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Figure 1: Soft shadows rendered with our method (left of each pair) and with ray tracing (right of each pair), for comparison.
The average frame rate for our method vs. ray tracing is 26.5fps vs. 1.07fps for the Bird Nest scene, 75.6fps vs. 5.33fps for the
Spider scene, and 21.4fps vs. 1.98fps for the Garden scene. The shadow rendering times are 49.8ms vs. 1176.4ms, 14.3ms vs.
209.2ms, and 45.2ms vs. 561.8ms for the three scenes, respectively. The output image resolution is 512x512.
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Abstract
We present a soft shadow rendering algorithm that is general, efficient, and accurate. The algorithm supports
fully dynamic scenes, with moving and deforming blockers and receivers, and with changing area light source
parameters. For each output image pixel, the algorithm computes a tight but conservative approximation of the
set of triangles that block the light source as seen from the pixel sample. The set of potentially blocking triangles
allows estimating visibility between light points and pixel samples accurately and efficiently. As the light source
size decreases to a point, our algorithm converges to rendering pixel accurate hard shadows.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism-Texture—Color, shading, shadowing, and texture

1. Introduction

Rendering accurate soft shadows at interactive rates remains
an open research problem. The core challenge is to estimate
what fraction of an area light source is visible from each
of the surface samples captured by the output image pixels.
Consider a 3-D scene modeled with N triangles, a rectan-
gular light source sampled with kxk light samples, and an
output image of resolution wxh. The challenge is to com-
pute whether there is a direct line of sight from each of the
kxk light samples to each of the wxh pixel samples.

One approach is to trace kxk rays from each of the wxh
pixels. Considering all wxh x kxk x N possible ray-triangle
pairs is prohibitively expensive and an acceleration scheme
is needed to avoid considering ray-triangle pairs that do not
yield an intersection. Another approach is to render the scene
kxk times to obtain kxk conventional shadow maps. Each
shadow map needs to be rendered at a resolution comparable
to w x h, and, even so, shadow map undersampling artifacts
can occur. The cost of a brute force implementation of the
approach is prohibitive: the entire scene has to be rendered k
x k times at w x h resolution. For quality soft shadows typ-
ical k values are 16 and above, which implies rendering the
scene hundreds of times. A third approach is to render the
scene from each of the w x h pixel samples at k x k reso-
lution, which computes directly and accurately the visibili-
ty masks needed for each pixel sample. The cost of a brute
force implementation of the approach is, again, prohibitive:
the entire scene has to be rendered w x h times, albeit at the
lower k x k resolution.

In this paper we propose a soft shadow rendering method
that accelerates this third approach. Whereas a brute force
method renders all scene triangles in order to estimate the
light visibility mask of a given pixel sample P, our method
only renders triangles that are likely to block the light as
seen from P. The set of potentially blocking triangles is de-
termined by projecting pixel samples and triangle shadow
volumes onto a regular grid. All pixel samples that project
at a given grid cell are assigned all triangles whose shad-
ow volume projections intersect the grid cell. Our method is
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(1) accurate, (2) efficient, and (3) general. We also refer the
reader to the accompanying video.

(1) For each pixel sample P our method is guaranteed to
render all triangles that block the light as seen from P; there-
fore our method is accurate, in the sense that it accurately as-
sesses visibility from each pixel sample to each light sample.
Fig. 1 shows that soft shadows rendered with our method are
identical to soft shadows rendered with a ray tracer (i.e. N-
VIDIA’s OptiX) for the same light sampling resolution (i.e.
16x16).

(2) Our method is efficient because the approximations
employed are not only conservative, but they are also fast
to compute and tight. First, the set of blocking triangles is
not computed per pixel sample but rather per group of pix-
el samples, leveraging pixel to pixel coherence. Second, the
regular grid is designed such that the projection of a trian-
gle’s shadow volume be approximated well with a simple
axis aligned bounding box (AABB), which precludes unnec-
essary triangle to pixel sample assignments without resort-
ing to expensive convex hull computations. Third, graphics
hardware advances have brought programmability flexibili-
ty that enables an efficient implementation of our method.
In particular, the atomic operations and the memory mod-
el provided by parallel programming environments such as
CUDA enable storing and processing efficiently a variable
number of pixel samples and a variable number of triangle
ID’s at each cell of a regular grid. Our method renders com-
plex soft shadows at interactive rates. In all our experiments,
our method is substantially faster than OptiX. The ray trac-
ing performance reported in Fig. 1 does not account for the
time needed to construct the kd-tree; the performance gap is
even wider for dynamic scenes.

(3) Our method is general, as it works with any scene
modeled with triangles, without requiring a partitioning of
the scene into blockers and receivers, and without restric-
tions on scene geometry such as planarity of receivers or
strong connectivity of blocker meshes. Moreover the method
supports fully dynamic scenes, including moving and de-
forming blockers and receivers, as well as light sources with
changing size, location, and orientation. As the light source
area decreases, our method naturally convergences to the ir-
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regular z-buffer method for rendering hard shadows [JLB-
M05, JMB04, ZM10], producing pixel-accurate results, and
avoiding the classic shadow map resolution issues.

2. Related Work

Several excellent surveys provide a comprehensive and in
depth review of existing soft shadow rendering methods [E-
SA11, HLHS03]. In this brief overview, we distinguish be-
tween image space and geometry space methods. Image
space methods, such as shadow map methods [GBP06,
YDF∗10, SGYF11], project the 3-D scene onto planes to
compute z-buffers used to determine visibility. Geometry s-
pace methods estimate visibility in 3-D space to determine
umbra and penumbra regions, e.g. the penumbra wedge and
shadow volume based methods [Mol02, JHH∗09,FBGP09].
Our method uses triangle shadow volumes, thus it is a ge-
ometry space method.

