
14 March/April 2014 Published by the IEEE Computer Society 0272-1716/14/$31.00 © 2014 IEEE

Feature Article

A Flexible Pinhole Camera
Model for Coherent Nonuniform
Sampling
Voicu Popescu and Bedrich Benes ■ Purdue University

Paul Rosen ■ University of Utah

Jian Cui ■ Purdue University

Lili Wang ■ Beihang University

Most computer graphics and visualization
applications employ images computed
with the planar pinhole camera (PPC)

model. The PPC is a good approximation of the
human eye, which makes it well suited for appli-

cations showing users what they
would see during an actual ex-
ploration of the scene. However,
in some applications, the PPC
model’s reduced field of view,
single viewpoint, and uniform
sampling rate create a severe
disadvantage.

To address the uniform-
sampling-rate limitation, we
developed the flexible pinhole
camera (FPC), which lets users
adjust the sampling rate accord-
ing to the local importance or
complexity of the imaged data.
Like the PPC, the FPC is de-

fined by a viewpoint (the center of projection or
eye) and an image plane. However, the sampling
locations are defined not by a uniform grid but
by a sampling map that allows shifting sampling
locations from one region of the image plane to
another. The FPC image provides a coherent non-

uniform sampling (CoNUS) of the dataset. For ex-
ample, the CoNUS image in Figure 1a samples the
five faces at a higher rate. The underlying sampling
map (see Figure 2) has the topology of a 32 × 32
regular rectangular mesh but is distorted to imple-
ment the sampling-rate modulation. (For an over-
view of other research on nonuniform sampling,
see the sidebar at the end of the article.)

CoNUS images preserve the advantages of con-
ventional images. A CoNUS image can be com-
puted quickly with the help of GPUs. Data access
is constant-time, with the small additional cost of
the sampling-map indirection. A CoNUS image has
good pixel-to-pixel coherence, and conventional
image compression algorithms apply. Finally, a
CoNUS image remains a single-layer 2D array of
samples that defines connectivity implicitly.

The Flexible Pinhole Camera
The FPC must be flexible, to allow defining the desired
sampling rate for individual image subregions.
It must also be fast, to render the CoNUS image
quickly from a variety of input data types.

The Camera Model
We implement the sampling-rate variation with a
sampling map that defines a distortion of a regular

The flexible pinhole camera
allows modulating the
sampling rate over the field of
view with fine granularity. It
inexpensively renders complex
datasets by projection
followed by rasterization. The
resulting image is a coherent
nonuniform sampling of the
dataset that matches the
local variation of the dataset’s
importance.

 IEEE Computer Graphics and Applications 15

2D mesh. The distorted mesh has the same topol-
ogy as a regular 2D mesh, but with quadrilateral
cells that are larger where we want a higher sam-
pling rate (see Figure 2). We encode the sampling
map as a 2D array of 2D points. Each point defines
a node of the distorted mesh.

Given an (undistorted) image point (u, v), we
find the corresponding (distorted) CoNUS image
point (ud, vd) by looking up the sampling map us-
ing bilinear interpolation (see Figures 3 and 4).
We first convert the input point to sampling-map
coordinates (u′, v′) (line 1 in Figure 3). Then, we
compute the distorted point by bilinear interpola-
tion of the four distorted mesh points stored in the
sampling map at the 2 × 2 neighborhood contain-
ing (u′, v′) (line 2).

Camera model definition. We define the camera model
FPC with a conventional planar pinhole camera
PPC and a sampling map SM that distorts the PPC
image according to the algorithm in Figure 3.

Projection. FPC(PPC, SM) projects a 3D point P to
its CoNUS image plane by first projecting P with
PPC to obtain (u, v) and then distorting (u, v) to
(ud, vd) (see Figure 3).

Camera rays. The FPC(PPC, SM) ray through (ud, vd)
is the PPC ray through (u, v). So, to compute the
camera ray, we must invert the distortion, which
poses two challenges.

First, we must find the quadrilateral cell of
the distorted mesh containing (ud, vd). A naive
approach would examine all quads. A better ap-
proach would be to use a hierarchical subdivision
of the CoNUS image (for example, using a k-d tree
or a binary-space-partitioning tree) to quickly find
the quad containing (ud, vd). However, construct-
ing the subdivision is laborious.

Second, we must solve the quadratic equations
of the inverse bilinear interpolation that com-
putes x and y from (ud, vd), SMi,j, SMi+1,j, SMi,j+1,
and SMi+1,j+1.

We bypass these challenges by leveraging two
observations:

 ■ CoNUS applications don’t need to compute
an individual ray of FPC but rather all rays
iteratively.

(a) (b) (c)

Figure 1. Working with coherent nonuniform sampling (CoNUS) images. (a) A CoNUS image that allocates
more samples to the face regions. (b) An output frame reconstructed from the CoNUS image. (c) An output
frame reconstructed from a conventional image of the same size.

Figure 2. The sampling map for Figure 1a. It has the topology of a 32 ×
32 regular rectangular mesh but is distorted to implement the sampling-
rate modulation.

Algorithm: FPC::Distort(u, v) // FPC distortion
input: undistorted image resolution (w, h),
 undistorted location (u, v), and
 sampling map SM of resolution (w0, h0)
output: distorted location (ud, vd)
1: (u′, v′) = (uw0/w, vh0/h)
2: (ud, vd) = SM.BilinearLookup(u′, v′)

Figure 3. The flexible pinhole camera (FPC) distortion algorithm.
Given an (undistorted) image point (u, v), we find the corresponding
(distorted) CoNUS image point (ud, vd) by looking up the sampling map
using bilinear interpolation.

