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Most computer graphics and visualization 
applications employ images computed 
with the planar pinhole camera (PPC) 

model. The PPC is a good approximation of the 
human eye, which makes it well suited for appli-

cations showing users what they 
would see during an actual ex-
ploration of the scene. However, 
in some applications, the PPC 
model’s reduced field of view, 
single viewpoint, and uniform 
sampling rate create a severe 
disadvantage.

To address the uniform-
sampling-rate limitation, we 
developed the flexible pinhole 
camera (FPC), which lets users 
adjust the sampling rate accord-
ing to the local importance or 
complexity of the imaged data. 
Like the PPC, the FPC is de-

fined by a viewpoint (the center of projection or 
eye) and an image plane. However, the sampling 
locations are defined not by a uniform grid but 
by a sampling map that allows shifting sampling 
locations from one region of the image plane to 
another. The FPC image provides a coherent non-

uniform sampling (CoNUS) of the dataset. For ex-
ample, the CoNUS image in Figure 1a samples the 
five faces at a higher rate. The underlying sampling 
map (see Figure 2) has the topology of a 32 × 32 
regular rectangular mesh but is distorted to imple-
ment the sampling-rate modulation. (For an over-
view of other research on nonuniform sampling, 
see the sidebar at the end of the article.)

CoNUS images preserve the advantages of con-
ventional images. A CoNUS image can be com-
puted quickly with the help of GPUs. Data access 
is constant-time, with the small additional cost of 
the sampling-map indirection. A CoNUS image has 
good pixel-to-pixel coherence, and conventional 
image compression algorithms apply. Finally, a 
CoNUS image remains a single-layer 2D array of 
samples that defines connectivity implicitly.

The Flexible Pinhole Camera
The FPC must be flexible, to allow defining the desired 
sampling rate for individual image subregions. 
It must also be fast, to render the CoNUS image 
quickly from a variety of input data types.

The Camera Model
We implement the sampling-rate variation with a 
sampling map that defines a distortion of a regular 

The flexible pinhole camera 
allows modulating the 
sampling rate over the field of 
view with fine granularity. It 
inexpensively renders complex 
datasets by projection 
followed by rasterization. The 
resulting image is a coherent 
nonuniform sampling of the 
dataset that matches the 
local variation of the dataset’s 
importance.
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2D mesh. The distorted mesh has the same topol-
ogy as a regular 2D mesh, but with quadrilateral 
cells that are larger where we want a higher sam-
pling rate (see Figure 2). We encode the sampling 
map as a 2D array of 2D points. Each point defines 
a node of the distorted mesh.

Given an (undistorted) image point (u, v), we 
find the corresponding (distorted) CoNUS image 
point (ud, vd) by looking up the sampling map us-
ing bilinear interpolation (see Figures 3 and 4). 
We first convert the input point to sampling-map 
coordinates (u′, v′) (line 1 in Figure 3). Then, we 
compute the distorted point by bilinear interpola-
tion of the four distorted mesh points stored in the 
sampling map at the 2 × 2 neighborhood contain-
ing (u′, v′) (line 2).

Camera model definition. We define the camera model 
FPC with a conventional planar pinhole camera 
PPC and a sampling map SM that distorts the PPC 
image according to the algorithm in Figure 3.

Projection. FPC(PPC, SM) projects a 3D point P to 
its CoNUS image plane by first projecting P with 
PPC to obtain (u, v) and then distorting (u, v) to 
(ud, vd) (see Figure 3).

Camera rays. The FPC(PPC, SM) ray through (ud, vd) 
is the PPC ray through (u, v). So, to compute the 
camera ray, we must invert the distortion, which 
poses two challenges.

First, we must find the quadrilateral cell of 
the distorted mesh containing (ud, vd). A naive 
approach would examine all quads. A better ap-
proach would be to use a hierarchical subdivision 
of the CoNUS image (for example, using a k-d tree 
or a binary-space-partitioning tree) to quickly find 
the quad containing (ud, vd). However, construct-
ing the subdivision is laborious.

Second, we must solve the quadratic equations 
of the inverse bilinear interpolation that com-
putes x and y from (ud, vd), SMi,j, SMi+1,j, SMi,j+1, 
and SMi+1,j+1.

We bypass these challenges by leveraging two 
observations:

 ■ CoNUS applications don’t need to compute 
an individual ray of FPC but rather all rays 
iteratively.