Based on result accuracy, soft shadow methods can be
divided into three categories: shadow simulation methods,
shadow approximation methods, and accurate shadow meth-
ods. Shadow simulation methods usually start from hard
shadows which are fitted with penumbra regions [Mol02,B-
S02,AHT04]. For example soft shadows can be simulated by
blurring hard shadow edges [Fer05, MKHS10]. Simulation
methods are fast and are thus suitable for applications where
performance is at a premium, but the shadows rendered can
be substantially wrong.

Shadow approximation methods approximate the block-
ing geometry to facilitate visibility querying. For example,
back projection methods approximate blocking geometry
with shadow mapping. Guennebaud et al. [GBP06] estimate
the visibility between the light source and the pixel sample
by using shadow map samples that are back projected onto
the light image plane. Back projection was later improved
for more accurate and faster soft shadows by smooth con-
tour detection and radial area integration [GBP07]. Schwarz
and Stamminger [SS08] approximate model the shadow map
samples with micro-quads and micro-triangles, which im-
proves quality. All these approaches rely on a single shad-
ow map to model blocker geometry, which is not conserva-
tive. Heuristic strategies are employed to fill in gaps in the
shadows and to generate more accurate contours of blockers.
Yang et al. [YFGL09] use multiple shadow maps to reduce
the artifacts of sampling blocking geometry from a single
viewpoint. A concern is rendering efficiency, which is alle-
viated by grouping coherent pixels in tiles and by comput-
ing a single visibility factor per tile. Shadow approximation
methods produce shadows that are based on actual visibil-
ity computation and achieve interactive frame rates at the
cost of approximating the blocking geometry. We do not ap-
proximate blocking geometry, but, like Schwarz and Stam-
minger [SS07], we do use bitmasks to estimate partial light
source visibility.

Accurate soft shadow methods rely on the accurate com-

putation of visibility between pixel samples and light sam-
ples. Our method belongs to the category of accurate soft
shadow methods. Ray tracing [Whi79] naturally supports
accurate soft shadows by tracing rays between pixel sam-
ples and light points, but peformance is a concern. Laine
and Aila [LA05] describe a method based on hierarchical
occlusion volumes for triangles to accelerate the estimation
of whether a triangle blocks the ray between a pixel sam-
ple and the light source. Increasing the size of the area light
source decreases the efficiency of this algorithm. The same
researchers propose another acceleration scheme, dubbed
soft shadow volumes, which is based on finding and work-
ing with silhouette edges as opposed to triangles [LAA∗05].
The approach takes advantage of the observation that soft
shadow computation does not need to worry about triangles
whose projection is landlocked by the projection of neigh-
boring connected triangles when seen from the light. The
shadow wedges cast by silhouette edges are assigned to out-
put image pixel samples using a multi-resolution hemicube,
which is similar to the 2-D grid we employ to assign block-
ing triangles to pixel samples. Both methods leverage the
general idea of computing point in volume inclusion tests in
2-D by projection and rasterization. However, performance
is limited by the overall complexity of the method that im-
plies finding silhouette edges, tracing one ray per pixel, and
reconstructing and resampling the visibility function. An-
other limitation is poor performance for fragmented meshes,
when virtually all triangle edges are silhouette edges. Forest
et al. [FBP08] accelerate the soft shadow volumes approach
to interactive rates using depth complexity sampling. The
method eliminates the need to trace a ray per pixel, it streams
silhouette edges as opposed to constructing a data structure
for storing them, and it provides a good quality/performance
tradeoff.

Eisemann and Decoret [ED07] developed a method for es-
timating visibility between two rectangular patches, which
can be applied to soft shadows. They approximate the shad-
ow volume of a blocking triangle with 4 rays per triangle ver-
tex, one for each of the corners of a rectangular light. We use
the same approximation and we also show that the approxi-
mation is conservative. Their method is not fully general: the
method only allows casting shadows on a plane or a height
field, and the method requires a separation between block-
er and receiver, which precludes self-shadowing. Johnson et
al. [JHH∗09] use a point light source and edges of blockers to
estimate penumbra regions, and then refine penumbra pixel
intensities with extra visibility tests involving the actual area
light source. The challenge of the method is a stable and ef-
ficient detection of silhouettes. Like the method we present,
Benthin and Wald [BW09] construct frusta at pixel samples.
However, they estimate the fractional light visibility from
pixel samples by shooting rays whereas we determine and
rasterize the set of potentially blocking triangles.