16 March/April 2014

Feature Article

 ■ We can avoid bilinear-interpolation inversion by
splitting the distorted mesh quads into two tri-
angles and replacing the quad bilinear interpola-
tion with two triangle barycentric interpolations.

This modification doesn’t reduce the sampling-rate
flexibility of FPC. We efficiently find all rays of the
modified FPC (see Figure 5).

We find the FPC rays by rasterizing the distorted
mesh QM defined by the sampling map (line 3 in
Figure 5). QM has the topology of a 2D regular
mesh, but its vertices are displaced according to
the desired sampling-rate variation (see Figure 2).
Each distorted mesh vertex carries its undistorted
coordinates as texture coordinates (line 4).

To find the ray at the current pixel p, we first
find (u, v) for p from its texture coordinates (sp, tp)
(line 8). We then compute the PPC ray at the un-
distorted coordinates (line 9). We find the rays at
the cost of rasterizing the 2 × w0 × h0 triangles of
the distorted mesh. This cost is small because the
sampling map’s resolution is much smaller than
the CoNUS image’s resolution. We compute the

rays on the GPU with a trivial fragment shader
that executes lines 8 and 9.

The algorithm in Figure 5 provides the FPC rays,
one at a time, at a small amortized cost. To render
a CoNUS image from a regular image or volume
data, we specialize the algorithm as described next.

Rendering CoNUS Images
The FPC renders CoNUS images efficiently from
geometry, image, height field, and volume data.

Geometry data. Figure 6 shows the steps for render-
ing a CoNUS image from a 3D triangle mesh T. We
project the vertices of T with FPC (PPC projection
followed by distortion). Then, we conventionally
rasterize the projected triangles. These triangles
must be small enough such that conventional
rasterization provides a good approximation of
the nonlinear projection induced by the sampling
map. Most datasets have small triangles, and con-
ventional rasterization is acceptable without fur-
ther subdivision. When subdivision is needed, we
use an offline approach to avoid the performance
bottleneck of issuing a large number of primitives
in the geometry shader.

Image data. We render a CoNUS image from a
conventional input image by modifying line 9 of
Figure 5 (see Figure 7). Once we know (u, v), we
look up the input image to set (ud, vd). A CoNUS
image has fewer pixels than the original image.
The original image provides the maximum reso-
lution over the entire field of view, which is pre-
served in some regions of the CoNUS image. The
other regions of the CoNUS image are at lower
resolution.

y

x

j

i

(u', v') SMi+1j

SMij+1

SMi+1 j+1

(ud, vd)

SMij

i + 1

j + 1

Figure 4. Piecewise bilinear image distortion using a sampling map. The
sampling map provides a constant time mapping from the undistorted
to the distorted domain.

Algorithm: FPC::Rays() // Computation of FPC rays
input: FPC of resolution w × h, defined by PPC and by SM of resolution w0 × h0
output: FPC rays
 1: Initialize 2D mesh QM of resolution w0 × h0
 2: for all (i, j) where 0 ≤ i < w0, 0 ≤ j < h0 do
 3: Vertex coordinates QM.vi,j = SMi,j ;
 4: Texture coordinates QM.(s, t)i,j = (i/w0, j/h0);
 5: end for
 6: for all triangles q in QM do
 7: for all pixels p covered by q do
 8: (u, v) = (wsp, htp)
 9: rayp = PPC.GetRay(u, v)
10: end for
11: end for

Figure 5. The algorithm for efficiently finding all rays of the modified FPC. To render a CoNUS image from a regular image or
volume data, we specialize the algorithm as needed.

 IEEE Computer Graphics and Applications 17

Height field data. We similarly construct a Co-
NUS height field sampled orthogonally to the base
plane. However, we set up the pixel by looking up
the depth in the original height field instead of (or
in addition to) looking up the color.

Volume data. We render a CoNUS image from vol-
ume data by tracing the FPC rays through the vol-
ume. We determine the rays using the algorithm
in Figure 5.

Resampling a Regular Image from a CoNUS Image
Some applications, such as remote visualization,
use the CoNUS image as an intermediate represen-
tation from which they must resample a conven-
tional image to present to the user. We resample a
regular image I1 from a CoNUS image I0 with the
steps in Figure 8. A planar pinhole camera PPC1
defines the rays that sample I1.

Given pixel (u1, v1) of I1, we compute the cor-
responding (ud, vd) in two steps. First, we com-
pute the corresponding point (u0, v0) on the im-
age plane of PPC0 (lines 2 and 3 in Figure 8). We
compute this correspondence by generating P cor-
responding to (u1, v1) by unprojection with PPC1
and then by projecting P with PPC0. We combine
the unprojection and following projection into a
single matrix multiplication followed by perspec-
tive divides. Second, we compute the correspond-
ing (ud, vd) by distortion, leveraging the algorithm
in Figure 3.

Sampling-Map Construction
We construct sampling maps in one of three
ways. The first uses an interactive physics-based
2D mass-spring system. We cover the image with
regularly distributed particles connected with
springs to form a quadrilateral mesh. All par-
ticles have the same mass, and all springs have
the same resting length (set to 10 percent of the
initial particle distance in our implementation).
The user perturbs the system interactively by add-
ing repulsive forces between particles with a cir-
cular brush (see Figure 9). The force magnitude
decreases exponentially from the brush’s center
toward its periphery.

