
©The Eurographics Association and Blackwell Publishing 2005. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

EUROGRAPHICS 2006 / E. Gröller and L. Szirmay-Kalos Volume 25 (2006), Number 3
(Guest Editors)

Reflected-Scene Impostors for Realistic Reflections at
Interactive Rates

Voicu Popescu, Chunhui Mei, Jordan Dauble, and Elisha Sacks
Purdue Univsersity

Figure 1: Four inter-reflecting teapots, with 12 second
order reflections. 720x512 pixels (all images), 40 fps.

Figure 2: Reflection attenuation with distance and
Fresnel effects, 66 fps.

Figure 3: Intersecting diffuse and reflective bunnies; reflection rendered with depth map impostor, 16 fps.

Abstract

We present a technique for rendering reflections on complex reflectors at interactive rates based on approximating the
geometry of the reflected scene with impostors. The reflections correctly convey the distance to the reflector surface and
provide motion parallax. Two types of impostors are adapted to the reflections framework: billboards and depth maps.
Billboards remove most of the problems of environment mapped reflections at only a small additional cost. Second order
reflections are supported by introducing reflective billboards. Higher quality reflections that provide motion parallax within
a reflected object are obtained by approximating the reflective geometry with depth maps. The computation of the
intersection between a reflected ray and a depth map is accelerated by leveraging epipolar constraints. Like environment
mapping, our technique does not pose any restriction on the geometry of the reflector, supports dynamic scenes, and runs at
interactive rates with the help of graphics hardware.

Categories and Subject Descriptors (ACM CCS): I.3.3. [Computer Graphics]—Three-Dimensional Graphics and Realism.

V. Popescu, C. Mei, J. Dauble and E. Sacks/ Reflected-Scene Impostors for Realistic Reflections at Interactive Rates

©The Eurographics Association and Blackwell Publishing 2006

1. Introduction

Reflections are an important effect in computer graphics
not only because of their intrinsic esthetic value, but also
because of tangible contributions such as revealing surface
properties and conveying the relative position of objects.
The problem of rendering reflections at interactive rates has
been approached from many directions, but no complete
solution exists. Rendering reflections implies solving the
following problems at each pixel:

1. Computing the intersection between the pixel ray
and the reflector.

2. Computing the reflected rays according to reflector
surface properties.

3. Tracing each reflected ray into the scene, and
proceeding recursively if a reflector is hit again.

4. Antialiasing to account for the non-zero pixel size.

The method of choice for rendering reflections in
interactive graphics applications is environment mapping,
which is simple, versatile, and produces quality reflections
when the reflected objects are far away from the reflector
[BN76, GRE86, HS93, VF94]. The success of environment
mapping can be attributed to employing good approximate
solutions to problems 1, 2, and 4 enumerated above.

Problem 1 is solved using the feed-forward graphics
pipeline: the triangle mesh modeling the reflector surface is
rasterized, which provides the intersection point at each
pixel efficiently. Problem 2 is solved by approximating the
bidirectional reflectance distribution function (BRDF) at
the intersection point with a single normal. The normal is
computed by interpolation of vertex normals, or by looking
it up in a map. The single normal generates a single
reflected ray. Problem 4 is handled by reducing it from a
general antialiasing problem of geometry to the tractable
problem of finding the appropriate level of detail in a
texture, solved by mip-mapping.

When the reflected objects are close to the reflector, the
reflection fails to convey the proximity to the reflector
surface. When an object is touching the reflector, its
reflection remains trapped deep inside the reflector. The
artifact is disturbing, comparable to a shadow disconnected
from a character that does touch the ground. Moreover,
environment mapping does not provide motion parallax,
and does not support higher order reflections. These
problems are due to the drastic approximation employed to
solve problem 3: the intersection between a reflected ray
and the scene is looked up in a cube map using only its
direction. The reflected scene is assumed to be infinitely far
away, which allows replacing it with an image.

We describe a method that alleviates most of the
disadvantages of environment mapped reflections, but
maintains its advantages of efficiency and applicability to a
wide range of reflectors. Our method is based on improving
the approximation of the reflected scene. A successful such
approximation has to satisfy two conditions. First, one has

to be able to compute the approximation quickly in order to
support dynamic scenes. Second, one has to be able to
intersect the approximate geometry with an individual ray
efficiently. This is needed since the coherence of the
desired view rays is perturbed by complex reflectors. The
lack of reflected ray coherence prevents one from
amortizing the cost of the intersection over a neighborhood
of similar rays, and each ray has to be treated individually.

We approximate the reflected scene with impostors, term
coined by Maciel [MS96], and now broadly used to
designate image-based rendering (IBR) geometry
approximations for rendering acceleration. We adapt two
types of impostors to the reflection rendering framework:
billboards and depth maps. Both types of impostor can be
constructed efficiently by rendering the geometry they
replace with the help of graphics hardware. While the
intersection between a ray and a billboard is inexpensive,
intersecting a depth map with a ray is more challenging.