Sintorn et al. [SEA08] propose extending alias-free shad-
ow maps (AFSM) [AL04] to soft shadows by accelerating
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the computation of per pixel visibility masks. Like in our
method, pixel samples are first projected onto the AFSM,
which is a regular grid in front of the light. An AFSM loca-
tion stores a variable number of pixel samples using a list.
Then, the shadow volume of each blocking triangle is pro-
jected onto the AFSM. Finally, visibility bitmasks are up-
dated for all pixel samples stored at an AFSM location cov-
ered by the shadow volume projection. One important dif-
ference between AFSM and our method is in the way the
projection of the shadow volume of blocking triangles is ap-
proximated. AFSM approximates the projection by inscrib-
ing the light source into a bounding ellipsoid, by computing
extremal points for the shadow volume projection, and by
computing the 2-D convex hull of the extremal projection
points. The convex hull is then rasterized to determine the
AFSM locations covered. Our method designs the regular
grid such that the shadow volume can be approximated well
with a simple AABB of the projection of extremal points.
This makes the expense of computing and of rasterizing the
convex hull unnecessary. A second fundamental difference
between the AFSM method and ours is that AFSM does not
bound the number of rendering passes. A rendering pass can
only update a constant number of visibility bitmasks. For ex-
ample, for 8 render targets, 4 channels per pixel, and 32 bits
per channel, a rendering pass can update only 4 16x16 visi-
bility bitmasks. Additional rendering passes are needed until
the AFSM location with the most pixel samples is fully treat-
ed. Our experiments show that, for a 512x512 output image
resolution, even if an AFSM with a resolution of 512x512
is used, the maximum number of pixel samples in an AFS-
M location remains high (e.g. 31, which implies 8 rendering
passes). Our method assigns triangles to pixel samples in a
first pass and completes the soft shadow computation in a
second pass, executed in parallel over all pixel samples.

3. GEARS Algorithm

Given a 3-D scene S modeled with triangles, an area light
source modeled with a rectangle (L0L1 in Fig. 2), and a
desired view with eye E and image plane I0I1, our algorithm
renders soft shadows as follows:

1. Compute the output image without the soft shadows.
a. Render S from E to obtain image I0I1.

2. Unproject each pixel p in I0I1 to pixel sample P.
3. Assign potentially blocking tris. to pixel samples P.
4. For each P, compute the frac. visibility vp of L0L1.

a. Construct camera PL0L1 with eye P and image
plane L0L1 (orange frustum in Fig. 2).

b. Render with PL0L1 all blocking triangles
assigned to P on visibility bit mask MP.

c. Compute vp as the percentage of unoccluded
light samples in MP. In Fig. 2, vp = LL1 / L1L0.

5. Add the contribution of light L0L1 to each pixel p of
I0I1 using the computed fractional visibility vp.

Figure 2: Soft shadow computation overview for light L0L1,
output image I0I1 with viewpoint E, blocker B0B1, and re-
ceiver R0R1.

Step 1 is part of the regular rendering of the current frame.
Step 2 is a simple pass over the output image pixels to com-
pute a 3-D point per pixel by unprojection using the pixel’s
z-value. Step 3 computes which triangles should be consid-
ered for each output image pixel. Step 3 is an acceleration
scheme that avoids having to consider all triangles for each
output image pixel. The acceleration scheme is described in
the next subsection. Step 4 computes a visibility bit mask
for every pixel by rendering the potentially blocking trian-
gles determined at Step 3. Step 5 takes a final pass over the
output image pixels to finalize the deferred soft shadow com-
putation.

3.1. Triangle to pixel assignment

Step 3 computes a superset of the triangles that block the
light as seen from each pixel’s 3-D sample point. Given a
scene S, a rectangular area light source L0L1L2L3, and the
pixel samples of the output image, step 3 computes a regular
2-D grid G that stores at each cell (u,v) the set of pixel sam-
ples Puv that project at (u,v), and a set of potentially blocking
triangles Tuv for Puv. The grid is computed as follows:

3.1. Construct camera C with grid G as image plane.
3.2. Project pixel samples with C and assign them to the

cells of G.
3.3. For each triangle T in S:

a. Construct shadow volume V of T .
b. Project V with C and assign T to all the cells of G

that are touched by the projection of V .

(3.1) Camera C is used to decide whether a pixel sample is
inside the shadow volume of a triangle, and it is constructed
as follows.

In order to estimate visibility from pixel samples P to light
samples L, the view frustum of camera C must contain all
segments PL. We satisfy this condition by constructing the
view frustum of camera C such that it contains the 3-D AAB-
B of the four light vertices L j and of all pixel samples P. The
3-D AABB is illustrated in 2-D as A0A1A2A3 in Fig. 3.
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Figure 3: 2-D illustration of the camera used to define and
populate the grid.

A second requirement that the construction of camera C
has to satisfy is that of minimizing the projection of the shad-
ow volumes of the triangles. The smaller the projection, the
fewer grid cells to which the triangle is assigned, and the
more effective the acceleration scheme. Small shadow vol-
ume projections are obtained when camera C has a smal-
l field of view, as more orthographic projections avoid the
magnification of nearby geometry produced by perspective
projections. However, the rays of camera C have to converge
to the light rays as the size of the light decreases. To the lim-
it, when the light source becomes a point, the eye C has to
be the light point. We place eye C on the line connecting
the center O of A0A1A2A3 to the center of the light Lm, with
distance CLm proportional to the diagonal of the area light
source. This way, as the light source decreases to a point, our
algorithm converges to the irregular z-buffering algorithm
for pixel-accurate hard shadows [JLBM05, JMB04, ZM10].

A third requirement that the construction of camera C has
to satisfy is to provide a simple and accurate approximation
of the projection of the shadow volume of each triangle. For
this, we choose the image plane of camera C to be parallel
to the light plane, with the image frame edges being parallel
to the edges of the light rectangle. In other words, the grid
axes are parallel to the light rectangle axes. This way, the 4
light corners L0, L1, L2, and L3, project the 3 vertices B0,
B1, and B2 of a blocking triangle to 3 axis aligned rectan-
gles (Fig. 4, left). Moreover, as it is typically the case for the
detailed scenes of interest in today’s graphics applications,
the majority of blocking triangles are small, which makes
that, for most triangles, the projection of the shadow volume
is approximated well by the 2-D AABB of the 3 projected
rectangles. In Fig. 4, right, the 2-D AABB Q0Q1Q2Q3 is an
excellent approximation of the actual projection of the shad-
ow volume, shown in grey. Q0Q1Q2Q3 only overestimates
the shadow volume projection by the 3 small corner trian-
gles, shown in orange.