We compute the equilibrium state by tracking
each particle’s position over time until all par-
ticle velocity vectors have negligible magnitude.
For each time step, we compute the forces on each
particle. First, we use Hooke’s equation for har-
monic oscillators, Fi = –kxi, where Fi is the force
applied to the particle by spring i connected to
it, k is the spring constant, and xi is the particle
displacement along the spring direction. Then, we

update the particle velocity v and displacement
x, using v = v + DtF/m and x = x + Dtv, where
F is the resultant force acting on the particle. A
mesh of 256 × 256 particles updates at 30 fps,
and we reach a stable state in less than 2 s. The
particles’ final position defines the sampling map,
which can have a lower resolution than the par-
ticle mesh.

Algorithm: FPC::Render(T) // render from
 geometry
input: FPC FPC and triangle mesh T
output: CoNUS image I
1: for all vertices v of T do
2: v′ = FPC.Project(v)
3: end for
4: for all projected triangles t′ of T do
5: Rasterize t′
6: end for

Figure 6. The algorithm for rendering a CoNUS image from a 3D triangle
mesh T. We project the vertices of 3D triangle mesh T with FPC. Then,
we conventionally rasterize the projected triangles.

Algorithm: FPC::CoNUS2Regular(I0) // Resampling
input: CoNUS image I0, FPC(PPC0, SM), PPC1
output: Conventional image I1 for PPC1
1: for all pixels (u1, v1) in I1 do
2: P = PPC1.Unproject(u1, v1)
3: (u0, v0) = PPC0.Project(P)
4: (ud, vd) = FPC.Distort(u0, v0)
 // see Algorithm 1
5: I1(u1, v1) = I0 (ud, vd)
6: end for

Figure 8. The algorithm for resampling a regular image from a CoNUS
image. We combine the unprojection and following projection into a
single matrix multiplication followed by perspective divides.

Algorithm: FPC::Render(I) // render from image
input: FPC FPC and image I
output: CoNUS image I′
// identical to Figure Y except for line 9
…
9: I′(ud, vd) = I(u, v) // the difference
 from Figure Y
…

Figure 7. The algorithm for rendering a CoNUS image from a
conventional input image. The original image provides the maximum
resolution over the entire field of view, which is preserved in some
regions of the CoNUS image. The other regions of the CoNUS image are
at lower resolution.

18 March/April 2014

Feature Article

We can also construct sampling maps through
a linear combination of the distortion vectors of
existing sampling maps:

SM SM s SM SM ti j i j k k i j
k

i j k, , , ,= + −()+()0 0Σ ,

where SMi,j, SMi j,
0 , and SMi j

k
, are elements (i, j) of

the new sampling map, the undistorted sampling
map, and the input sampling map k, respectively,
and sk and tk are the scale factor and translation
vector of k.

The third way eliminates the discrete represen-
tation and defines the distortion analytically, as
we describe in the next section.

Applications
We’ve used CoNUS images for remote visualiza-
tion, accelerating depth image rendering, and
focus-plus-context visualization. (See also the
video at xxxxxxxxxxxxxxxxxxxxxxx.org. For an
overview of related research on these topics, see
the sidebar.)

Remote Visualization
Digital-camera resolution continues to increase
faster than network bandwidth. In addition, work-
station displays now have lower resolution than
the simplest digital cameras attached to cellular
phones (for example, Apple’s 4-Mpixel 30˝ LCD
versus the 8-Mpixel iPhone 5S camera). So, even
if the image is transferred at full resolution, it will
most likely be downsized for viewing.

Often, a digital image’s pixels won’t all have the
same relevance for the application. For example,
faces in a portrait photograph are more impor-
tant than the room furnishings (see Figure 1).
Moreover, digital cameras automatically find faces
for focusing. In an online geographic atlas, pix-
els sampling famous locations or locations that
other users have marked as interesting are more
relevant. In remote scientific visualization, some
image regions might be known to be of higher in-
terest to scientists, such as regions showing recep-
tors targeted in drug molecule design.

In such contexts, our approach could help re-
duce bandwidth requirements and improve inter-
activity. The server renders a CoNUS image that
samples the ROIs at a higher rate (see Figure 1).
Then, the server transfers that image to the client,
which resamples it into a conventional image. The
application tours the CoNUS image, showing the
ROIs in detail.

We’ve also used our approach for remote ter-
rain visualization (see Figure 10). Given a height
field H at the server and a current view PPC at the

Figure 9. A mass-spring system for defining sampling maps interactively.
The user defines regions of higher resolution using the yellow circular
brush.

(a)

(b)

(c)

Figure 10. Remote visualization of a height field. (a) A CoNUS height
field and its sampling pattern. (b) An output frame rendered from the
CoNUS height field. (c) An output frame rendered from a conventional
height field. If the server sends the CoNUS height fields instead of the
conventional one, the output frame’s fidelity increases considerably.

 IEEE Computer Graphics and Applications 19

client, we want to resample H to a CoNUS height
field that has all and only the samples needed to
provide a quality visualization of the height field
from views in the neighborhood of PPC.