We have devised an algorithm that takes advantage of the
fact that the depth map was acquired with a planar pinhole
camera to greatly simplify the general problem of ray
tracing a triangle mesh. We search for the intersection in
1D, along the projection of the ray onto the image plane of
the depth map. We further accelerate the intersection
computation by pre-simplifying several rotated depth maps.
This way the projection of the reflected ray always aligns
with a row in a rotated map, and the number of samples
considered along a row is bounded. This allows
implementing the intersection on the GPU with a pixel
program. For a 256x256 depth map the total construction
time of the simplified rotated depth map is ~200ms, and
their aggregate memory cost is ~1MB.

Our method produces realistic specular reflections at
interactive rates: the reflections convey proximity to the
reflector and exhibit motion parallax. We support complex
reflectors, second order reflections, dynamic scenes, and
complex reflective surface properties (see Figures 1-3 and
accompanying video). The current implementation does not
support self-reflections. Our technique can be readily used
in most interactive computer graphics applications.

The remainder of the paper is organized as follows. The
next section reviews prior work. Sections 3 and 4 describe
approximating reflected objects with billboards and depth
maps, respectively. Results and conclusions are given in
sections 5 and 6.

2. Prior work

Image-based rendering
The IBR approach is to pre-acquire reference reflections

with a camera or by ray tracing, and then to use them in
novel views. Light fields [LH96, GGS*96] naturally
support reflections at no extra cost. Surface light fields
[Mil98, WAA*00] reduce the size of the ray database using
the geometry of the reflective surfaces. View dependent

V. Popescu, C. Mei, J. Dauble and E. Sacks/ Reflected-Scene Impostors for Realistic Reflections at Interactive Rates

©The Eurographics Association and Blackwell Publishing 2006.

texture mapping [DYB98] samples surfaces of limited
reflectivity from a few viewpoints. Heidrich [Hei99] and
Cabral [CON99] describe systems that decouple reflector
properties from illumination. This is achieved with a light
field that maps incident to reflected rays, and a set of
radiance environment maps, respectively. Yu describes a
method for replacing the environment map with a light
field [YM04c]; the reflected ray is looked up using not only
its direction but also its origin, for more accurate results.
Hakura [HAK01] proposes using several reference
reflection images, each parameterized to best match in
least-mean-squares sense the true reflection when used as
an environment map. The method provides good reflections
nearby the reference viewpoints, but quality degrades for
large viewpoint translations. A disadvantage common to all
these techniques is the lack of support for dynamic scenes:
if the reflecting or reflected objects move, or if the lighting
conditions change, the reference rays become obsolete. A
second disadvantage is limited support for highly reflective,
mirror-like surfaces, which require a high sampling rate
and generate impractically large ray databases.

Projection methods
An elegant approach to rendering reflections is to solve

the problem of projecting reflected points. Computing the
image plane projection of a reflected vertex enables
rendering reflections with the hardware feed-forward
graphics pipeline. The approach works well for planar
reflectors, since the projection is trivial [Die96, MB97,
Bas99]. For curved reflectors there is no closed form
solution to reflected vertex projection. Hanrahan and
Mitchell [HM92] describe a search procedure applicable to
reflective surfaces given by an implicit equation. Ofek and
Rappoport [OR98] handle triangle mesh reflectors using a
reflection subdivision accelerated by an explosion map.
The major disadvantage is inefficiency. The explosion map
depends on the desired view and thus has to be computed
for every frame. Complex reflectors generate highly
complex and expensive explosion maps.

Ray tracing
Ray tracing [Whi80, Gla89] is a general technique which

produces stunning images with complex reflections. The
challenge is to avoid considering ray-primitive pairs that do
not yield an intersection. A wide range of acceleration
schemes have been proposed, and ray tracing has been
shown to run at interactive rates on shared memory parallel
computers [Par99], on special hardware [Hal01], on a
single CPU [Wal01, WSB01, RSH05], and on GPUs
[PBM*02, CHH02, WSE04]. We compare our method to
GPU ray tracers in Section 6. In spite of these efforts the
efficiency advantage of the feed-forward pipeline persists.

Reflected-scene approximation methods
The idea of simplifying the reflected scene in order to

facilitate the intersection with the reflected rays is not new.
As stated earlier, environment mapping does just that,
except that the approximation employed is too drastic.

Lischinski [LR98] proposes a scene representation based
on layered depth images (LDIs) [SGH98]. Mirror-like
reflections are supported by ray-tracing the LDIs, but this
impacts performance considerably.

The first steps in the direction of our solution are taken
by Bjorke [Bjo04], who describes rendering reflections in a
room like environment by replacing the reflected scene
with a sphere of size comparable to that of the room. A
pixel shader intersects the reflected ray with the sphere, and
the intersection point is used as the tip of the direction
vector used in the environment map lookup. This improves
the reflection accuracy since the environment is placed at
an approximately correct distance from the reflector. Few
environments are spherical, so a box-like proxy should be
preferred, even at the cost of a slightly less compact
intersection code. Bjorke’s method is a special case of
reflected billboard impostors, which offer greater modeling
flexibility and support second order reflections.