The far plane of camera C is given by the farthest corner
of the 3-D AABB (i.e. A1 in Fig. 3). The near plane is set to

Figure 4: Left: projection of shadow volume of triangle
B0B1B2 onto 2-D grid with axes xG and yG. Right: 2-D AAB-
B Q0Q1Q2Q3 is a tight approximation of the shadow volume
projection.

the light plane, as the light is single sided and only casts rays
in one of the half spaces define by light plane.

(3.2) A pixel sample is assigned to the grid cell where the
pixel sample projects with camera C. Fig. 5 uses the same
notation as before. The image plane of camera C, i.e. the
grid, is illustrated on the far plane. There are 4 grid cells
G0-G3, G0 is assigned 4 pixel samples, and G3 none.

(3.3) A triangle is assigned to all grid cells that contain
a pixel sample for which the triangle might block the light.
First, the shadow volume of the triangle is computed by ex-
truding the triangle along the 12 lines defined by the 4 light
corners and the 3 triangle vertices (i.e. lines BiL j in Fig. 4).
The vertices are extruded to the far plane of camera C. In
Fig. 2, which is 2-D, there are 2x2 extrusion points F01, F11,
F00, and F10. The shadow volume is defined by 15 points: 12
extrusion points and the 3 vertices of the triangle. Then, the
15 points of the shadow volume are projected with C onto G,
and the triangle is assigned to all grid cells touched by the

Figure 5: Pixel sample and triangle assignment to grid.
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2-D AABB of the 15 projected points. In Fig. 5 the triangle
whose shadow volume is shown shaded in grey is assigned
to grid cells G0 and G1.

As described above, the shadow volume of a triangle is
extruded to the far plane of camera C, which was construct-
ed based on the 3-D AABB of all pixel samples. However,
the shadow volume only needs to be extruded to the farthest
pixel sample in the grid cells touched by the projection of the
shadow volume. Extruding the shadow volume too far leads
to unnecessary triangle to grid cell assignments. In Fig. 5,
assigning the triangle to G0 is unnecessary.

We address this problem with the following optimization.
First we compute the farthest sample Pf ar in the set of grid
cells touched by the projection of the shadow volume. This
is done efficiently by iterating over the grid cells covered by
the triangle and by computing the maximum of the grid cell
maximum depths, which are pre-computed when the sam-
ples are projected to grid cells at step 3.2. Then we correct
the shadow volume by only extruding the triangle up to the
depth of Pf ar. Finally we project the corrected shadow vol-
ume to determine a smaller yet still conservative set of grid
cells to which to assign the triangle. In Fig. 5 the correct-
ed shadow volume is shown in red.The projection of this s-
maller shadow volume does not touch G0 which avoids the
unnecessary assignment.

4. Results and Discussion

In this section we discuss the quality of the shadows ren-
dered by our method, we give a brief overview of the im-
plementation, we report performance measurements, and we
discuss limitations.

4.1. Quality

Our method is accurate in the sense that it correctly esti-
mates visibility between light source samples and output im-
age pixel samples. This results in soft shadows that are i-
dentical to those computed by ray tracing, when using the
same number of light rays (see Fig. 1 and accompanying
video). The only approximation made by our method that
influences quality is the resolution of the visibility masks
(Fig. 6). Whereas a resolution of 4x4 is insufficient, 8x8 pro-
duces good results, and there is virtually no improvement
beyond 16x16.

4.2. Implementation overview

Referring back to the algorithm overview given in Section 3,
step 1, i.e. rendering the scene preliminarily, without shad-
ows, and step 2, i.e. i.e. unprojection to compute pixel sam-
ples, are implemented using the Cg shading language. The
3-D pixel samples are stored in a floating point texture. Step-
s 3, 4, and 5 are implemented in CUDA. Step 3 computes a

(a) 4x4 (b) 8x8

(c) 16x16 (d) 32x32

Figure 6: Quality dependence on resolution of visibility
masks.

set of potentially blocking triangles for each pixel sample
according to the algorithm given in Section 3.1.

Step 3.1, which constructs camera C with grid G as its im-
age plane, and step 3.2, which assigns a grid cell to each pix-
el sample, are executed together, with a single pass over the
pixel samples, executed in parallel over the pixel samples,
with one CUDA thread per pixel sample. The pass computes
the 3-D AABB of the 3-D pixel samples with an atomic write
which is executed only when the AABB needs to be extend-
ed to contain a point that the current AABB does not contain.
Each pixel sample is projected to the image plane, and the 2-
D AABB of the projections of the pixel samples is computed
with an atomic write. The 3-D AABB is used to define the
frustum of camera C and the 2-D AABB is used to define the
grid G. The resolution of G is an input parameter. The pro-
jection of the pixel sample provides the mapping from pixel
samples to grid cells.

Step 3.3 assigns potentially blocking triangles to grid cell-
s to complete the mapping from pixel samples to potentially
blocking triangles. Step 3.3 is executed in parallel over all
triangles, with one CUDA thread per triangle, in two passes.
In the first pass, the shadow volume of the triangle is project-
ed to grid G with camera C to compute the 2-D AABB of its
projection, in grid cell coordinates, and the number of cells
cellsN touched by the triangle (i.e. the area of the 2-D AAB-
B). The second pass creates an array of pairs (triID,cellID).
The length of the array is given by the sum of the cellsN
variable over all triangles. The location in the array of pairs
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(triID,cellID) where a triangle needs to write its pairs ac-
cording to its 2-D AABB is given by the prefix sum of the
cellsN variable over all triangles.