First, we construct a reference view PPC0 by en-
larging the field of view of PPC to support view
rotations and increasing the resolution to support
zooming in and forward translation. Then, we
construct a CoNUS height field CH with a sam-
pling rate matching the requirements of PPC0. CH
should have more samples close to the viewpoint
and fewer at a distance (see Figure 10b). We con-
struct CH with the analytical distortion function
in Figure 11.

We look up (ud, vd) in H at location (u, v), which
we compute by intersecting the ray at (ud, vd) in
PPC0 with the ground plane H.g of H. This con-
struction applies the perspective foreshortening
of PPC0 while maintaining the orthogonal sam-
pling of H. This avoids disocclusion errors that
would occur if we actually rendered the geometry
of H from PPC0. We send CH to the client, which
transforms it into a 3D triangle mesh that’s ren-
dered for each frame. To convert a CH sample to a
3D triangle mesh vertex, we compute the ground
plane point P corresponding to (ud, vd) (line 2 in
Figure 11) and offset P by CH(ud, vd) above the
ground plane.

Quality. The CoNUS image in Figure 1 allows ren-
dering all five faces in great detail. The CoNUS
height field produces frames comparable to those
rendered from the original high-resolution height
field (see Figure 10).

Performance. For Figure 1, once we know the FPC
model, rendering the CoNUS image takes negli-
gible time. We designed the FPC sampling map
interactively, using the spring-mass system. For
Figure 10, we used a CoNUS height field of 1,024 ×
1,024 resolution, which was rendered at over 400
fps and used at over 100 fps.

Limitations. Our approach increases the ROI sam-
pling rate at the expense of the rest of the image.
When high frequencies are outside the ROIs, the
undersampling can become noticeable (see Fig-
ure 12).

Our approach doesn’t address occlusions. Oc-
clusions don’t occur for images or orthogonally
sampled height fields. However, for our approach
to support six-degree-of-freedom remote visual-
ization of general 3D data, we’ll have to integrate
it with an occlusion alleviation scheme such as a
nonpinhole camera.

Accelerating Depth Image Rendering
A depth image can be computed quickly with the
help of graphics hardware and can be quickly in-
tersected with a ray. Because of these important
advantages, depth images have been used to ac-
celerate the rendering of complex effects such
as specular reflection, refraction, ambient occlu-
sion, and relief texture mapping. Eliminating the
uniform-sampling-rate constraint of conventional
depth images through our approach could benefit
all these techniques, provided we preserve the ef-
ficiency of depth image construction and ray in-
tersection. CoNUS depth images can be rendered
efficiently from height field or geometry data using
the FPC, as we discussed before.

To intersect a conventional depth image with
a ray, the ray is projected to the depth image’s
plane, and the projection is traced with one-pixel
steps until an intersection is found.1 For a Co-
NUS depth image, the ray’s projection is no lon-
ger a line segment but a curve segment. We can
no longer project the ray solely by projecting its
endpoints. Instead, we must subdivide it into seg-
ments and project each segment endpoint with the
FPC. This preserves the fundamental advantage of

Algorithm: HeightFieldCoNUS(H, PPC0)
input: Height field H, client reference view
 PPC0
output: CoNUS height field CH
1: for all samples (ud, vd) in CH do
2: (u, v) = PPC0.Ray(ud, vd) ∩ H.g
3: CH(ud, vd) = H(u, v)
4: end for

Figure 11. The analytical distortion function. The constructed
height field CH has a sampling rate matching the reference view’s
requirements.

(a) (c)

(b)

Figure 12. Limitations of our approach. (a) A sampling artifact outside
the regions of interest (ROIs) in a frame reconstructed from the CoNUS
image in Figure 1. (b) Undersampling of a distant mountain by the
CoNUS height field. (c) The original height field. Our approach increases
the ROI sampling rate at the expense of the rest of the image.

20 March/April 2014

Feature Article

depth images having a 1D intersection with a
ray, at the cost of a slightly more complicated ray
projection.

We’ve integrated CoNUS depth images into re-
lief texture mapping (see Figure 13) and specular-

reflection rendering (see Figure 14), in which the
CoNUS depth image intersects with eye rays and
reflected rays, respectively. Relief texture mapping
uses a depth image to enhance a surface with geo-
metric detail. Specular-reflection rendering avoids
environment-mapping approximation errors by
modeling objects close to reflectors with depth
images. Depth images accelerate these effects
mainly because you can compute the intersec-
tion between a ray and a depth image faster than
you can compute the intersection between a ray
and the original geometry. A CoNUS depth image
brings sampling flexibility without increasing the
intersection’s cost.

Quality. The sampling flexibility afforded by Co-
NUS depth images let us improve the clarity of the
engraved tablets in Figure 13 and their reflection
(see Figure 14).

Performance. For both conventional and CoNUS
depth images, the performance bottleneck for re-
lief texture mapping and specular-reflection ren-
dering is computation of the intersection of the
depth image and ray. Intersecting a ray with a
CoNUS depth image incurs the additional cost of
distorting a 2D point at every step along the ray.
However, CoNUS distortion is fast; our average
frame rate penalty was only 5 percent.

For applications in which the CoNUS depth im-
age intersects with many rays, it might be advanta-
geous to undistort the CoNUS depth image at the
client into a higher-resolution conventional depth
image, using the algorithm in Figure 8. This re-
sults in straight ray projections and avoids the cost
of per-step distortion.

Limitations. CoNUS depth images inherit conven-
tional depth images’ occlusion limitations. The
sampling tradeoff can lead to visual artifacts out-
side the ROIs.