(a) (b) (c)

Figure 1. Working with coherent nonuniform sampling (CoNUS) images. (a) A CoNUS image that allocates 
more samples to the face regions. (b) An output frame reconstructed from the CoNUS image. (c) An output 
frame reconstructed from a conventional image of the same size.

Figure 2. The sampling map for Figure 1a. It has the topology of a 32 × 
32 regular rectangular mesh but is distorted to implement the sampling-
rate modulation.

Algorithm: FPC::Distort(u, v) // FPC distortion
input: undistorted image resolution (w, h),
       undistorted location (u, v), and
       sampling map SM of resolution (w0, h0)
output: distorted location (ud, vd)
1: (u′, v′) = (uw0/w, vh0/h)
2: (ud, vd) = SM.BilinearLookup(u′, v′)

Figure 3. The flexible pinhole camera (FPC) distortion algorithm. 
Given an (undistorted) image point (u, v), we find the corresponding 
(distorted) CoNUS image point (ud, vd) by looking up the sampling map 
using bilinear interpolation.
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 ■ We can avoid bilinear-interpolation inversion by 
splitting the distorted mesh quads into two tri-
angles and replacing the quad bilinear interpola-
tion with two triangle barycentric interpolations.

This modification doesn’t reduce the sampling-rate 
flexibility of FPC. We efficiently find all rays of the 
modified FPC (see Figure 5).

We find the FPC rays by rasterizing the distorted 
mesh QM defined by the sampling map (line 3 in 
Figure 5). QM has the topology of a 2D regular 
mesh, but its vertices are displaced according to 
the desired sampling-rate variation (see Figure 2). 
Each distorted mesh vertex carries its undistorted 
coordinates as texture coordinates (line 4).

To find the ray at the current pixel p, we first 
find (u, v) for p from its texture coordinates (sp, tp) 
(line 8). We then compute the PPC ray at the un-
distorted coordinates (line 9). We find the rays at 
the cost of rasterizing the 2 × w0 × h0 triangles of 
the distorted mesh. This cost is small because the 
sampling map’s resolution is much smaller than 
the CoNUS image’s resolution. We compute the 

rays on the GPU with a trivial fragment shader 
that executes lines 8 and 9.

The algorithm in Figure 5 provides the FPC rays, 
one at a time, at a small amortized cost. To render 
a CoNUS image from a regular image or volume 
data, we specialize the algorithm as described next.

Rendering CoNUS Images
The FPC renders CoNUS images efficiently from 
geometry, image, height field, and volume data.

Geometry data. Figure 6 shows the steps for render-
ing a CoNUS image from a 3D triangle mesh T. We 
project the vertices of T with FPC (PPC projection 
followed by distortion). Then, we conventionally 
rasterize the projected triangles. These triangles 
must be small enough such that conventional 
rasterization provides a good approximation of 
the nonlinear projection induced by the sampling 
map. Most datasets have small triangles, and con-
ventional rasterization is acceptable without fur-
ther subdivision. When subdivision is needed, we 
use an offline approach to avoid the performance 
bottleneck of issuing a large number of primitives 
in the geometry shader.

Image data. We render a CoNUS image from a 
conventional input image by modifying line 9 of 
Figure 5 (see Figure 7). Once we know (u, v), we 
look up the input image to set (ud, vd). A CoNUS 
image has fewer pixels than the original image. 
The original image provides the maximum reso-
lution over the entire field of view, which is pre-
served in some regions of the CoNUS image. The 
other regions of the CoNUS image are at lower 
resolution.
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Figure 4. Piecewise bilinear image distortion using a sampling map. The 
sampling map provides a constant time mapping from the undistorted 
to the distorted domain.

Algorithm: FPC::Rays() // Computation of FPC rays
input: FPC of resolution w × h, defined by PPC and by SM of resolution w0 × h0
output: FPC rays
 1: Initialize 2D mesh QM of resolution w0 × h0
 2: for all (i, j) where 0 ≤ i < w0, 0 ≤ j < h0 do
 3:   Vertex coordinates QM.vi,j = SMi,j ;
 4:   Texture coordinates QM.(s, t)i,j = (i/w0, j/h0);
 5: end for
 6: for all triangles q in QM do
 7:   for all pixels p covered by q do
 8:     (u, v) = (wsp, htp)
 9:     rayp = PPC.GetRay(u, v)
10:   end for
11: end for

Figure 5. The algorithm for efficiently finding all rays of the modified FPC. To render a CoNUS image from a regular image or 
volume data, we specialize the algorithm as needed.
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Height field data. We similarly construct a Co-
NUS height field sampled orthogonally to the base 
plane. However, we set up the pixel by looking up 
the depth in the original height field instead of (or 
in addition to) looking up the color.