 An improved reflected scene approximation is achieved
by using distance impostors [SALP05], which are cube
maps enhanced with per-texel depth. Reflected or refracted
rays emanating from the eye or from a point light source
are intersected with the distance impostor to compute
localized reflections, refractions, or caustics. The technique
is efficient and implemented in hardware. The major
drawback of the technique is the approximate nature of the
intersection algorithm. An initial guess is constructed and
then refined iteratively by making severely simplifying
assumptions. As the authors note, the algorithm converges
only for scenes that consist of large planar surfaces. For
such scenes, ray tracing each of the few planar surfaces
should be preferred not only for improved quality and
reliability, but also for efficiency. The use of a depth map is
not warranted when most texels correspond to coplanar
points. Compared to the distance impostors, our technique
works with complex depth maps (Figure 3), and our
algorithm robustly finds a quality approximation for the
intersection between the reflected ray and the depth map.

3. Reflected billboards

The simplest type of impostor is the billboard, a texture
mapped quad, tailored to the contour of the foreground
object using the alpha channel. Since Maciel’s 1995 paper,
researchers have described extensions that include using
billboards in novel graphics architectures [TK96], caching
and improving visibility computation for billboards
[Sch97], transitioning from geometry to impostors [AL98],
and placing impostors [AL99, DDSD03]. Billboards are
particularly well suited for rendering reflections. First, the
alternative of ray tracing the original geometry is very
costly. This is not the case for impostors that replace
directly seen geometry, which compete against the ever-
increasing power of the fixed graphics pipeline. Second, the
“cardboard cutout” artifact is less noticeable in the case of
reflected billboards. Although the billboard is close to the

V. Popescu, C. Mei, J. Dauble and E. Sacks/ Reflected-Scene Impostors for Realistic Reflections at Interactive Rates

©The Eurographics Association and Blackwell Publishing 2006

Figure 4: Two inter-reflecting teapots and a statue
placed on a table. The reflection is rendered using 4
billboards (statue and table for each teapot), 2
reflective billboards (teapots), and an environment
map of the room. 33 fps

Figure 5: Scene with 9 reflectors that generate 72
second order reflections. The spheres are modeled with
triangle meshes. 11 and 6 fps, respectively.

reflector, it is not necessarily close to the eye. Moreover,
the distortion produced by the curved reflector hides the
approximation from the user who has little intuition for the
exact shape of such reflections.

When the billboard tightly approximates the geometry it
replaces (e.g. flat floor, table top, walls, ceiling), the
placement of the billboard is dictated by the original

geometry. In this case the same billboard can be used with
all reflectors in the scene, and it does not need to be re-
rendered when the reflectors or the replaced object move.
When the billboard replaces an object with non-negligible
volume, we place the billboard plane through the centroid B
of the object, and perpendicularly to the line connecting B
to the centroid of the reflector. The billboard is constructed
using a camera with a narrow field of view (10o) to avoid
perspective effects. A different billboard is used for each
reflector. View changes alone do not require re-rendering
the billboards, since the billboard is independent of the
view. A billboard is re-rendered when the object or the
reflector move or deform, or when the lighting changes.
This avoids the large memory consumption, the
preprocessing cost, and the transition problems of pre-
computing a range of billboards in each dimension in
which the scene changes.

We support higher order reflections using reflective
billboards, which are billboards enhanced with per-texel
normals. The normal at a texel is stored in texture memory.
When a reflected ray intersects a reflective billboard, a
tertiary ray is computed using the normal at the intersection
point, which generates second order reflections (Figure 4).
Although it is possible to continue the reflection process
recursively, we find that reflections of order 3 and higher
are not sufficiently useful to warrant the additional cost. A
second order reflection is the reflection of an object that
happens to be a reflector, and is therefore important for
conveying the relative position of two close-by reflectors,
the same way first order reflections are important in the
case of a reflector and a diffuse object. Third and higher
order reflections are too rare and too complex for users of
3D graphics applications to derive information from them.
In real life, the only circumstance when we recall
encountering such high order reflections is that of parallel
planar mirrors, which could be supported as a special case.

3.1. Rendering algorithm

Given a scene with D diffuse billboards, R reflective
billboards, and an environment map EM, the pixel shader
implements a straight algorithm:

1. Compute reflected ray r at current pixel.
2. Intersect r with all other (D+R-1) billboards.
3. If no intersection return EM(r).
4. If closest intersection is with diffuse billboard,

return intersection texel.
5. If closest intersection is with reflective billboard

a. Compute tertiary ray rr.
b. Intersect rr with the D diffuse billboards.
c. If no intersection return EM(rr)
d. Else return intersection texel.

The billboards’ geometry is passed in as a uniform
parameter. The environment map is looked up whenever a
ray does not intersect any billboard. The billboard
intersection takes into account the alpha channel. The cost

V. Popescu, C. Mei, J. Dauble and E. Sacks/ Reflected-Scene Impostors for Realistic Reflections at Interactive Rates

©The Eurographics Association and Blackwell Publishing 2006.

Figure 6: Reflection discontinuity from floor billboard
to environment mapping. Red highlight shows
environment mapping in right image.