(a) (b) (c) (d)

Figure 13. Using a CoNUS relief texture. (a) The object of interest. (b) A CoNUS relief texture that allocates more samples to the
tablet. (c) A detail rendered with the CoNUS relief texture. (d) The same detail rendered with conventional relief textures of the
same size.

(a) (b)

(c) (d)

Figure 14. Using a CoNUS depth image. (a) A CoNUS depth image
emphasizing all four engraved tablets (b) The scene setup. (c) Reflection
details rendered with a CoNUS depth image. (d) Reflection details
rendered with a conventional depth image.

 IEEE Computer Graphics and Applications 21

Focus-plus-Context Visualization
Our approach is well suited for focus-plus-context
visualization for two reasons. First, it offers good
control over the sampling rate, which allows pre-
cisely designing one or multiple focus regions.
Second, as we mentioned before, CoNUS images
can be rendered quickly, which supports dynamic
scenes and interactive changing of focus region
parameters. The CoNUS image is shown directly
to the user, so no decoding is needed. The CoNUS
image can be rendered efficiently from a variety of
data, as we described before. The only remaining
challenge is sampling-map construction.

Unlike the previous two applications, here we
must construct the sampling map online, once
for every output frame, which precludes using
the mass-spring approach. We compose canoni-
cal circular sampling maps, one for every focus
region. We’ve applied this approach for volume
rendering (see Figure 15) in which the user ma-
nipulates the focus region and view parameters
to examine a volume dataset. We’ve also applied
it to a city scene modeled with triangle meshes
(see Figure 16), where the focus regions track
moving cars. We located the focus region by
projecting the center of the tracked car in the
output view.

Quality. In our approach, the focus regions have
strong magnification and low distortion. As we
mentioned before, their parameters can change;
regions can merge and separate without abruptly
changing the output visualization. Focus-plus-
context visualization is particularly robust to un-
dersampling outside the focus region. Users will
likely focus on the region they selected as impor-
tant, and the focus regions can shift interactively
to visualize any region in more detail.

Performance. In our experiments, FPC volume
rendering was on average 7 percent slower than

conventional volume rendering. Traversal of the
volume dominates the cost of volume rendering
by ray casting, so computing the perturbed rays
for our approach doesn’t affect performance. We
attribute the slight performance decrease to a

(a) (b)

Figure 15. CoNUS focus-plus-context volume-rendering visualizations emphasizing the (a) left and (b) right cylinder housings of
an engine. The FPC enables versatile focus-plus-context visualization that can handle any type of data and provides good control
over the focus regions.

(a)

(b)

Figure 16. Visualization of a city scene modeled with triangle meshes.
(a) A CoNUS visualization emphasizing the yellow and white cars.
(b) A conventional image. The CoNUS images are rendered directly from
the dataset using the FPC.

22 March/April 2014

Feature Article

larger output image footprint for the distorted
volume and to more rays focusing on the center
of the dataset, where volume-traversal distances
are longer. The vertex distortion when rendering
CoNUS images from triangle meshes had no mea-
surable performance impact.

Limitations. Because our approach doesn’t alleviate
occlusions, tracked objects of interest can become
hidden, and the user must change the view to re-
veal them. We’ll examine changing the view auto-
matically to keep tracked objects visible.

The sampling map is a powerful tool for as-
signing more pixels to some regions of the

image plane. For example, for the image in Fig-
ure 1, the maximum sampling-rate increase was
8.13×. We measured this by finding the sampling
mesh’s largest quadrilateral cell and dividing its
area by an undistorted cell’s area. The sampling
map doesn’t create new pixels—we increase the
sampling rate by decreasing the sampling rate in
less important regions.

For a sampling map of resolution w0 × h0,
with ROIs occupying k cells and a minimum
sampling rate of the context regions of c×, the
upper bound for the sampling-rate increase is
z = w0h0(1 – c)/k + c. For example, if w0 × h0 =
1,024, k = 64, and c = 1/2, then z = 8.5×. If the
application tolerates downsampling the context
to 1/8, z increases to 14.125×. If there’s a single

First, we look at attempts to remove conventional images’
uniform-sampling-rate constraint. Then, we review re-

search on the areas in which we applied a flexible pinhole
camera (FPC) to render coherent nonuniform sampling
(CoNUS) images (see the main article).

Nonuniform Sampling Rate
Hierarchical spatial-partitioning approaches such as k-d
trees improve representation efficiency by stopping sub-
division in regions where data is sampled accurately. We
could have defined the FPC sampling map with such an
approach. These approaches support a wider range of
sampling rates than our distorted-grid approach (see
Figure 2 in the main article). However, they suffer from
sampling-rate discontinuity, lack of contiguity, and more
complex construction (rendering) and usage (lookup).

Images with a nonuniform sampling rate originally were
a side effect of techniques for removing conventional im-
ages’ field-of-view limitation. For spherical panoramas, the
sampling-rate variation was an unwanted side effect; they
were replaced by cube maps with a more uniform sampling
rate. Recently, single-image panoramas have received re-
newed attention because programmable graphics hard-
ware enables sampling patterns that avoid previous un-
dersampling problems.1 Researchers have also addressed
conventional images’ single-viewpoint limitation with
camera-model-level innovations such as the general linear
camera2 and occlusion camera.3 Our approach comple-
ments these approaches, providing sampling-rate flexibility
to panoramic and nonpinhole cameras.