Volume data. We render a CoNUS image from vol-
ume data by tracing the FPC rays through the vol-
ume. We determine the rays using the algorithm 
in Figure 5.

Resampling a Regular Image from a CoNUS Image
Some applications, such as remote visualization, 
use the CoNUS image as an intermediate represen-
tation from which they must resample a conven-
tional image to present to the user. We resample a 
regular image I1 from a CoNUS image I0 with the 
steps in Figure 8. A planar pinhole camera PPC1 
defines the rays that sample I1.

Given pixel (u1, v1) of I1, we compute the cor-
responding (ud, vd) in two steps. First, we com-
pute the corresponding point (u0, v0) on the im-
age plane of PPC0 (lines 2 and 3 in Figure 8). We 
compute this correspondence by generating P cor-
responding to (u1, v1) by unprojection with PPC1 
and then by projecting P with PPC0. We combine 
the unprojection and following projection into a 
single matrix multiplication followed by perspec-
tive divides. Second, we compute the correspond-
ing (ud, vd) by distortion, leveraging the algorithm 
in Figure 3.

Sampling-Map Construction
We construct sampling maps in one of three 
ways. The first uses an interactive physics-based 
2D mass-spring system. We cover the image with 
regularly distributed particles connected with 
springs to form a quadrilateral mesh. All par-
ticles have the same mass, and all springs have 
the same resting length (set to 10 percent of the 
initial particle distance in our implementation). 
The user perturbs the system interactively by add-
ing repulsive forces between particles with a cir-
cular brush (see Figure 9). The force magnitude 
decreases exponentially from the brush’s center 
toward its periphery.

We compute the equilibrium state by tracking 
each particle’s position over time until all par-
ticle velocity vectors have negligible magnitude. 
For each time step, we compute the forces on each 
particle. First, we use Hooke’s equation for har-
monic oscillators, Fi = –kxi, where Fi is the force 
applied to the particle by spring i connected to 
it, k is the spring constant, and xi is the particle 
displacement along the spring direction. Then, we 

update the particle velocity v and displacement 
x, using v = v + DtF/m and x = x + Dtv, where 
F is the resultant force acting on the particle. A 
mesh of 256 × 256 particles updates at 30 fps, 
and we reach a stable state in less than 2 s. The 
particles’ final position defines the sampling map, 
which can have a lower resolution than the par-
ticle mesh.

Algorithm: FPC::Render(T) // render from  
 geometry
input: FPC FPC and triangle mesh T
output: CoNUS image I
1: for all vertices v of T do
2:   v′ = FPC.Project(v)
3: end for
4: for all projected triangles t′ of T do
5:   Rasterize t′
6: end for

Figure 6. The algorithm for rendering a CoNUS image from a 3D triangle 
mesh T. We project the vertices of 3D triangle mesh T with FPC. Then, 
we conventionally rasterize the projected triangles.

Algorithm: FPC::CoNUS2Regular(I0) // Resampling
input: CoNUS image I0, FPC(PPC0, SM), PPC1
output: Conventional image I1 for PPC1
1: for all pixels (u1, v1) in I1 do
2:   P = PPC1.Unproject(u1, v1)
3:   (u0, v0) = PPC0.Project(P)
4:   (ud, vd) = FPC.Distort(u0, v0)  
 // see Algorithm 1
5:   I1(u1, v1) = I0 (ud, vd)
6: end for

Figure 8. The algorithm for resampling a regular image from a CoNUS 
image. We combine the unprojection and following projection into a 
single matrix multiplication followed by perspective divides.

Algorithm: FPC::Render(I) // render from image
input: FPC FPC and image I
output: CoNUS image I′
// identical to Figure Y except for line 9
…
9: I′(ud, vd) = I(u, v) // the difference  
 from Figure Y
…

Figure 7. The algorithm for rendering a CoNUS image from a 
conventional input image. The original image provides the maximum 
resolution over the entire field of view, which is preserved in some 
regions of the CoNUS image. The other regions of the CoNUS image are 
at lower resolution.
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We can also construct sampling maps through 
a linear combination of the distortion vectors of 
existing sampling maps:

SM SM s SM SM ti j i j k k i j
k

i j k, , , ,= + −( )+( )0 0Σ ,

where SMi,j, SMi j,
0 , and SMi j

k
,  are elements (i, j) of 

the new sampling map, the undistorted sampling 
map, and the input sampling map k, respectively, 
and sk and tk are the scale factor and translation 
vector of k.