Figure 7: The morph corrects the problem. Right
image shows transition area in green.

of the algorithm is D+R-1+D=2D+R-1 intersections. For
Figure 4, Figure 1, and Figure 5 the costs are 2*2+2-1=5,
1*2+4-1=5 and 1*2+9-1=10 intersections. The number of
reflections is O(R2), but shader complexity is linear.

3.2. Billboard to environment mapping morphing

So far we have discussed the case of an object that is not
connected to the environment, such as the table top in
Figure 4. When a billboard is connected to the distant scene
rendered by environment mapping, maintaining continuity
is important. In Figure 6 the floor appears twice, once
correctly as the reflection of its billboard and once
incorrectly in the environment map. One solution is to
employ as many billboards as needed to cover all geometry
connected to billboards. We prefer the better solution of
morphing between a billboard and the surrounding
environment map for a smooth transition (Figure 7).

In Figure 8, reflector R generates reflected rays r0, r1, and
re. The center of the environment map is at E. The ground
is modeled with billboard q0q1. Ray r0 hits the billboard
quad and it is set to the billboard texel color as before. Ray
re clears the transition walls of height H and is set by
environment mapping. Ray r1 hits the transition wall at
point a and it is replaced with rm, a linear blend between
rays r1

d and ra. Ray r1
d originates at E and has the direction

of r1. Ray ra also originates at E but points at intersection
point a. When the height h of a is 0, the ray is set
exclusively from the billboard, which ensures continuity.

When h equals H, the color is computed by environment
mapping only. Objects A and B are sufficiently far away to
be environment mapped. In Figure 9 a small ground

Figure 8: Billboard to environment mapping
morphing.

Figure 9: Illustration of morphing from billboard to
environment mapping. The quad used for the ground is
highlighted with blue. The statues are not modeled with
billboards and are reflected by environment mapping.

billboard provides the correct reflection close to the teapot,
and the morph produces a continuous reflection.

Whenever possible, the color texture of the billboard is
stored in the environment map. In Figure 9 the ground does
not occlude any part of the environment and can be stored
in the environment map. Referring to Figure 8 again, the
color of ray r0 is fetched from the environment map along
the ray from E to the tip of r0. The billboard and the
transition walls form a box, which is intersected with a ray
more efficiently than 5 individual quads; the aggregate cost
is comparable to that of 3 individual quads.

4. Reflected depth maps

Billboards provide great reflections in many situations.
There are however circumstances when higher modeling
power is needed. One example is when it is important for
the reflection to show the exact floor or ground footprint of
the reflected object, which billboards cannot provide.
Another example is the case of a complex reflected object
that gets close to the reflector surface in several points (see
Figure 3): this case over constrains the billboard placement
problem. A third example is the case of a diffuse object
intersecting a reflector: the oversimplified intersection
curve would reveal the flatness of the billboard, and a depth
map is needed (see right side of Figure 3).

Modeling and rendering from depth maps [MB95] has
the advantages of motion parallax within the depth map and
invariance under rigid body transformation. The first step
of using depth maps in the context of reflections is trivial:
depth map impostors are constructed the same way and at

V. Popescu, C. Mei, J. Dauble and E. Sacks/ Reflected-Scene Impostors for Realistic Reflections at Interactive Rates

©The Eurographics Association and Blackwell Publishing 2006

the same cost as billboards, the only difference is that the
texture is extended with a z channel. Reflecting the depth
map impostor into a complex reflector is more challenging.
Extending the 3D warping operation to handle reflected
depth samples cannot be easily done. This would be
equivalent to the complex problem of projecting reflected
vertices, problem pursued by the projection reflection
methods discussed earlier. Instead we have devised a fast
algorithm for intersecting a depth map with a ray. An
acceleration data structure is constructed first and is then
used to find the intersection between a reflected ray and the
depth map efficiently.

4.1. Simplified rotated depth maps

Figure 10: Intersection computed with a 1D search in
the depth map. The depth stores normalized 1/z.

Given a reflected ray r and a depth map DM, the goal is
to find whether and where r intersects DM. In Figure 10
DM was acquired with a planar pinhole camera pphc, using
hither and yon planes that encompass the bounding box of
the original geometry. The image plane was chosen to
coincide with the yon plane for clarity. The intersection of r
with DM, if any, has to project on rp, which is the pphc
projection of r. This constraint is similar to classic epipolar
geometry constraints from multi-camera systems. The
reflector and its rays can be seen as a complex camera
whose rays are projected onto the image plane of pphc.

One approach for finding the intersection is to walk along
rp until an intersection is found. In Figure 10, right, the first
intersection point c is found at cp. This approach is similar
to inverse warping, a technique for rendering from depth
images by searching for the color of a desired image pixel
along an epipolar segment in the reference image
[McM97]. Although it is just a 1D search, the approach is
inefficient. For the 256x256 depth map used for the images
in Figure 3, the average length of rp is 91 texels, and 63
texels have to be examined on average before an
intersection is found.