So far we have established a mapping from triangles to
cells through the array of pairs (triID,cellID). The map-
ping needs to be inverted to be able to retrieve the trian-
gles that potentially block a given cell. The inversion is
achieved by first sorting the array on cellID′s. This places all
(triID,cellID) pairs for a given cell contiguously. However,
one also needs to know the indices (b,e) where the pairs for
each cell begin and end. This is computed in parallel over all
pairs of the sorted array (triID,cellID). Given a pixel sam-
ple p, let (i, j) be the grid cell where it projects, and let (b,e)
be the begin and end indices for cell (i, j). Then the poten-
tially blocking triangles of p are found in the sorted array of
pairs (triID,cellID) from index b to e.

At Step 4, a visibility bit mask is computed for each pixel
sample by rendering the triangles assigned to the pixel sam-
ple with a camera that has the pixel sample as its eye and the
light as its image plane. A triangle is rasterized by checking
the location of each light sample with respect to the three
edge planes. An edge plane is defined by a triangle edge and
the eye of the camera that computes the bitmask. The frac-
tion of occluded bits is trivially computed for each bit mask
to finalize the shadow computation at step 5.

If the light is a point light source, the eye of camera C
corresponds to the point light source, the projections of the
shadow volumes of the triangles are triangles (i.e. there are
only 3 extrusion points F at step 3.3), and the single shadow
bit is known for each pixel sample after Step 3 (i.e. Steps 4
and 5 are not necessary).

4.3. Performance

We tested our technique on several scenes: Spider (41K
triangles, Fig. 1, top), Bird Nest (67K triangles, Fig. 1,
middle), Church (74K triangles, Fig. 7a), Chess (201K
triangles, Fig. 7b), Dragon (81K triangles, Fig. 8) and
Garden (683K triangles, Fig. 1, bottom). All performance
measurements reported in this paper were recorded on a

(a) Church (b) Chess

Figure 7: Additional scenes used to test our method.

3.5GHz Intel(R) Core(TM) i7-4770K CPU PC with 16 GB
of RAM and an NVIDIA GeForce GTX 780 graphics card.

Performance variation with algorithm parameters

Table 1 gives the average frame rate for our test scenes
for various output image resolutions. The light visibility bit-
mask resolution is 16x16 and the grid resolution is 128x128.
For 1,024x1,024 resolution our method achieves frame rates
between 11.3 and 40.8. The Bird Nest scene is more chal-
lenging since on average 41% are soft shadow pixels, where-
as for the other six scenes the percentage is between 11% and
14%.

Table 1: Frame rate [fps] for various output resolutions.

Output res.
512 1024 1280

x512 x1024 x1280

Chess 29.8 19.9 11.8

Church 36.2 17.1 12.3

Dragon 38.7 15.6 11.9

Bird Nest 26.6 11.3 8.8

Spider 75.6 40.8 27.7

Garden 21.4 11.4 9.0

An analysis of the performance of each step of our method
reveals that 80% of the frame time is spent in rasterization.
Table 2 gives a breakdown of the frame time for each of
the steps of our algorithm. We have implemented an alter-
native rasterization approach based on a 2-D lookup table
(LUT) [ED07, SEA08]. Table 3 gives the performance of
our method with LUT rasterization and the speedup achieved
over using edge plane rasterization.

Table 3: Frame rate [fps] for various output resolutions with
LUT rasterization.

Output res.
512x512 1024x1024 1280x1280

/ Speedup / Speedup / Speedup

Chess 33.1 / 11% 23.2 / 17% 14.9 / 26%

Church 38.8 / 7% 19.8 / 16% 14.5 / 18%

Dragon 40.9 / 6% 18.2 / 17% 12.7 / 7%

Bird Nest 54.4 / 105% 18.8 / 66% 11.7 / 33%

Spider 99.3 / 31% 49.0 / 20% 33.0 / 19%

Garden 29.8 / 39% 15.8 / 39% 11.2 / 24%

A significant performance gain is obtained at the cost
of the small rasterization approximation introduced by the
LUT. The maximum approximation error of LUT rasteriza-
tion is given by the maximum difference between bitmasks
stored at neighboring LUT locations. The smallest raster-
ization approximation error is obtained for a high resolu-
tion LUT and for an irregular sampling of the light where
no three light samples are collinear. For Table 4 we used a
1,024x1,024 LUT and 256 random light samples that has a
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Table 2: Time [ms] of each step of our algorithm.

Scene
Project pixels to Prefix sum of Relate triangles Sorting (triID,cellID) Bit mask

the image plane the cellsN variable to cells pairs on cellID rasterization

Chess 0.05 7.50 2.12 1.98 27.0

Church 0.04 0.83 0.55 2.05 29.1

Dragon 0.07 0.92 0.26 1.95 29.7

Bird Nest 0.07 0.51 0.13 1.36 47.6

Spider 0.07 0.29 0.06 1.06 9.6

Garden 0.06 2.37 0.83 1.92 35.7

maximum neighboring bitmask difference of 9. This trans-
lates to average per pixel channel errors between 0.004 and
0.061 for the 7 scenes, a very small error relative to the per-
formance gain brought by LUT rasterization.

Table 4: Per pixel channel errors with LUT rasterization
compared to edge plane rasterization.