The third way eliminates the discrete represen-
tation and defines the distortion analytically, as 
we describe in the next section.

Applications
We’ve used CoNUS images for remote visualiza-
tion, accelerating depth image rendering, and 
focus-plus-context visualization. (See also the 
video at xxxxxxxxxxxxxxxxxxxxxxx.org. For an 
overview of related research on these topics, see 
the sidebar.)

Remote Visualization
Digital-camera resolution continues to increase 
faster than network bandwidth. In addition, work-
station displays now have lower resolution than 
the simplest digital cameras attached to cellular 
phones (for example, Apple’s 4-Mpixel 30˝ LCD 
versus the 8-Mpixel iPhone 5S camera). So, even 
if the image is transferred at full resolution, it will 
most likely be downsized for viewing.

Often, a digital image’s pixels won’t all have the 
same relevance for the application. For example, 
faces in a portrait photograph are more impor-
tant than the room furnishings (see Figure 1). 
Moreover, digital cameras automatically find faces 
for focusing. In an online geographic atlas, pix-
els sampling famous locations or locations that 
other users have marked as interesting are more 
relevant. In remote scientific visualization, some 
image regions might be known to be of higher in-
terest to scientists, such as regions showing recep-
tors targeted in drug molecule design.

In such contexts, our approach could help re-
duce bandwidth requirements and improve inter-
activity. The server renders a CoNUS image that 
samples the ROIs at a higher rate (see Figure 1). 
Then, the server transfers that image to the client, 
which resamples it into a conventional image. The 
application tours the CoNUS image, showing the 
ROIs in detail.

We’ve also used our approach for remote ter-
rain visualization (see Figure 10). Given a height 
field H at the server and a current view PPC at the 

Figure 9. A mass-spring system for defining sampling maps interactively. 
The user defines regions of higher resolution using the yellow circular 
brush.

(a)

(b)

(c)

Figure 10. Remote visualization of a height field. (a) A CoNUS height 
field and its sampling pattern. (b) An output frame rendered from the 
CoNUS height field. (c) An output frame rendered from a conventional 
height field. If the server sends the CoNUS height fields instead of the 
conventional one, the output frame’s fidelity increases considerably.
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client, we want to resample H to a CoNUS height 
field that has all and only the samples needed to 
provide a quality visualization of the height field 
from views in the neighborhood of PPC.

First, we construct a reference view PPC0 by en-
larging the field of view of PPC to support view 
rotations and increasing the resolution to support 
zooming in and forward translation. Then, we 
construct a CoNUS height field CH with a sam-
pling rate matching the requirements of PPC0. CH 
should have more samples close to the viewpoint 
and fewer at a distance (see Figure 10b). We con-
struct CH with the analytical distortion function 
in Figure 11.

We look up (ud, vd) in H at location (u, v), which 
we compute by intersecting the ray at (ud, vd) in 
PPC0 with the ground plane H.g of H. This con-
struction applies the perspective foreshortening 
of PPC0 while maintaining the orthogonal sam-
pling of H. This avoids disocclusion errors that 
would occur if we actually rendered the geometry 
of H from PPC0. We send CH to the client, which 
transforms it into a 3D triangle mesh that’s ren-
dered for each frame. To convert a CH sample to a 
3D triangle mesh vertex, we compute the ground 
plane point P corresponding to (ud, vd) (line 2 in 
Figure 11) and offset P by CH(ud, vd) above the 
ground plane.

Quality. The CoNUS image in Figure 1 allows ren-
dering all five faces in great detail. The CoNUS 
height field produces frames comparable to those 
rendered from the original high-resolution height 
field (see Figure 10).

Performance. For Figure 1, once we know the FPC 
model, rendering the CoNUS image takes negli-
gible time. We designed the FPC sampling map 
interactively, using the spring-mass system. For 
Figure 10, we used a CoNUS height field of 1,024 × 
1,024 resolution, which was rendered at over 400 
fps and used at over 100 fps.

Limitations. Our approach increases the ROI sam-
pling rate at the expense of the rest of the image. 
When high frequencies are outside the ROIs, the 
undersampling can become noticeable (see Fig-
ure 12).