It is our goal to reduce and bound the number of steps
along rp. One obvious approach is to simplify the depth
map. However, it is difficult to bound the number of
triangles that any rp segment crosses. Moreover,
intersecting with irregular triangles along rp is expensive.
Instead, we simplify the depth map on individual rows in
several rotated domains. A simplified rotated depth map
(SRDM) is produced for each rotated domain. The angles

rp rp
j

O O

p

θi
Figure 11: The ray projection rp is contained in row j
in the rotated domain θi.

that define the rotated domains evenly and densely span the
1D space of slopes in 2D. This way for any rp there is an
SRDM where rp is almost horizontal (Figure 11). For a
given ray r, the search is limited to the SRDM i and to its
row j that contains the projection rp. Given a depth map
DM of resolution w x w, the desired number n of SRDMs,
and the maximum number m of depth samples on each
simplified row, the SRDMs are generated with the
following algorithm:

For i = 0 to n-1
 θi = πi/n
 For j = 1 to w
 SRDMij = SimplifyRow(j, DM, θi, m)

Each row of each SRDM is obtained by simplifying the
corresponding rotated depth map segment. No rotated depth
maps are actually computed.

4.2. Row simplification algorithm

Figure 12: Row simplification. This row has two scene
spans. The initial approximation is given by points with
u coordinates ai. The final approximation is a poly-line
with 7 points. The initial error at depth sample p is ε.

 Row j of rotated domain θi is simplified to m points
using the depth map DM as follows:

1. Set the depth values of row j from DM.
2. Compute an initial poly-line approximation of the row

by approximating each non-background scene span with
two points (Figure 12).

3. Refine the poly-line in greedy fashion by splitting the
worst segment in two, until the number of points reaches m.

The worst segment is the segment with the largest error.
The error of a segment is the maximum error over the depth
samples it covers. The refinement is implemented
efficiently using a priority queue that stores each segment

V. Popescu, C. Mei, J. Dauble and E. Sacks/ Reflected-Scene Impostors for Realistic Reflections at Interactive Rates

©The Eurographics Association and Blackwell Publishing 2006.

Figure 13: Diffuse bunny reflections rendered with a
single depth map impostor. The dynamic intersection
line (top, 16fps) and motion parallax between (bottom,
20fps) are handled correctly (also see video).

together with the row coordinate u where the error is
largest. The queue is sorted in decreasing segment error
order. The worst segment is available in constant time and
it is split at the largest error point. The two new segments
are inserted into the queue in logarithmic time. The SRDMs
are constructed on the CPU and are stored on the GPU in
texture memory as an array of n*w*m 2D points. A point is
defined by a pair of floats (u, zgl).

4.3. Intersection algorithm

The role of the SRDMs is to provide a pre-simplified
version of any depth map segment ever needed. Given a
depth map acquired by pphc and simplified to an array
SRDMi, the reflection color is computed by a pixel program
with the following steps:

1. Compute the reflected ray r at the current pixel.
2. Clip r with the 6 planes of pphc’s frustum, and if the

entire ray is discarded go to 7.
3. Compute rp by projecting the clipped ray onto

pphc’s image plane.
4. Find SRDMi where rp is closest to being horizontal,

and let j be the row that contains rp.
5. Iterate over the m-1 segments of the poly-line at row

SRDMij to find the intersection between r and DM.
6. If an intersection is found, lookup the impostor

texture at the intersection point.
7. Else environment map using the direction of r.

Most of the work is performed by step 5, which requires
reading 2m floats from texture memory and performs m-1

2D segment intersections. The SRDMs truthfully
approximate the depth map even for small m values (8-16),
so the algorithm produces a quality intersection
approximation efficiently Figure 13). The SRDMs do not
need to be recomputed when the reflecting or reflected
objects move. The DM camera is simply transformed to
reflect the current position and orientation. Of course, more
than one DM is needed to capture a reflected object. For the
scene in Figure 13 a DM of the front of the bunny is needed
when the two bunnies swap places.

5. Results

We have tested our approach on several scenes. The
scene in Figure 1 uses the Uffizi Gallery environment map
[Debwww], in which we replaced the original ground
texels with a black and white checker board to better
illustrate the quality of the rendered reflections. The ground
is rendered with a billboard continuous with the
environment, as described in Section 3.2. Most geometric
models are courtesy of the Stanford 3D Scanning
Repository [SSR06]. Our method uses several
approximations which make it efficient without
compromising the quality of the reflections.

5.1. Performance

Performance was measured on a 3GB 3.4GHz Pentium 4
Xeon PC with a Quadro FX 3400 Nvidia graphics card.

Reflected billboards

The reflected billboard pixel program can handle up to 17
intersections in one pass, so D+(R!=0)*(D+R-1) < 18. We
measured the frame rate dependence on the number of
reflectors using the scene and view shown in Figure 5, top.
The ground is modeled with a diffuse billboard connected
to the environment, and each reflector is modeled with a
reflective billboard which produces second order
reflections. Enabling the 9 reflectors one by one produces
the following frame rates [fps].

1 2 3 4 5 6 7 8 9
166 125 77 66 46 37 25 17 11

Six inter-reflecting teapots are handled comfortably. The
limited pixel program length does not become a factor
since the frame rate decreases before the maximum number
of instructions is reached. The performance dependence on
the number of pixels covered by the reflectors was
measured by varying the resolution of the output image.
For 4 reflectors (Figure 1), frame rates [fps] are as follows.

