LDI onto the same pixel in the final image,
clearly preserves visibility if traversed in back-to-front order.
Notice that for a walkthrough application, LDIs are never seen
from the back.

3.2.2. Problems for Parallelization

Pixels in discrete images have a non-negligible area. This, and the
fact that the desired image is also discrete, presents practical
difficulties that are not apparent in the continuous domain of
epipolar lines and point samples. Let us define the epipolar extent
of a pixel as the set of epipolar lines that intersect the pixel
(Figure 2). The projections of two pixels will not intersect in the
desired image if the epipolar extents of the pixels are disjoint.
Otherwise, the warped pixels may occlude one another and must
be rendered in visibility preserving order. Figure 3 shows the
visibility relationships (ordering of pairs of pixels) for a positive
epipole.

McMillan's paper proposed a way of splitting the reference image
into 1, 2 or 4 sheets that are traversed incrementally in either row-
or column-major order. This method must be modified to take into
account the fact that the epipole will often be located within the
area of a pixel. Problems occur with the pixels on the row and
column of the epipole (for example, PNE in figure 3). They have to
be warped either first or last, depending on the sign of the epipole.
This can be done by making sure that the sheets are warped in the
right order (Figure 4). If we warp the sheets independently (for
example, simultaneously processing them on different
processors), then the epipole’s row and column must be warped
separately before or after the sheets, again according to the
epipole’s sign.

0 2 4
6

8
10

12

1
3

5
7

9

11

Figure 1: View vectors of images used to construct a
LDI.

A1

A2 A4

EA3

P1 P2 B1

B2

Figure 2: The angle A1EA2 is the epipolar extent of
pixel P1. The epipolar extents of P1 and P2 are not
disjoint.

How big is the potential error when the rendering order of two
pixels is wrong? It is the area of intersection of the two
projections. The potential error for the example in figure 2 is
proportional to the area of quadrilateral A2A3B1B2. Therefore, in
figure 3, the smallest potential errors will occur when the warping
order is wrong in rows and columns, such as those containing E
and PE, PS, PW, PN. The largest potential errors will occur when
using the wrong order near diagonals in the reference image. This
fact makes correct and load-balanced parallelization difficult.

3.2.3. Parallel Warping in Occlusion Compatible
Order

When warping in parallel, we would like to achieve the following
four goals: use visibility-preserving order, balance the workload,
preserve the advantages of locality and incremental computation
exhibited by serial warping, and use all available processors. In
[Rafferty98], each of the four sheets was assigned to a different
processor. This approach produces good load balancing only
when the sheets are of comparable size, that is, when the epipole
falls in the center of the reference image. However, this happens
only rarely. In fact, we often see only two sheets. Another
limitation is that no more than 4 processors can ever be used.

This subsection describes a method that achieves much better load
balancing and scales well. Each of the sheets is split into p
fragments of equal area, where p is the number of available
processors (Figure 5). The sheets are split along epipolar lines in
order to avoid as many concurrent writes as possible. The
resulting fragments are triangles or convex quadrilaterals that are
stored as a collection of scan lines that are then efficiently warped.
Depending on the number of sheets, there are p, 2p, or 4p
fragments to be warped. Splitting the entire image into p
fragments is a less appealing solution because fragments that
belong to two sheets have to be traversed in two different traversal
orders.

Unfortunately, visible artifacts occur along the borders of the
fragments (see color plate 4). Pixels that share an epipolar line
should be warped in a well defined order (according to the sign of
the epipole). This cannot be enforced for pixels that belong to
different fragments since they are warped on different processors.
Here is the solution we propose (see figure 6 and color plate 4):

1. Shrink the fragments slightly, so that no epipolar line crosses
more than one fragment. This means that no pixel from one
fragment can warp into another fragment. The pixels
between the fragments form a buffer zone. Warp the
shrunken fragments in parallel.

2. By now a substantial part of the desired image is ready.
Compute the pixels of the desired image that might not be
correct. They are the ones onto which the buffer zone pixels
of the reference image may warp.

3. For each buffer zone, compute a corresponding extended
buffer zone (Figure 6). It contains all of the pixels that might
potentially warp to the same locations as pixels from the
buffer zone. Warp the extended buffer zones, in parallel, in
occlusion compatible ordering but allow writing only to the
potentially wrong pixels (computed at step 2).

Figure 4: In this case S1 has to be warped first then
any of the two S2 and then S4. S1 has no pixel from
the row or column of the epipole, they belong to the
S2's; similar for S2 and S4.

 S1 S2

 S2 S4

E

E

Figure 3: The epipole falls inside a pixel. The arrows
show the visibility relationship between pixels.