Irregular sampling patterns have also occurred with
image-based rendering by 3D warping4 and shadow an-
tialiasing.5 Both approaches reproject depth images to
novel views in which the forward-mapped samples are
irregular. Our approach doesn’t control sampling with suf-
ficient granularity to sample the shadow map precisely at

the locations where the output image requires it, which
would be needed to completely eliminate shadow aliasing.
However, we could reduce shadow aliasing by using a Co-
NUS shadow map with a higher sampling rate in regions
that are magnified in the output image.

The most general pinhole camera defines each ray
independently with its own image plane point.6 Such a
model theoretically has maximum generality, allowing for
any sampling pattern given n rays, but has no practical
use. First, the rays aren’t organized in a 2D array, so the
resulting image is an unsorted list of color samples that
can’t be easily displayed. Second, rendering such an image
is expensive because it would require tracing each ray
independently.

A practical implementation of the general pinhole
camera restricts the sampling-rate variation to a rectan-
gular region R of the image plane.6 A smaller rectangle r,
concentric with R, provides a higher-resolution sampling
of the scene. The region r is sampled with a planar pinhole
camera and is thus distortion free (3D scene lines map to
2D image lines). This approach uses the region R – r to
transition from the low sampling rate outside R to the high
sampling rate inside r. It chooses the sampling locations
in R – r with a quadratic or cubic function to achieve C0 or
C1 continuity. It supports several disjoint regions of higher
resolution.

The FPC is another specialization of the general pinhole
camera model. Our approach has two fundamental advan-
tages over the implementation in the previous paragraph.
First, the FPC provides far greater flexibility in defining the
sampling locations. Second, the FPC sampling map pro-
vides fine-grained control of the sampling rate while keep-
ing constant the amortized cost of the fundamental image
point distortion and undistortion operations. In contrast,
a general planar pinhole camera with multiple rectangular
regions of high resolution requires checking each region

Related Work in Camera Models

 IEEE Computer Graphics and Applications 23

ROI that fits in one cell (that is, k = 1), then
even for a negligible downsampling of the con-
text regions by c = 0.95×, the ROI’s sampling
rate can reach z = 52.15×.

Possible future research includes

 ■ exploring other uses of CoNUS images (for ex-
ample, for geometric simplification and acceler-
ating other rendering effects),

 ■ investigating the cost–benefit tradeoff of higher-
order interpolation of the sampling map to
achieve C1 sampling-rate continuity, and

 ■ developing automatic sampling-map constructors.

We’re particularly interested in tightly coupling
our approach with automatic techniques for de-

termining what to sample in more detail, such as
automatic geometric-complexity analysis, object
recognition, eye tracking, and saliency maps.

We foresee that FPC-rendered CoNUS images
will have wide applicability because they’re com-
patible with virtually all contexts in which images
are used.

Acknowledgments
We thank the anonymous reviewers and associate edi-
tor, who helped improve this article. We also thank
the US National Science Foundation for support-
ing Voicu Popescu and Jian Cui’s research through
grant 1217215, as well the National Natural Sci-
ence Foundation of China for supporting Lili Wang’s

for the distortion or undistortion of a point. This process
doesn’t scale with the number of regions.

Texture-mapping implementations have pursued non-
uniform sampling through compression, atlasing, enhance-
ment with explicitly modeled high-frequency features (for
example, edges), and distortion. We discuss only the last
two approaches because they’re the closest to our research.
Textures enhanced with edges modeling shadow silhou-
ettes7 or abrupt color changes8 are more robust to magnifi-
cation. This approach is compatible with CoNUS textures.
Edges derived from vector graphics primitives must un-
dergo sampling-map distortion (see Figure 2 in the main
article), and long edges must be split. For texture-derived
edges, the CoNUS texture can be used directly. Space-op-
timized textures9 distort textures with a mechanism similar
to our sampling map. However, our research extends non-
uniform sampling to more types of data and applications.

Remote Visualization
As the size of acquired and computed datasets continues
to increase, so will the importance of remote visualization
of remote datasets for clients with no high-end storage
or visualization capabilities. One approach reduces the
dataset on the server to a size that can be transmitted to
and visualized by the client. You can use many techniques
for this, including data compression,10 feature extraction,11
and level of detail.12 Another approach computes the
visualization at the server and sends images to the client.
13 The client needs only a simple terminal that can display
images, but network bandwidth limits the visualization
resolution and frame rate.

A hybrid approach transfers from the server to the cli-
ent images having more data than what’s needed for the
client’s current frame. Such an enhanced image should
be sufficient for a quality reconstruction of a sequence
of frames at the client, without additional data from the

server. Researchers have used images enhanced with per-
pixel depth14 and additional samples at the center6 to al-
low translating and zooming in at the client.

Another hybrid approach transfers CoNUS images.
A CoNUS image that samples known regions of interest
(ROIs) in greater detail anticipates the user’s intention to
zoom in on those regions. A CoNUS height field that sam-
ples the ground plane orthogonally, yet at a higher rate
close to the user, supports six-degree-of-freedom naviga-
tion at the client in the current view’s neighborhood.

Accelerating Depth Image Rendering
Depth images are powerful geometry approximations
used for acceleration in many contexts. However, we limit
this discussion to relief texture mapping and specular re-
flection, which we used in the main article to illustrate our
approach’s benefits.