640x480 800x600 960x720 1120x840 1280x960
46 36 31 25 11

The frame rate for 4 reflectors in the second table is
lower because the reflectors cover a larger screen area in
Figure 1 than in Figure 5, top. The shader is complex so it

V. Popescu, C. Mei, J. Dauble and E. Sacks/ Reflected-Scene Impostors for Realistic Reflections at Interactive Rates

©The Eurographics Association and Blackwell Publishing 2006

Figure 14: Study of edge quality as a function of the
angular increment. From left to right: 20o, 10o, 3o, and 2o.

would pay off to shade only visible reflector fragments.
This could be done by producing a reflected ray map in a
first pass, and then shading it in a second pass.

Reflected depth maps

For the 256x256 bunny depth map used in Figure 3 and
Figure 13 we construct n=60 SRDMs (angular increment
180o/60=3o). The total construction times [ms] for various
numbers of poly-line vertices m is given below.

m 8 16 32 64
c.time 210 300 480 980

Even if 25% of the original depth samples are kept, the
pre-processing takes less than a second. In practice we use
m values between 8 and 16. The 210-300ms construction
times open the door to building the SRDMs on the fly. This
is particularly important for applications where several
viewpoints are needed simultaneously, as for example in
stereo. The aggregate memory footprint of the SRDMs is
960KB (60SRDMs x 256rows x 8vertices x 2floats x
4bytes), about four times the 256KB needed for the color or
for the depth. The run time performance is also controlled
by parameter m, which gives the number of iterations in the
intersection search loop. The pixel program length limit is
reached for m=16, which is more than enough for our test
scenes. The SRDMs are stored as textures with 4 float
channels, which allows fetching two poly-line vertices at a
time. The frame rate [fps] dependence on m measured for
the bottom image of Figure 13 is given below.

m 6 8 12 16
frame rate 25 20 17 16

5.2. Quality

Quality reflections are obtained with both types of
impostors. Like environment mapping, our method is
independent of reflector complexity (Figure 17).

For depth map impostors, quality is controlled by
parameters n and m. A finer angular increment reduces the
approximation error when mapping a ray projection to an
SRDM row. Good results are obtained for n=60 (3o in
Figure 14). Parameter n does not affect the run time
performance, but an n value of 18 (i.e. 10o) would reduce
the SRDMs construction time to 70ms. We will investigate
alleviating the edge artifacts for such large angular

increments. One option is to lookup the two best rows and
interpolate. A smaller price could be paid for the second
row if the rows store additional information to correlate a
row with its immediate neighbors. Parameter m controls
the quality of the depth map approximation. Small m values
(e.g. 8) produce remarkably good results. This is because
the simplification occurs along each reflected ray, because
the simplified depth map is not used for shading, and last
but not least because the simplification error is small. The
average relative z error [%] is given below for several m
values and the same bunny depth map. The average is
computed over all depth map texels and all SRDMs.

m 8 10 12 14 16
relative z error 1.43 0.9 0.7 0.5 0.4

Our method does not require reflected ray coherence and
works equally well if the reflected rays are generated by
vertex normal interpolation, bump mapping, or normal
mapping. Therefore our method readily supports any
material developed for environment mapped reflections.
Moreover, the intersection code can easily provide the
distance to the impostor, needed to simulate advanced
effects inaccessible to environment mapping (Figure 15).

Figure 15: Attenuation with distance (left) and Fresnel
effects (right) used together in Figure 2.

Curved reflectors complicate antialising since their
convex and concave reflective surfaces introduce
significant local perturbations of the spatial sampling rate.
Sophisticated ray tracers handle the problem accurately, but
at great expense. Both types of impostors used by our
method are texture mapped, which enables antialiasing by
mip-mapping. As in environment mapping, this
approximate solution is effective and efficient (Figure 16).

6. Conclusions and future work

Rendering reflections by approximating the reflected scene
works well. We have adapted depth maps, a powerful
modeling primitive, to the context of reflections. Reflection
rendering methods can be classified on a continuum based
on the complexity of the geometry used to approximate the
reflected scene. Environment mapping is at one extreme,
with no geometry, reflected billboards are next, with a few
quads, followed by reflected depth maps. Ray tracing is at
the other extreme, since the reflected scene is used at its
full complexity. We will continue to explore this
continuum, to improve the reflected scene approximation
while maintaining versatility and efficiency.

V. Popescu, C. Mei, J. Dauble and E. Sacks/ Reflected-Scene Impostors for Realistic Reflections at Interactive Rates

©The Eurographics Association and Blackwell Publishing 2006.