PS

PW

PN

PE
EM

E1

F1

F2

Figure 5: In this case the epipole E falls outside the
reference image (or the LDI). The horizontal
epipolar line EM divides the image into two sheets.
Using 3 epipolar lines, each of the sheets is divided
into 4 fragments (one for each available processor)
of equal area. The lightly shaded pixels form
fragment F1. The epipolar line EE1 belongs
alternatively to the fragments F1 and F2 so the pixels
that it traverses have to be warped in visibility
preserving order. This cannot be enforced when the
two fragments are warped in parallel and visibility
artifacts will occur.

This two-pass approach warps some of the pixels twice, but they
form only a very small part of the reference image.

3.2.4. Conservative Reference Image Space
Clipping of LDIs
In the walkthrough application, we construct LDIs by combining
2*n+1 images from different viewpoints. The resulting horizontal
field of view is, in general, quite large. Usually, for a desired
view, only part of the horizontal field of view is needed.
Eliminating, before warping, the columns of the LDI that cannot
be seen in the desired view of the portal brings a substantial
increase in performance at a very low cost.

In order to do this, a binary tree is built recursively. The root
stores the maximum and minimum disparities of the entire LDI.
Then the LDI is divided into two equal parts, with a vertical line.
The child at each branch of the tree always stores the extreme
disparities of the corresponding half of the LDI stored at its
parent. The leaves of the tree correspond to each column of the
LDI, while every node corresponds to a group of contiguous
columns.

At run time, the columns of the LDI that cannot possibly be
visible are eliminated using a recursive clipping algorithm that
uses the minimum and maximum disparities stored in the binary
tree. In order to decide if a rectangular region from the reference
image is visible, its four corners are warped with the minimum
and maximum disparities of the region. A rectangular bounding
box is computed for the eight resulting points. If it does not
intersect the desired projection of the portal, it is safe to not warp
the rectangular region.

4 IMPLEMENTATION AND RESULTS
The system was implemented on a Silicon Graphics Onyx2 (four
R10000 processors) with Infinite Reality graphics. The system is
coded in C++ and uses the OpenGL graphics library. The
architectural model used is that of large one-story house modeled
using 528,000 polygons.

The LDIs were constructed in a preprocessing phase. Thirteen
textures with depth were rendered for every LDI. They are 256 by
256 pixels in size with 24 bits for color and a floating-point
disparity value. The thirteen textures were warped to the
construction view of the LDI that, in our experiment, was
perpendicular to the center of the portal. The seventeen LDIs
created for the model had maximum depth between 4 and 16. One
LDI is generated in less than 30 seconds and the process is fully
automatic. Table 1 shows that in a typical LDI most of the
samples are at level 1 and fewer than 1% are at depth 4 and above.
The pixels that have samples in a large number of layers are due
to scene surfaces that are aligned with a ray from the reference
view of the LDI. Warping such pixels is not less efficient. On the
contrary: only a small part of the warping equation needs to be
evaluated for the various samples. The average size of the files
that store the LDIs is about 2.5 MB. In addition to the color and
depth samples, the files store the number of layers at each
location.

The preloaded LDIs are warped whenever their corresponding
portal is visible. First the recursive-clipping algorithm is run using
the binary-disparities tree computed at load-time. On average the
LDIs are clipped to 50% of their initial size when the entire portal
is visible. The worst case for the clipping algorithm is when the
portal is viewed from a close distance and at an oblique angle.
Then the clipped LDI represents 75% of its initial size. The size of
the clipped LDI decreases to 0 as the portal disappears from sight.
On our system the recursive clipping takes less than 2 ms,
insignificant when compared to the benefits it brings.

At run time parts of the LDI are traversed in row-major order,
either left to right or right to left, the multiple locations always
visited in back to front order. In order to improve the
incrementality and locality of the warping, the samples of the LDI
are saved in two arrays: the locations of the LDI are traversed in
row-major order, but the layers of each location are saved once in
back-to-front and once in front-to-back order.

The combination of the techniques presented was tested on a
typical architectural walkthrough path. The warping times were
reduced on average by a factor of 3.45 versus warping the LDIs
serially. The speedup obtained over serially warping a single
regular image was 1.92. The LDI, of course, drastically reduces
the annoying exposure errors exhibited by single images. Over the
sheet-based parallel warping of LDIs the speedup was 1.67. The
average frame rate was 19 fps with a minimum of 3.5 fps (when
more than 6 LDIs were present in the view frustum).

5 FUTURE WORK
The paths presented had the viewpoint moving on a horizontal
plane. Future work will investigate the construction of the LDIs
when the viewpoint is free to move anywhere in the model’s
volume. Determining how many LDIs are needed and where to

Table 1: Distribution of samples in the layers of a
typical LDI.