Scene
Error

Max Average

Chess 4 0.009

Church 2 0.008

Dragon 3 0.020

Bird Nest 5 0.061

Spider 3 0.004

Garden 4 0.010

Table 5 gives the average frame rate for our test scenes
for various resolutions of the light visibility bit mask. Output
resolution is 512x512, and grid resolution is 128x128. The
bit mask resolution only influences the cost of rasterizing the
potentially blocking triangles for each pixel sample.

Table 5: Frame rate [fps] for various visibility mask resolu-
tions.

Bit mask res. 4x4 8x8 16x16 32x32

Chess 36.7 35.6 29.8 22.0

Church 51.0 44.3 36.2 21.7

Dragon 48.7 46.2 38.7 24.9

Bird Nest 57.7 55.3 26.5 16.0

Spider 114.6 110.0 75.6 48.4

Garden 34.2 30.1 21.4 15.2

Table 6 gives the average frame rate for our test scenes
for various light source sizes. The diagonals of our scenes
are 25, 46, 28, 56, 42 and 185, respectively. The center of
the light is 25, 24, 25, 26, 26 and 100 away from the center
of the scene. Visibility bit mask resolution is 16x16, output
resolution is 512x512, and grid resolution is 128x128. The
soft shadows obtained with the various light diagonals are
shown for the Dragon in Fig. 8.

(a) Diagonal=2 (b) Diagonal=3

(c) Diagonal=4 (d) Diagonal=5

Figure 8: Soft shadows with various light source sizes.

Table 6: Frame rate [fps] for various light source sizes.
Light diagonal 1 2 3 4 5

Chess 35.6 29.8 22.2 17.8 13.9

Church 53.8 36.2 21.6 14.3 11.0

Dragon 52.2 38.7 20.9 18.2 13.8

Bird Nest 30.4 26.5 22.3 19.3 14.9

Spider 88.0 75.6 59.1 52.7 45.2

Garden 29.8 21.4 19.0 16.7 14.4

Table 7 gives the average frame rate for our test scenes
for various grid resolutions. The visibility mask resolution is
16x16 and the output resolution is 512x512. The lower the
grid resolution, the larger the grid cells, the more variability
between the sets of blocking triangles for the pixel samples
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within grid cells, and the higher the penalty of assigning all
pixel samples within a cell the same set of potentially block-
ing triangles. The higher the grid resolution, the smaller the
grid cell, and the higher the number of grid cells to which
a triangle has to be assigned, reducing the efficiency of the
grid. For our test scenes best performance was achieved with
a 128x128 grid.

Table 7: Frame rate [fps] for various grid resolutions.
Grid res. 256x256 128x128 64x64 32x32

Chess 17.9 29.8 28.5 31.5

Church 24.3 36.2 29.0 28.4

Dragon 31.2 38.7 27.7 21.9

Bird Nest 26.0 26.5 24.5 20.9

Spider 68.4 75.6 71.3 65.2

Garden 21.0 21.4 20.3 17.6

Grid efficiency

We investigate grid efficiency in terms of load balancing
and in terms of the quality of the approximation of the set of
blocking triangles for pixel samples.

Typical maximum and average number of pixel samples
per grid cell are shown in Table 8. The grid resolution is
128x128, and output resolution is 512x512. Since the maxi-
mum number of pixel samples per grid cell is large both in an
absolute and in a relative sense (i.e. it is 10 to 18 times the av-
erage), an approach, like alias-free shadow maps [SEA08],
that processes a small and fixed number of pixel samples per
cell for each rendering pass is inefficient. Our method pro-
cesses all pixel samples in a second pass in parallel, and is
significantly less sensitive to the load balancing of the grid.
Table 8 also reports typical maximum and average number
of triangles per grid cell.

Table 8: Number of triangles and of pixel samples per grid
cell.

Scene
Triangles Pixel Samples

Max Average Max Average

Chess 1,438 66 129 11

Church 2,265 72 165 10

Dragon 2,986 65 232 16

Bird Nest 536 27 308 16

Spider 522 8 280 16

Garden 4,454 66 201 16

Finally we have measured the performance of the grid as
a tool for assigning blocking triangles to pixel samples. Per-
fect performance would assign a triangle to a pixel sample
only if the triangle blocks at least one light sample as seen
from the pixel sample. Our method is conservative, in the

Figure 9: Visualizations of actual projections of triangle
shadow volumes onto grid plane. The difference (orange)
between the convex hull (grey) and the AABB are small, as
predicted by Fig. 4.

sense that a pixel sample is assigned all its blocking trian-
gles, but the set of blocking triangles is overestimated. Ta-
ble 9 shows that at least 10% and as many as 33% of the
potentially blocking triangles found using the grid are actu-
ally blocking triangles.

Table 9: Triangle to pixel sample assignments [x1,000].
Scene Necessary Total Percentage

Chess 6,993 28,860 24%

Church 11,603 44,233 26%

Dragon 19,074 57,831 33%

Bird Nest 9,941 36,077 28%

Spider 1,688 8,126 21%

Garden 4,920 48,788 10%

Our method overestimates the set of blocking triangles for
a pixel sample because of three approximations.

(1) A triangle is assigned to a grid cell if the 2-D AABB
of the projection of the triangle’s shadow volume intersects
the grid cell. The first approximation is the use of the AABB
instead of the actual projection. As described in Section 3.1
(Fig. 4), we expect this approximation to be very good. We
quantify the quality of the approximation by comparing the
number of pixel samples covered by the 2-D AABB to the
number of pixels covered by the 2-D convex hull of the pro-
jection of the shadow volume (see Step 3.3 in Section 3.1).
We have found that, on average, the 2-D AABB only covers
an additional 1.13%, 1.5%, 0.31%, 2.2%, 0.96% and 1.65%
pixel samples for the Chess, Church, Dragon, Bird Nest,
Spider and Garden scenes, respectively. Fig. 9 shows exam-
ples of actual projections of shadow volumes and highlights
the small difference between the 2-D AABB and the 2-D
convex hull. This indicates that the potential benefit of using
a convex hull instead of the AABB is small.