Our method for rendering reflected depth map impostors
can be described as a GPU ray tracing method that
combines specialized space partitioning—depth map
projection of reflected ray—with specialized
simplification—poly-line approximation along ray-aligned
depth map rows. An accurate performance comparison with
prior GPU ray tracing techniques is difficult. We are
rendering the left image in Figure 3 at 16Hz. Since the
reflective bunny covers a screen region of about
250x350pixels, we process approximately 1.4 million
reflected rays per second. This figure includes the time
needed to generate the reflected rays and to render the
diffuse bunny. The ray-triangle intersection rate reported
for the ray engine is 100Mtris/s [CCH02]. If the ray engine
does not do anything else except for computing ray-triangle
intersections, it achieves the same performance if
100/1.4=71 triangles are intersected for each reflected ray.
Factoring in the time needed to identify which triangles to
intersect, to render the diffuse part of the scene, and to
compute the reflected rays reduces this figure even more.
The ray engine computes intersections accurately, whereas
our method requires lighter pre-processing.

Reflected depth map impostors reduce the problem of
rendering reflections to the lesser problem of modeling and
rendering with depth maps. Inevitably the problems of IBR
by 3D warping are inherited. One such problem are
disocclusion errors. Even if 6 depth maps could be
processed efficiently, disocclusion errors would currently
prevent us from using a depth cube map. The bunny would
either be connected by unsightly rubber bands to the
background, or would leave a background-colored shadow
behind it when the view translates. LDIs are unappealing in
our context since they lose the regularity of single layer
depth images and the connectivity information, which
makes the intersection expensive. Occlusion camera
reference images [PA06] are a promising new solution
which we will adapt to the context of reflections. The major
hurdle seems to be the curved reflected ray projections,
which complicate the creation and use of SRDMs.

We will work towards supporting self-reflections.
Billboards do not support self-reflections since a reflected
ray does not hit the billboard plane again. However, there is
no fundamental obstacle preventing our depth map
impostors to support self-reflections. Self-reflections can be
produced by intersecting the reflected ray with a depth map
of the reflector. The challenge is to provide an appropriate
depth map for each point on the surface of the reflector.
Clearly, more than a single depth map is needed. For
example for the ears of the bunny to correctly reflect each
other, at least two depth maps are needed. We will
investigate optimizing the placement of reflector depth
maps to minimize their number.

We will extend our method to handle view dependent
lighting and shading. A specular highlight for example does
not occur at the same locations on a surface and its
reflection. We will explore using the true eye vector given

Figure 16: Cases of extreme magnification and
minification, handled well by reflected billboard (top)
and depth map impostors (bottom).

by the reflected ray at each pixel. It is also our goal to
improve the implementation. The reflected ray is a
geometric primitive currently projected, clipped and
rasterized in a pixel program. A more efficient approach is
to handle the ray like all other primitives, with a vertex
program followed by a pixel program. A difficulty we
foresee is assembling the output image, which requires
extensions for writing into texture memory within a pixel
program. Finally, we will investigate constructing the
SRDMs on the GPU, achieving full hardware support.

7. Acknowledgments

We thank the anonymous reviewers for their contribution
towards improving this paper. This work was supported by
the United States National Science Foundation through
grants SCI-0417458 and CCR-0306214, and by the
Computer Science Department at Purdue University.
Equipment was donated by Intel and IBM.

References

[AL98] ALIAGA D., LASTRA A.: Smooth Transitions in
Texture-Based Simplific. Comp. & Graphics 22:1, pp. 71-81, 1998
[AL99] ALIAGA D., LASTRA A.: Automatic image placement to
provide a guaranteed frame rate. SIGG '99.
[Bas99] BASTOS R.: Increased Photorealism for Interactive
Architectural Walkthroughs. ACM Symposium on Interactive 3D
Graphics (1999), pp.183-190.