Our approach doesn’t address occlusions. Oc-
clusions don’t occur for images or orthogonally 
sampled height fields. However, for our approach 
to support six-degree-of-freedom remote visual-
ization of general 3D data, we’ll have to integrate 
it with an occlusion alleviation scheme such as a 
nonpinhole camera.

Accelerating Depth Image Rendering
A depth image can be computed quickly with the 
help of graphics hardware and can be quickly in-
tersected with a ray. Because of these important 
advantages, depth images have been used to ac-
celerate the rendering of complex effects such 
as specular reflection, refraction, ambient occlu-
sion, and relief texture mapping. Eliminating the 
uniform-sampling-rate constraint of conventional 
depth images through our approach could benefit 
all these techniques, provided we preserve the ef-
ficiency of depth image construction and ray in-
tersection. CoNUS depth images can be rendered 
efficiently from height field or geometry data using 
the FPC, as we discussed before.

To intersect a conventional depth image with 
a ray, the ray is projected to the depth image’s 
plane, and the projection is traced with one-pixel 
steps until an intersection is found.1 For a Co-
NUS depth image, the ray’s projection is no lon-
ger a line segment but a curve segment. We can 
no longer project the ray solely by projecting its 
endpoints. Instead, we must subdivide it into seg-
ments and project each segment endpoint with the 
FPC. This preserves the fundamental advantage of 

Algorithm: HeightFieldCoNUS(H, PPC0)
input: Height field H, client reference view  
 PPC0
output: CoNUS height field CH
1: for all samples (ud, vd) in CH do
2:   (u, v) = PPC0.Ray(ud, vd) ∩ H.g
3:   CH(ud, vd) = H(u, v)
4: end for

Figure 11. The analytical distortion function. The constructed 
height field CH has a sampling rate matching the reference view’s 
requirements.

(a) (c)

(b)

Figure 12. Limitations of our approach. (a) A sampling artifact outside 
the regions of interest (ROIs) in a frame reconstructed from the CoNUS 
image in Figure 1. (b) Undersampling of a distant mountain by the 
CoNUS height field. (c) The original height field. Our approach increases 
the ROI sampling rate at the expense of the rest of the image.
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depth images having a 1D intersection with a 
ray, at the cost of a slightly more complicated ray 
projection.

We’ve integrated CoNUS depth images into re-
lief texture mapping (see Figure 13) and specular-

reflection rendering (see Figure 14), in which the 
CoNUS depth image intersects with eye rays and 
reflected rays, respectively. Relief texture mapping 
uses a depth image to enhance a surface with geo-
metric detail. Specular-reflection rendering avoids 
environment-mapping approximation errors by 
modeling objects close to reflectors with depth 
images. Depth images accelerate these effects 
mainly because you can compute the intersec-
tion between a ray and a depth image faster than 
you can compute the intersection between a ray 
and the original geometry. A CoNUS depth image 
brings sampling flexibility without increasing the 
intersection’s cost.

Quality. The sampling flexibility afforded by Co-
NUS depth images let us improve the clarity of the 
engraved tablets in Figure 13 and their reflection 
(see Figure 14).

Performance. For both conventional and CoNUS 
depth images, the performance bottleneck for re-
lief texture mapping and specular-reflection ren-
dering is computation of the intersection of the 
depth image and ray. Intersecting a ray with a 
CoNUS depth image incurs the additional cost of 
distorting a 2D point at every step along the ray. 
However, CoNUS distortion is fast; our average 
frame rate penalty was only 5 percent.

For applications in which the CoNUS depth im-
age intersects with many rays, it might be advanta-
geous to undistort the CoNUS depth image at the 
client into a higher-resolution conventional depth 
image, using the algorithm in Figure 8. This re-
sults in straight ray projections and avoids the cost 
of per-step distortion.

Limitations. CoNUS depth images inherit conven-
tional depth images’ occlusion limitations. The 
sampling tradeoff can lead to visual artifacts out-
side the ROIs.

(a) (b) (c) (d)

Figure 13. Using a CoNUS relief texture. (a) The object of interest. (b) A CoNUS relief texture that allocates more samples to the 
tablet. (c) A detail rendered with the CoNUS relief texture. (d) The same detail rendered with conventional relief textures of the 
same size.