Let us now look at the cost a convex hull incurs. As ex-
plained in Section 4.2, Step 3.3 is executed by taking two
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passes over the scene triangles: the first pass counts the num-
ber of grid cells touched by a triangle, and the second pass
builds the (triID,cellID) array. When an AABB is used, the
AABB is a compact, constant-size encoding of the projec-
tion of the triangle shadow volume, which is computed by
the first pass and reused by the second pass. The convex hull
has a larger and variable number of vertices which have to be
stored in order to avoid recomputing the convex hull. More-
over, the convex hull has to be rasterized twice over the grid
to first count the number of grid cells touched by a triangle
shadow volume, and then to write the (triID,cellID) pairs
for each triangle.

(2) The second approximation is that the triangle to grid
cell assignment is computed in 2-D and not in 3-D. As de-
scribed in Section 3.1, we are already optimizing the shad-
ow volume of a triangle by correcting the extrusion to ex-
tend only to the farthest sample of all grid cells touched by
the unoptimized shadow volume. We have tested modulating
the shadow volume extrusion for each individual grid cell,
which increased the percentage of necessary assignments by
7, 7, 6, 4, 3, and 4% from the figures reported in Table 8.
However, the overall performance decreased as the benefits
of fewer unnecessary assignments were outweighed by the
cost of modifying and reprojecting the shadow volume for
each grid cell.

(3) The third and final reason for unnecessary triangle to
pixel sample assignments is the fact that all pixel samples of
a grid cell use the same set of potentially blocking triangles.
In other words, the set of potentially blocking triangles is
computed per grid cell and not per pixel sample. Of course,
this approximation can be controlled through the grid res-
olution. For example, for the Garden scene the percentage
of necessary assignments increases from 10% to 25% if the
grid resolution increases from 128x128 to 512x512. How-
ever, as indicated earlier (Table 7), the best performance is
obtained for a 128x128 grid.

As described in Section 3.1, we optimize triangle to grid
cell assignment by retracting the extrusion of the shadow
volume of a triangle up to the depth of the farthest sam-
ple in the grid cells touched by an initial shadow volume
of the triangle built by extrusion up to the far plane (Figure
5). This optimization brings substantial benefits. The opti-
mization avoids an increase by 223%, 102%, 258%, 269%,
1,278%, and 36% of the number of unnecessary triangle to
grid cell assignments.

Compared to the brute force approach of rendering all
triangles for each of 512x512 output image pixels, our
method renders 512x512x683K/48,788K = 3,670 times
fewer triangles for the Garden example in Table 7. Com-
pared to the brute force approach of rendering a shadow
map for each of 32x32 light points, our method renders
32x32x683K/48,788K = 14 times fewer triangles at a much
lower resolution (i.e. 32x32 vs. 512x512).

Comparison to ray tracing

We have compared the performance of our algorithm
(GEARS) with accurate, edge-plane based, rasterization to
that of NVIDIA’s Optix ray tracer. Table 10 shows that frame
rates for our algorithm are between 10 and 25 times higher
for the same bitmask resolution (i.e. for same shadow quali-
ty).

Table 10: Performance comparison between our method and
ray tracing for the same light sampling resolution.

Scene

GEARS RT static
Speedup

RT dyn.
Speedup

[fps] [fps]
(A)/(B)

[fps]
(A)/(C)

(A) (B) (C)

Chess 29.8 2.91 10 2.52 12

Church 36.2 3.72 10 3.05 12

Dragon 38.7 4.01 10 2.96 13

Bird Nest 26.5 1.07 25 0.95 28

Spider 75.6 5.33 15 3.54 22

Garden 21.4 1.98 11 1.65 13

Whereas Table 10 provides a frame rate comparison be-
tween our method and ray tracing for equal quality, we have
also performed a quality comparison for equal frame rate.
As shown in Table 11, to achieve the same performance, ray
tracing has to reduce the light sampling resolution consider-
ably. This results in noticeable artifacts as shown in Fig. 10.

Table 11: Light sampling resolution comparison between our
method and ray tracing for the same frame rate.

Scene
Frame rate GEARS Ray tracing

[fps] Bitmask res. N. of light rays

Chess 18.1 32x32 = 1,024 50

Church 13.5 32x32 = 1,024 90

Dragon 17.8 32x32 = 1,024 72

Bird Nest 17.5 16x16 = 256 12

Spider 61.5 16x16 = 256 18

Garden 21.4 16x16 = 256 20

It is true that ray tracing supports irregular light sampling
straightforwardly, and irregular light samples achieve high-
er quality with a smaller number of rays. Our edge plane
rasterization is implemented incrementally for a mimimal
per light-sample amortized cost, which requires regular light
samples. Irregular light samples can be supported with a s-
lightly higher cost (i.e. one dot product versus one add). With
LUT rasterization our method supports irregular light sam-
pling at no extra cost and achieves a higher performance. Fi-
nally, ray tracing performance was measured in Table 11 for
static scenes, when the ray tracing’s acceleration data struc-
ture does not have to be rebuilt. For dynamic scenes, our
performance remains the same, whereas the performance of
ray tracing degrades further.

submitted to COMPUTER GRAPHICS Forum (3/2014).