V. Popescu, C. Mei, J. Dauble and E. Sacks/ Reflected-Scene Impostors for Realistic Reflections at Interactive Rates

©The Eurographics Association and Blackwell Publishing 2006

[Bjo04] BJORKE K.: Image-based lighting. GPU Gems, Fernando
R., (Ed.). NVidia, (2004), pp. 307–322.
[BN76] BLINN J.F., NEWELL M.E.: Texture and Reflection in
Computer Generated Images. CACM 19:10, 542-547, 1976.
[CHH02] CARR N., HALL J.D., HART J.C. The Ray Engine,
Graphics Hardware (2002), pp. 1-10
[CON99] CABRAL B.: OLANO M., NEMEC P.: Reflection
Space Image Based Rendering. In Proc. of SIGG ‘99, pp.165-170.
[DDSD03] DECORET X., DURAND F., SILLION F., DORSEY
J.: Billboard clouds for extreme model simplification. ACM
Transactions on Graphics, volume 22, Issue 3, pp.689-696 2003.
[Debwww] DEBEVEC P. Light Probe Image Gallery.
http://www.debevec.org/Probes/
[Die96] DIEFENBACH P. J.: Pipeline Rendering: Interaction and
Realism Through Hardware-Based Multi-Pass Rendering. PhD
thesis, University of Pennsylvania, (June 1996).
[DYB98] DEBEVEC P., YU Y., BORSHUKOV G.: 1998.
Efficient view-dependent image-based rendering with projective
texture-mapping. In EG Workshop on Rendering, 105–116.
[GGS*96] GORTLER S., GRZESZCZUK R., SZELISKI R.,
COHEN M.: The Lumigraph. In Proc. of SIGGRAPH ‘96, 43-54.
[Gla89] GLASSNER, A. An introduction to ray tracing. Academic
Press, 1989.
[GRE86] GREENE, N. Environment mapping and other
applications of world projections. IEEE CG&A, 6:11, (1986).
[HAK01] HAKURA Z.: Parameterized Environment Maps. In
Proc. of ACM Symposium on Interactive 3D Graphics 2001
(2001), pp 203-208.
[Hal01] HALL, D., The ar350: Today's ray trace rendering
processor. In ACM SIGGRAPH / Eurographics conference on
Graphics hardware - Hot 3D Presentations.
[Hes99] HEIDRICH W.: Light Field Techniques for Reflections
and Refractions. EG Workshop on Rendering (1999), pp.195-375.
[HM92] HANRAHAN P., MITCHELL D.: Illumination from
curved reflectors. In Proc. of SIGG. ’92, ACM Press, pp. 283–291.
[HS93] HAEBERLI P., SEGAL M.: Texture mapping as a
fundamental drawing primitive. In Eurographics Workshop on
Rendering (1993), 259-266.
[LH96] LEVOY M., HANRAHAN P.: Light Field Rendering.
Proc. of SIGGRAPH 96 (1996), 31-42.
[LR98] LISCHINSKI D., RAPPOPORT A.: Image-Based
Rendering for Non-Diffuse Synthetic Scenes. Eurographics
Workshop on Rendering 1998 (1998), pp.301-314.
[MB95] McMILLAN L., and BISHOP G.: Plenoptic modeling: An
image-based rendering system. In Proc. SIGG. '95, pages 39-46.
[MB97] McREYNOLDS T., BLYTHE D.: Programming with
OpenGL: Advanced Rendering. SIGGRAPH ’97 course.
[McM97] McMILLAN, L. An Image-Based Approach to Three-
Dimensional Computer Graphics (1997). PhD thesis, Univ. of
North Carolina at Chapel Hill,.
[Mil98] MILLER G.: Lazy Decompression of Surface Light Fields
for Precomputed Global Illumination, EGW on Rendering (1998).
[MS96] MACIEL P., AND SHIRLEY P. Visual Navigation of Large
Environments Using Textured Clusters, Symposium on Interactive
3D Graphics (1995) pp 95-102
[OR98] OFEK E., RAPPOPORT A.: Interactive reflections on
curved objects. In Proc. of SIGGRAPH ’98, ACM Press, 333-342.

[PA06] POPESCU, V. and D. ALIAGA: Depth Discontinuity
Occlusion Camera, In Proc. of ACM Symposium on Interactive 3D
Graphics and Gaming, 2006.
[Paj02] PAJDLA T.: Geometry of Two-Slit Camera. (2002)
Research Report CTU–CMP–2002–02.
[Par99] PARKER, S.: Interactive ray tracing. ACM Symposium on
Interactive 3D Graphics (1999), 119–126.
[PBM*02] PURCELL T.J., BUCK I., MARK W. Ray Tracing on
Programmable Graphics Hardware, ACM Transactions on
Graphics. 21 (3), pp. 703-712, 2002.
[RSH05] RESHETOV A., SOUPIKOV R., HURLEY J.: Multi-
Level Ray Tracing Algorithm, ACM Transactions on Graphics.
volume 24, Issue 3, pp. 1176-1185, 2005.
[SALP05] SZIRMAY-KALOS L., et al.: Approximate Ray-
Tracing on the GPU with Distance Impostors. Computer graphics
forum, 24(3), 2005. pp. 171-176.
[Sch97] SCHAUFLER G.: Nailboards: A Rendering Primitive for
Image Caching in Dyn. Scenes. EG Workshop on Render. (1997).
[SGH98] SHADE J., GORTLER S., HE L., SZELISKI R.:
Layered Depth Images, In Proc. of SIGG 98 (1998), 231-242.
[SSR06] The Stanford 3D Scanning Repository,
http://graphics.stanford.edu/data/3Dscanrep/
[TK96] TORBORG J., KAJIYA J.: Talisman: Commodity realtime
3d graphics for the pc. In Proc. of SIGGRAPH '96 (1996).
[VF94] VOORHIES D., FORAN J.: Reflection vector shading
hardware. In Proc. SIGGRAPH ’94 (1994), pp. 163-166.
[WAA*00] WOOD D.N., AZUMA D. I., ALDINGER K.: Surface
light fields for 3D photography. In Proc. of SIGG ’00, pp. 287-296.

[Wal01] WALD I.: Interactive rendering with coherent ray tracing.
Computer Graphics Forum 20, 3 (2001), 153–164.
[Whi80] WHITTED T.: An improved illumination model for
shaded display. Comm. Of the ACM (1980), 23, 6, pp. 343-349.
[WSB01] WALD I., SLUSSALEK P., BENTHIN C.: Interactive
distributed ray tracing of highly complex models. Eurographics
Workshop on Rendering 2001, pp. 277–288.
[WSE04] WEISKOPF D., SCHAFHIZEL T., ERTL T. GPU-
Based Nonlinear Ray Tracing, Computer graphics forum volume
23,Issue 3, 2004, pp. 625-633.

Figure 17: Reflector distorted in real-time.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