(a) (b)

(c) (d)

Figure 14. Using a CoNUS depth image. (a) A CoNUS depth image 
emphasizing all four engraved tablets (b) The scene setup. (c) Reflection 
details rendered with a CoNUS depth image. (d) Reflection details 
rendered with a conventional depth image.
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Focus-plus-Context Visualization
Our approach is well suited for focus-plus-context 
visualization for two reasons. First, it offers good 
control over the sampling rate, which allows pre-
cisely designing one or multiple focus regions. 
Second, as we mentioned before, CoNUS images 
can be rendered quickly, which supports dynamic 
scenes and interactive changing of focus region 
parameters. The CoNUS image is shown directly 
to the user, so no decoding is needed. The CoNUS 
image can be rendered efficiently from a variety of 
data, as we described before. The only remaining 
challenge is sampling-map construction.

Unlike the previous two applications, here we 
must construct the sampling map online, once 
for every output frame, which precludes using 
the mass-spring approach. We compose canoni-
cal circular sampling maps, one for every focus 
region. We’ve applied this approach for volume 
rendering (see Figure 15) in which the user ma-
nipulates the focus region and view parameters 
to examine a volume dataset. We’ve also applied 
it to a city scene modeled with triangle meshes 
(see Figure 16), where the focus regions track 
moving cars. We located the focus region by 
projecting the center of the tracked car in the 
output view.

Quality. In our approach, the focus regions have 
strong magnification and low distortion. As we 
mentioned before, their parameters can change; 
regions can merge and separate without abruptly 
changing the output visualization. Focus-plus-
context visualization is particularly robust to un-
dersampling outside the focus region. Users will 
likely focus on the region they selected as impor-
tant, and the focus regions can shift interactively 
to visualize any region in more detail.

Performance. In our experiments, FPC volume 
rendering was on average 7 percent slower than 

conventional volume rendering. Traversal of the 
volume dominates the cost of volume rendering 
by ray casting, so computing the perturbed rays 
for our approach doesn’t affect performance. We 
attribute the slight performance decrease to a 

(a) (b)

Figure 15. CoNUS focus-plus-context volume-rendering visualizations emphasizing the (a) left and (b) right cylinder housings of 
an engine. The FPC enables versatile focus-plus-context visualization that can handle any type of data and provides good control 
over the focus regions.

(a)

(b)

Figure 16. Visualization of a city scene modeled with triangle meshes.  
(a) A CoNUS visualization emphasizing the yellow and white cars.  
(b) A conventional image. The CoNUS images are rendered directly from 
the dataset using the FPC.
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larger output image footprint for the distorted 
volume and to more rays focusing on the center 
of the dataset, where volume-traversal distances 
are longer. The vertex distortion when rendering 
CoNUS images from triangle meshes had no mea-
surable performance impact.

Limitations. Because our approach doesn’t alleviate 
occlusions, tracked objects of interest can become 
hidden, and the user must change the view to re-
veal them. We’ll examine changing the view auto-
matically to keep tracked objects visible.

The sampling map is a powerful tool for as-
signing more pixels to some regions of the 

image plane. For example, for the image in Fig-
ure 1, the maximum sampling-rate increase was 
8.13×. We measured this by finding the sampling 
mesh’s largest quadrilateral cell and dividing its 
area by an undistorted cell’s area. The sampling 
map doesn’t create new pixels—we increase the 
sampling rate by decreasing the sampling rate in 
less important regions.

For a sampling map of resolution w0 × h0, 
with ROIs occupying k cells and a minimum 
sampling rate of the context regions of c×, the 
upper bound for the sampling-rate increase is 
z = w0h0(1 – c)/k + c. For example, if w0 × h0 = 
1,024, k = 64, and c = 1/2, then z = 8.5×. If the 
application tolerates downsampling the context 
to 1/8, z increases to 14.125×. If there’s a single 

First, we look at attempts to remove conventional images’ 
uniform-sampling-rate constraint. Then, we review re-

search on the areas in which we applied a flexible pinhole 
camera (FPC) to render coherent nonuniform sampling 
(CoNUS) images (see the main article).

Nonuniform Sampling Rate
Hierarchical spatial-partitioning approaches such as k-d 
trees improve representation efficiency by stopping sub-
division in regions where data is sampled accurately. We 
could have defined the FPC sampling map with such an 
approach. These approaches support a wider range of 
sampling rates than our distorted-grid approach (see 
Figure 2 in the main article). However, they suffer from 
sampling-rate discontinuity, lack of contiguity, and more 
complex construction (rendering) and usage (lookup).