Relief texture mapping adds geometric detail to sur-
faces. It produces correct silhouettes and correct interac-
tions between relief geometry and other relief and nonre-
lief geometry (for example, intersections and casting and
receiving shadows).15 The relief texture is a depth image
attached to a base box. Rendering the box triggers the
computation of an eye ray–depth image intersection at
every pixel covered by the box. The intersection computa-
tion projects the ray onto the depth image and follows the
ray projection until it finds the first intersection.

Specular reflection is challenging for the feed-forward
3D graphics pipeline because computing the image plane
projection of reflected vertices isn’t easy. We group specular-
reflection rendering techniques into four categories: ray
tracing,16 approximations of the projection of reflected
vertices,17 image-based rendering,18 and approximations
of the reflected scene. We discuss only the fourth category
because CoNUS specular-reflection rendering falls in it.

Cont. on page XX

24 March/April 2014

Feature Article

research through projects 61272349, 61190121, and
61190125.

Reference
 1. F. Policarpo and M.M. Oliveira, “Relief Mapping

of Non-Height-Field Surface Details,” Proc. 2006
Symp. Interactive 3D Graphics and Games, 2006, pp.
55–62.

Voicu Popescu is an associate professor in Purdue Uni-
versity’s Computer Science Department. His research in-
terests include computer graphics, computer vision, and
visualization. His current projects include camera model
design, remote visualization, aggressive and exact visibility
computation, and computer graphics applications in educa-
tion. Popescu received a PhD in computer science from the
University of North Carolina at Chapel Hill. Contact him
at popescu@purdue.edu.

Bedrich Benes is an associate professor in Purdue University’s
Department of Computer Graphics Technology, a Purdue Faculty
Scholar, and a director of Purdue’s High Performance Computer
Graphics Laboratory. His research is primarily in procedural
modeling, real-time rendering, and 3D computer graphics. Benes
received a PhD in computer science from the Czech Technical
University. Contact him at bbenes@purdue.edu.

Paul Rosen is a research assistant professor at the University
of Utah with appointments in the Scientific Computing and
Imaging Institute and the School of Computing. His research
interests include scientific visualization, such as vector field
and uncertainty visualization, and information visualiza-
tion, such as parameter space and software performance vi-
sualization. Rosen received a PhD in computer science from
Purdue University. Contact him at prosen@sci.utah.edu.

Jian Cui is a PhD candidate in computer science at Pur-
due University. His research interests span computer graph-

Environment mapping performs the most drastic approxi-
mation; it assumes that the reflected scene is infinitely far
from the reflector.19 Environment-mapped reflections are
incorrect for objects close to the reflector. Approximating
these objects with billboards or depth images18 improves
reflection accuracy. Using CoNUS depth images as relief
textures or approximations of reflected objects provides
sampling flexibility without considerably increasing the
cost of ray or depth image intersection.

Focus-plus-Context Visualization
The visualization of complex scenes can benefit from
highlighting the scene region that’s most important in the
application’s context. Such focus-plus-context visualization
has a multiple-stage pipeline, including

 ■ finding the ROIs;
 ■ finding the best viewpoint for an ROI; and
 ■ highlighting the ROI by assigning it a salient color, assign-
ing it more pixels, or managing occlusions through cut-
away, transparency, or nonpinhole-camera techniques.

For example, the best viewpoint can be found automat-
ically through analysis of the region feature distribution
in an information-theoretic framework.20 Stefan Bruckner
and his colleagues surveyed state-of-the-art methods for
the focus-plus-context pipeline stages.21 Here, we only
discuss highlighting the ROI by allocating more pixels to
it, which is how the FPC contributes to focus-plus-context
visualization.

An important challenge stems from the fact that dis-
plays have a uniform pixel resolution (except for special
focus-plus-context screens22). So, a focus-plus-context

image can’t be displayed directly and must be mapped to
displays with uniform resolution by introducing distor-
tions between the focus and context regions. Focus-plus-
context visualization is typically applied to 2D data (for
example, hierarchies,23 graphs,24 and maps25). You can
apply it to 3D data by either distorting the dataset and
visualizing it with a conventional camera26 or distorting
the camera model.6,27 FPC focus-plus-context visualization
falls in the second category. Like the general pinhole cam-
era, the volume lens defines one or a few ROIs with higher
resolution.27 The employed ray perturbation doesn’t pro-
vide closed-form projection, and the method is restricted
to volume rendering and ray tracing.

References
 1. J.-D. Gascuel et al., “Fast Nonlinear Projections Using Graph-

ics Hardware,” Proc. 2008 Symp. Interactive 3D Graphics and

Games, 2008, pp. 107–114.

 2. J. Yu and L. McMillan, “General Linear Cameras,” Computer

Vision—ECCV 2004, LNCS 3022, Springer, 2004, pp. 14–27.

 3. C. Mei, V. Popescu, and E. Sacks, “The Occlusion Camera,”

Computer Graphics Forum, vol. 24, no. 3, 2005, pp. 335–342.

 4. L. McMillan and G. Bishop, “Plenoptic Modeling: An Image-

Based Rendering System,” Proc. Siggraph, 1995, pp. 39–46.

 5. G.S. Johnson et al., “The Irregular Z-buffer: Hardware Accel-

eration for Irregular Data Structures,” ACM Trans. Graphics,

vol. 24, no. 4, 2005, pp. 1462–1482.

 6. V. Popescu et al., “The General Pinhole Camera: Effective

and Efficient Nonuniform Sampling for Visualization,” IEEE

Trans. Visualization and Computer Graphics, vol. 16, no. 5,

2010, pp. 777–790.