Abs %
Total Number of samples 189,688 100
Samples in layer 1 150,080 79.11
Samples in layers 2-3 38,049 20.05
Samples in layers 4+ 1,559 0.84
Size of LDI (pixels layer 1) 536x280

Figure 6: The pixels at the border between the fragments are
warped in arbitrary order, which produces visibility artifacts.
To avoid this problem, the fragments are shrunk by creating a
buffer zone (dark shade in the figure). The pixels that might
interfere when warped with the pixels in the buffer zone form
the extended buffer zone (light shade in the figure). The
extended buffer zones are computed using the epipolar lines
EE12 and EE13 that enclose the buffer zone. The extended
buffer zones are warped as described in the paper to complete
the new image.

E13E12 E1

E

F1

F2

place them in order to guarantee a certain reconstruction quality is
another open problem that deserves future efforts.

Another interesting question that remains open is how to choose
the images used to build the LDIs in order to minimize the
exposure errors that persist. Another perspective to the same
problem is to try to minimize the number of images used such that
building the LDIs can be done interactively.

6 CONCLUSIONS
In this paper we presented improvements to image-based
rendering techniques, demonstrated on an architectural
walkthrough system. The use of LDIs eliminated almost all
exposure errors. Storing and warping LDIs does not cost much
more than storing or warping a regular depth image. We also
presented a very efficient reference-image-space clipping scheme
that worked in the context of portals and architectural
walkthroughs but has potential for other warping applications.
Then we pointed out some precautions that need to be taken when
an image is warped in occlusion compatible ordering. We also
presented a correct method for load-balanced parallel warping,
easily scalable to a variable number of processors.

The use of 3D image warping, in conjunction with conventional
rendering of geometric models, makes for a very powerful
combined system. Important objects close to the viewer can be
rendered using geometry, thus preserving accuracy. More distant
objects can be rendered using image-based methods, which
require work proportional to image pixels not to the amount of
geometry.

7 ACKNOWLEDGEMENTS
This research was primarily supported by grant number MIP-
9612643 from the National Science Foundation and by the
Defense Advanced Research Projects Agency under Order No.
E278, Order No. A410 and DABT63-93-C-0048.

Additional support was provided by CNPq/Brazil under process
number 200054/95 and a UNC Dissertation Fellowship.

 We would also like to thank the UNC Walkthrough Group (for
providing us with the architectural model), Matthew Rafferty and
members of the UNC Graphics lab.

8 REFERENCES
[Airey90] John Airey. Increasing Update Rates in the Building
Walkthrough System with Automatic Model-Space Subdivision.
Ph.D. Dissertation, University of North Carolina (also UNC
Computer Science Technical Report TR90-027), 1990.

[Aliaga97] Daniel G. Aliaga and Anselmo Lastra. Architectural
Walkthroughs Using Portal Textures. In Proceedings of IEEE
Visualization '97, pages 355-362, Oct 19-24, 1997.

[Gortler97] Steven J. Gortler, Li-wei He, Michael F. Cohen.
Rendering Layered Depth Images. Technical Report, MSTR-TR-
97-09. http://www.research.microsoft.com/pub/tr/tr-97-09.ps

[Max95] Nelson Max, Keiichi Ohsaki. Rendering Trees from
Precomputed Z-Buffer Views. In Patrick M. Hanrahan and
Werner Purgathofer, editors, Rendering Techniques '95:
Proceedings of the 6th Eurographics Workshop on Rendering,
pages 45-54, Dublin, Ireland, June 1995.

[McMillan95A] Leonard McMillan and Gary Bishop. Plenoptic
Modeling: An Image-Based Rendering System. In Proceedings of
SIGGRAPH '95, pages 39-46, August 6-11, 1995.

[McMillan95B] Leonard McMillan and Gary Bishop. Computing
visibility without depth. Computer Science Technical Report
TR95-047 (October), UNC-Chapel Hill.
ftp://ftp.cs.unc.edu/pub/publications/techreports/95-047.ps.Z

[McMillan97] Leonard McMillan. An Image-Based Approach to
Three-Dimensional Computer Graphics. Ph.D. Dissertation,
University of North Carolina, April 1997
ftp://ftp.cs.unc.edu/pub/publications/techreports/97-013.pdf.Z

[Rafferty98] Matthew M. Rafferty, Daniel G. Aliaga, Anselmo A.
Lastra. 3D Image Warping in Architectural Walkthroughs.
Proceedings of VRAIS '98, pages 228-233, March 14-18 1998.

Plate 1. a) Artifacts when only a single image is warped. b) A layered depth image (LDI) does not exhibit the artifacts because it
contains surface samples at multiple depths. c) Scene rendered with geometry for comparison.

Plate 2. The first two layers of the
LDI. Pixels without values are shown
in red.

Plate 3. Savings due to recursive
clipping of the LDI before
warping.

Plate 4. Images are rendered in parallel, one fragment per processor. a) Artifacts (highlighted in red) appear at the borders
between fragments because of incorrect occlusion compatible traversal. b) Buffer zones between fragments are rendered during a
second pass. c) Image rendered using two-pass traversal does not exhibit the artifacts of image (a).