Lili Wang et al. / GEARS: A General and Efficient Algorithm for Rendering Shadows 11

Figure 10: Quality comparison between GEARS (left) and
ray tracing (right) for equal performance.

Of course, there are many ray tracing acceleration
schemes and many implementations. We have chosen to
compare our method primarily to Optix, which is a robust
and stable ray tracing platform. The ray tracing platform de-
veloped by Aila et al. [AL09] provides faster frame rates
in the static scene mode for all our scenes except for the
Spider. The speedup of our method over Aila’s ray tracer is
7.5, 8.5, 9.3, 9.1, 17, and 6.0, for our six scenes in the or-
der they appear in Table 10. Aila’s ray tracer is optimized
for static scenes and reconstructing the SBVH acceleration
data structure is too slow for interactive rates in the context
of dynamic scenes. Recent research results [KA13, Kar12],
which are expected to be integrated into the next major over-
haul of Optix, i.e. Optix Prime, promise better support for
dynamic scenes.

4.4. Limitations

Our approach samples the light densely enough for quality
penumbra approximations, but the blockers have to be large
enough for their projection to be detected in the 16x16 or
32x32 bit masks. This is a fundamental limitation of all ap-
proaches based on light visibility bitmasks. Possible solu-
tions include increasing the resolution of the bit masks fur-
ther with the corresponding performance penalty, or increas-
ing the resolution only for bit masks corresponding to grid
cells where thin features project. Thin features could be la-
beled at input or detected automatically in a conventional
z-buffer rendered from the center of the light.

Our approach uses a regular grid, which, compared for

example to a quadtree, has the important advantage of sim-
ple construction from pixel sample and shadow volume pro-
jections. Of course, the potential disadvatage of a regular
grid is an inefficient modeling of non-uniform sampling. Our
method starts out with a grid matching the 2-D AABB of
pixel samples and then discards grid cells where no pixel
sample projects. Consequently the grid adapts somewhat to
a varying density of pixel samples. In our tests, the addition-
al cost of a quadtree was not warranted. For extreme cas-
es where grid cells get hot enough to hinder performance, a
possible solution is to have secondary grid subdivision of the
hot grid cells.

Whereas our method computes accurate soft shadows
with excellent temporal stability, edges of blocking geom-
etry exhibit some degree of temporal aliasing. The segments
in the accompanying video were rendered with supersam-
pling only for the perliminary rendering pass without shad-
ows. This antialiases edges of blocking geometry incorrectly
with background pixels whose shading hasn’t been yet final-
ized. Of course, a straight forward solution is to use super-
sampling over the entire output frame, but supersampling the
soft shadows is expensive and it seems unnecessary as soft
shadows have low frequencies and are not causing a prob-
lem. We will investigate a method for integrating our soft
shadow computation with antialiasing, which does not in-
curr the cost of supersampling the soft shadows by touching
up fully lit pixels that neighbor pixels with a shadow value
above a threshold.

Finally, our method leverages the coherence of light rays
for a given output image sample by computing the sample’s
visibility mask in feed-forward fashion by projection fol-
lowed by rasterization. Light rays are coherent as long as
the light source is confined to a contiguous region in space.
Therefore our method cannot efficiently support a set of dis-
parate point light sources.

5. Conclusions and Future Work

We have presented a general and efficient algorithm for ren-
dering shadows. The algorithm handles robustly fully dy-
namic scenes modeled with a collection triangles and ren-
ders soft shadows accurately. As the light source decreases
in size, the algorithm converges to rendering pixel-accurate
hard shadows, overcoming the traditional shadow map reso-
lution challenge.

We have shown that a regular grid with a variable and un-
bounded number of pixel samples and blocking triangles per
cell can now be implemented efficiently on graphics hard-
ware and that, in the case of soft shadows, the cost of con-
structing and querying a hierarchical data structure is not
warranted. The 2-D AABB approximation of the shadow
volume we employ is conservative, and we have shown that
the approximation is also tight. We have analyzed the benefit
brought by a convex hull approximation of the projection of
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the shadow volume and we have found that such a benefit
is very low, substantially outweighed by the additional costs
of convex hull construction and rasterization. We have com-
pared our approach to ray tracing and we have shown that
our approach has a substantial performance advantage. The
visibility rays defined by output image pixel samples and
light samples are very coherent, compared to, for example,
the rays resulting from specular reflections off reflective sur-
faces in a scene. Consequently, our feed-forward approach of
assigning triangles to pixel samples by projection followed
by rasterization of shadow volumes and then of rasterizing
blocking triangles onto bitmasks is efficient, and it outper-
forms the approach of hierarchical partitioning of scene ge-
ometry used in ray tracing.

In addition to the possible extensions discussed in Section
4.4, our method can be readily extended to support 2-D area
light sources with complex shapes modeled with "transpar-
ent" light image pixels and colored shadows cast by transpar-
ent blockers [ME11]. Our method can also be extended to
3-D light sources, with two modifications. First, the shadow
volume of a triangle needs to be conservatively approximat-
ed with eight and not just four rays per vertex, i.e. one ray for
each of the corners of a box bounding the light. Second, the
visibility map for a pixel should be large enough to encom-
pass the bounding box of the light, and the 3-D light should
be rasterized to the visibility map to mark the locations that
actually sample the light.

Our paper makes an infrastructure contribution towards
solving the general problem of visibility computation, which
could prove useful in other contexts such as rendering par-
ticipating media or occlusion culling for rendering accelera-
tion.
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