 7. P. Sen, M. Cammarano, and P. Hanrahan, “Shadow Silhou-

Related Work in Camera Models (Cont.)

 IEEE Computer Graphics and Applications 25

ics and computer vision, focusing on image generalization
through camera model design to overcome conventional
images’ single-viewpoint and uniform-sampling-rate limi-
tations. Cui received his BS in computer science from the
Harbin Institute of Technology. Contact him at cui9@
purdue.edu.

Lili Wang is an associate professor at Beihang University’s
School of Computer Science and Engineering and a researcher
with the State Key Laboratory of Virtual Reality Technology
and Systems. Her interests include real-time rendering, re-
alistic rendering, global illumination, and soft-shadow and
texture synthesis. Wang received a PhD in computer science
from Beihang University. Contact her at wanglily@buaa.
edu.cn.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

ette Maps,” ACM Trans. Graphics, vol. 22, no. 3, 2003, pp.

521–526.

 8. G. Ramanarayanan, K. Bala, and B. Walter, Feature-Based

Textures, tech. report, Cornell Univ., 2004.

 9. L. Balmelli, G. Taubin, and F. Bernardini, “Space-Optimized

Texture Maps,” Computer Graphics Forum, vol. 21, no. 3,

2002, pp. 411–420.

 10. L. Lippert, M.H. Gross, and C. Kurmann, “Compres-

sion Domain Volume Rendering for Distributed Environ-

ments,” Computer Graphics Forum, vol. 16, no. 3, 1997, pp.

C95–C107.

 11. Y. Livnat, S.G. Parker, and C.R. Johnson, “Fast Isosurface

Extraction Methods for Large Image Data Sets,” Handbook

of Medical Imaging, Academic Press, 2000, pp. 731–745.

 12. S.P. Callahan et al., “Interactive Rendering of Large Unstruc-

tured Grids Using Dynamic Level-of-Detail,” Proc. IEEE Visual-

ization 2005 (VIS 05), 2005, pp. 199–206.

 13. S. Stegmaier, M. Magallón, and T. Ertl, “A Generic Solution

for Hardware-Accelerated Remote Visualization,” Proc. 2002

Symp. Data Visualisation (VISSYM 02), 2002, pp. 87ff.

 14. E.J. Luke and C.D. Hansen, “Semotus Visum: A Flexible Re-

mote Visualization Framework,” Proc. IEEE Visualization 2002

(VIS 02), 2002, pp. 61–68.

 15. F. Policarpo and M.M. Oliveira, “Relief Mapping of Non-

Height-Field Surface Details,” Proc. 2006 Symp. Interactive 3D

Graphics and Games, 2006, pp. 55–62.

 16. T. Whitted, “An Improved Illumination Model for Shaded

Display,” ACM Siggraph 2005 Courses, 2005, p. 4.

 17. E. Ofek and A. Rappoport, “Interactive Reflections on

Curved Objects,” Proc. Siggraph, 1998, pp. 333–342.

 18. L. Szirmay-Kalos et al., “Approximate Ray-Tracing on the

GPU with Distance Impostors,” Computer Graphics Forum,

vol. 24, no. 3, 2005, pp. 695–704.

 19. J.F. Blinn and M.E. Newell, “Texture and Reflection in Com-

puter Generated Images,” Comm. ACM, vol. 19, no. 10,

1976, pp. 542–547.

 20. I. Viola et al., “Importance-Driven Focus of Attention,” IEEE

Trans. Visualization and Computer Graphics, vol. 12, no. 5,

2006, pp. 933–940.

 21. S. Bruckner et al., “Illustrative Focus+Context Approaches

in Interactive Volume Visualization,” Scientific Visualiza-

tion: Advanced Concepts, Dagstuhl Publishing, 2010, pp.

136–162.

 22. P. Baudisch, N. Good, and P. Stewart, “Focus plus Context

Screens: Combining Display Technology with Visualization

Techniques,” Proc. 14th Ann. ACM Symp. User Interface Soft-

ware and Technology (UIST 01), 2001, pp. 31–40.

 23. J. Lamping and R. Rao, “The Hyperbolic Browser: A

Focus+Context Technique for Visualizing Large Hierarchies,”

J. Visual Languages & Computing, vol. 7, no. 1, 1996, pp.

33–55.

 24. N. Wong, S. Carpendale, and S. Greenberg, “EdgeLens:

An Interactive Method for Managing Edge Congestion in

Graphs,” Proc. 2003 IEEE Symp. Information Visualization (IN-

FOVIS 03), 2003, pp. 51–58.

 25. E. Pietriga and C. Appert, “Sigma Lenses: Focus-Context

Transitions Combining Space, Time and Translucence,” Proc.

2008 SIGCHI Conf. Human Factors in Computing Systems (CHI

08), 2008, pp. 1343–1352.

 26. M.S.T. Carpendale, D.J. Cowperthwaite, and F.D. Fracchia,

“Distortion Viewing Techniques for 3-Dimensional Data,”

Proc. 1996 IEEE Symp. Information Visualization (InfoVis 96),

1996, pp. 46–53.

 27. L. Wang et al., “The Magic Volume Lens: An Interactive

Focus+Context Technique for Volume Rendering,” Proc. IEEE

Visualization 2005 (VIS 05), 2005, pp. 367–374.