Images with a nonuniform sampling rate originally were 
a side effect of techniques for removing conventional im-
ages’ field-of-view limitation. For spherical panoramas, the 
sampling-rate variation was an unwanted side effect; they 
were replaced by cube maps with a more uniform sampling 
rate. Recently, single-image panoramas have received re-
newed attention because programmable graphics hard-
ware enables sampling patterns that avoid previous un-
dersampling problems.1 Researchers have also addressed 
conventional images’ single-viewpoint limitation with 
camera-model-level innovations such as the general linear 
camera2 and occlusion camera.3 Our approach comple-
ments these approaches, providing sampling-rate flexibility 
to panoramic and nonpinhole cameras.

Irregular sampling patterns have also occurred with 
image-based rendering by 3D warping4 and shadow an-
tialiasing.5 Both approaches reproject depth images to 
novel views in which the forward-mapped samples are 
irregular. Our approach doesn’t control sampling with suf-
ficient granularity to sample the shadow map precisely at 

the locations where the output image requires it, which 
would be needed to completely eliminate shadow aliasing. 
However, we could reduce shadow aliasing by using a Co-
NUS shadow map with a higher sampling rate in regions 
that are magnified in the output image.

The most general pinhole camera defines each ray 
independently with its own image plane point.6 Such a 
model theoretically has maximum generality, allowing for 
any sampling pattern given n rays, but has no practical 
use. First, the rays aren’t organized in a 2D array, so the 
resulting image is an unsorted list of color samples that 
can’t be easily displayed. Second, rendering such an image 
is expensive because it would require tracing each ray 
independently.

A practical implementation of the general pinhole 
camera restricts the sampling-rate variation to a rectan-
gular region R of the image plane.6 A smaller rectangle r, 
concentric with R, provides a higher-resolution sampling 
of the scene. The region r is sampled with a planar pinhole 
camera and is thus distortion free (3D scene lines map to 
2D image lines). This approach uses the region R – r to 
transition from the low sampling rate outside R to the high 
sampling rate inside r. It chooses the sampling locations 
in R – r with a quadratic or cubic function to achieve C0 or 
C1 continuity. It supports several disjoint regions of higher 
resolution.

The FPC is another specialization of the general pinhole 
camera model. Our approach has two fundamental advan-
tages over the implementation in the previous paragraph. 
First, the FPC provides far greater flexibility in defining the 
sampling locations. Second, the FPC sampling map pro-
vides fine-grained control of the sampling rate while keep-
ing constant the amortized cost of the fundamental image 
point distortion and undistortion operations. In contrast, 
a general planar pinhole camera with multiple rectangular 
regions of high resolution requires checking each region 
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ROI that fits in one cell (that is, k = 1), then 
even for a negligible downsampling of the con-
text regions by c = 0.95×, the ROI’s sampling 
rate can reach z = 52.15×.

Possible future research includes

 ■ exploring other uses of CoNUS images (for ex-
ample, for geometric simplification and acceler-
ating other rendering effects),

 ■ investigating the cost–benefit tradeoff of higher-
order interpolation of the sampling map to 
achieve C1 sampling-rate continuity, and

 ■ developing automatic sampling-map constructors.

We’re particularly interested in tightly coupling 
our approach with automatic techniques for de-

termining what to sample in more detail, such as 
automatic geometric-complexity analysis, object 
recognition, eye tracking, and saliency maps.

We foresee that FPC-rendered CoNUS images 
will have wide applicability because they’re com-
patible with virtually all contexts in which images 
are used. 
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for the distortion or undistortion of a point. This process 
doesn’t scale with the number of regions.

Texture-mapping implementations have pursued non-
uniform sampling through compression, atlasing, enhance-
ment with explicitly modeled high-frequency features (for 
example, edges), and distortion. We discuss only the last 
two approaches because they’re the closest to our research. 
Textures enhanced with edges modeling shadow silhou-
ettes7 or abrupt color changes8 are more robust to magnifi-
cation. This approach is compatible with CoNUS textures. 
Edges derived from vector graphics primitives must un-
dergo sampling-map distortion (see Figure 2 in the main 
article), and long edges must be split. For texture-derived 
edges, the CoNUS texture can be used directly. Space-op-
timized textures9 distort textures with a mechanism similar 
to our sampling map. However, our research extends non-
uniform sampling to more types of data and applications.

Remote Visualization
As the size of acquired and computed datasets continues 
to increase, so will the importance of remote visualization 
of remote datasets for clients with no high-end storage 
or visualization capabilities. One approach reduces the 
dataset on the server to a size that can be transmitted to 
and visualized by the client. You can use many techniques 
for this, including data compression,10 feature extraction,11 
and level of detail.12 Another approach computes the 
visualization at the server and sends images to the client. 
13 The client needs only a simple terminal that can display 
images, but network bandwidth limits the visualization 
resolution and frame rate.

A hybrid approach transfers from the server to the cli-
ent images having more data than what’s needed for the 
client’s current frame. Such an enhanced image should 
be sufficient for a quality reconstruction of a sequence 
of frames at the client, without additional data from the 

server. Researchers have used images enhanced with per-
pixel depth14 and additional samples at the center6 to al-
low translating and zooming in at the client.

Another hybrid approach transfers CoNUS images. 
A CoNUS image that samples known regions of interest 
(ROIs) in greater detail anticipates the user’s intention to 
zoom in on those regions. A CoNUS height field that sam-
ples the ground plane orthogonally, yet at a higher rate 
close to the user, supports six-degree-of-freedom naviga-
tion at the client in the current view’s neighborhood.

Accelerating Depth Image Rendering
Depth images are powerful geometry approximations 
used for acceleration in many contexts. However, we limit 
this discussion to relief texture mapping and specular re-
flection, which we used in the main article to illustrate our 
approach’s benefits.

Relief texture mapping adds geometric detail to sur-
faces. It produces correct silhouettes and correct interac-
tions between relief geometry and other relief and nonre-
lief geometry (for example, intersections and casting and 
receiving shadows).15 The relief texture is a depth image 
attached to a base box. Rendering the box triggers the 
computation of an eye ray–depth image intersection at 
every pixel covered by the box. The intersection computa-
tion projects the ray onto the depth image and follows the 
ray projection until it finds the first intersection.

Specular reflection is challenging for the feed-forward 
3D graphics pipeline because computing the image plane 
projection of reflected vertices isn’t easy. We group specular-
reflection rendering techniques into four categories: ray 
tracing,16 approximations of the projection of reflected 
vertices,17 image-based rendering,18 and approximations 
of the reflected scene. We discuss only the fourth category 
because CoNUS specular-reflection rendering falls in it. 
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Environment mapping performs the most drastic approxi-
mation; it assumes that the reflected scene is infinitely far 
from the reflector.19 Environment-mapped reflections are 
incorrect for objects close to the reflector. Approximating 
these objects with billboards or depth images18 improves 
reflection accuracy. Using CoNUS depth images as relief 
textures or approximations of reflected objects provides 
sampling flexibility without considerably increasing the 
cost of ray or depth image intersection.

Focus-plus-Context Visualization
The visualization of complex scenes can benefit from 
highlighting the scene region that’s most important in the 
application’s context. Such focus-plus-context visualization 
has a multiple-stage pipeline, including

 ■ finding the ROIs;
 ■ finding the best viewpoint for an ROI; and
 ■ highlighting the ROI by assigning it a salient color, assign-
ing it more pixels, or managing occlusions through cut-
away, transparency, or nonpinhole-camera techniques.

For example, the best viewpoint can be found automat-
ically through analysis of the region feature distribution 
in an information-theoretic framework.20 Stefan Bruckner 
and his colleagues surveyed state-of-the-art methods for 
the focus-plus-context pipeline stages.21 Here, we only 
discuss highlighting the ROI by allocating more pixels to 
it, which is how the FPC contributes to focus-plus-context 
visualization.

An important challenge stems from the fact that dis-
plays have a uniform pixel resolution (except for special 
focus-plus-context screens22). So, a focus-plus-context 

image can’t be displayed directly and must be mapped to 
displays with uniform resolution by introducing distor-
tions between the focus and context regions. Focus-plus-
context visualization is typically applied to 2D data (for 
example, hierarchies,23 graphs,24 and maps25). You can 
apply it to 3D data by either distorting the dataset and 
visualizing it with a conventional camera26 or distorting 
the camera model.6,27 FPC focus-plus-context visualization 
falls in the second category. Like the general pinhole cam-
era, the volume lens defines one or a few ROIs with higher 
resolution.27 The employed ray perturbation doesn’t pro-
vide closed-form projection, and the method is restricted 
to volume rendering and ray tracing.
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