
1

COPYRIGHT NOTICE

 (C) 2013 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale
or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the
IEEE.

2

Animated Depth Images for Interactive Remote Visualization of

Time-Varying Datasets

Jian Cui
1
, Zhiqiang Ma

2
 and Voicu Popescu

1

Fig. 1. Frames rendered from animated depth images (top) and from the original FEA dataset (bottom), for comparison. The animated depth
images approximate sample trajectories with a user-specified maximum error of 10mm, which represents 0.01% of the spatial extent of the
aircraft dataset (left and middle), and 0.1% for the truck dataset (right). An adaptive sampling strategy reduces disocclusion errors below 1%
for viewpoint translations of up to 10m around the reference viewpoint.

Abstract—Remote visualization has become both a necessity, as dataset sizes have grown faster than computer network

performance, and an opportunity, as laptop, tablet, and smartphone mobile computing platforms have become ubiquitous. However,

the conventional remote visualization approach of sending a new image from the server to the client for every view parameter

change suffers from reduced interactivity. One problem is high latency, as the network has to be traversed twice, once to

communicate the view parameters to the server and once to transmit the new image to the client. A second problem is reduced

image quality due to aggressive compression or low resolution.

We address these problems by constructing and transmitting enhanced images that are sufficient for quality output frame

reconstruction at the client for a range of view parameter values. The client reconstructs thousands of frames locally, without any

additional data from the server, which avoids latency and aggressive compression. We introduce animated depth images, which not

only store a color and depth sample at every pixel, but also store the trajectory of the samples for a given time interval. Sample

trajectories are stored compactly by partitioning the image into semi-rigid sample clusters and by storing one sequence of rigid body

transformations per cluster. Animated depth images leverage sample trajectory coherence to achieve a good compression of

animation data, with a small and user-controllable approximation error. We demonstrate animated depth images in the context of

finite element analysis and SPH datasets.

Index Terms—Remote visualization, time-varying datasets, animation data compression, rigid-body decomposition, bounded error.

1 INTRODUCTION

The importance of remote visualization has grown and will continue
to grow for the foreseeable future. One reason is that the amount of
data obtained through observations and simulations increases much
faster than our ability to transfer data from one geographic location
to another. Another reason is that storing, processing, and displaying
large datasets requires advanced capabilities which cannot and

should not be replicated at all sites interested in a given dataset.
Finally, the number of locations from where access to a given dataset
is desired has increased with the proliferation of mobile computing
platforms such as laptops, tablets, or even smartphones.

One approach in interactive remote visualization is to send the
visualization parameters from the client interested in the
visualization to the server who stores the dataset of interest, to
compute the desired visualization frame on the server, and to send
the frame to the client where it is displayed. The approach requires
no storage, computing, or visualization capabilities at the client and
therefore it is suitable for any type of client that can display an
image. However, for networks such as the internet, the approach can
suffer from long latency—the network has to be traversed twice for
each frame, once to send the visualization parameters and once to
receive the image. Moreover, even though a single frame is much

1. Jian Cui and Voicu Popescu is with Computer Science Department in
Purdue University, E-mail:{cui9, popescu@purdue.edu}

2. Zhiqiang Ma is with State Key Laboratory of Virtual Reality Technology

and Systems, School of Computer Science and Engineering, Beihang
University, Beijing, China, E-mail: mazhiqiang@cse.buaa.edu.cn

LEAVE 0.5 INCH SPACE AT BOTTOM OF LEFT COLUMN

ON FIRST PAGE FOR COPYRIGHT BLOCK

3

more compact than the entire dataset, sending a frame several times a
second still requires aggressive compression or reduced resolution.
Another challenge is achieving scalability with the number of clients,
as each client sends frequent frame requests to the server.

Based on the observation that a conventional image becomes
obsolete with the slightest change in visualization parameters, we
take the approach of sending enhanced images, or superimages, from
the server to the client. A superimage contains sufficient data to
enable the quality reconstruction of thousands of frames at the client,
without any additional data from the server. Reconstruction is fast
and local, which greatly alleviates latency and achieves interactive
rates without aggressive compression or reduced resolution.
Moreover, client requests to the server are much less frequent, which
improves scalability with the number of clients.

The challenge of the proposed approach is to construct a
superimage that is robust to visualization parameter changes. In the
case of time-varying spatial datasets, visualization parameters
typically include three translations (x, y, z), three rotations (rx, ry, rz),
and the focal length (f) for the view, as well as the time parameter (t).
Whereas a frame is valid for a single point (x0, y0, z0, rx0, ry0, rz0, f0,
t0) in this multidimensional space of visualization parameters, it is
our goal to construct a superimage that is valid for an entire volume
(x0+∆x, y0+∆y, z0+∆z, rx0+∆rx, ry0+∆ry, rz0+∆rz, f0+∆f, t0+∆t). The
superimage should allow reconstructing quality output frames for
any visualization parameter values in the volume it covers.

Anticipating rotations and focal length changes is straight
forward—the superimage should simply have a larger field of view
and a higher resolution than the frame. This way the view can rotate
and zoom in without running out of samples and without blurriness
due to undersampling. The output image is computed through ray re-
sampling and the result is correct, including for view dependent
effects such volume rendering and reflections. Anticipating
translations is much more challenging. The first step is to enhance
the image with per pixel depth, which allows reconstructing frames
from novel viewpoints. However, this is not sufficient as the result
suffers from disturbing disocclusion errors even for small viewpoint
translations. As the viewpoint translates, the output frame requires
samples that are not visible form the viewpoint of the input depth
image, and therefore are not stored in the input depth image. Such
samples are missing from the reconstruction creating disocclusion
errors. The main approaches for combatting disocclusion errors are
to use multiple images and to combine them on the fly, to pre-
combine multiple images offline into a non-redundant set of samples,
or to render the depth image with a non-pinhole camera model. Such
a camera not only captures samples visible from a reference
viewpoint, but also captures samples hidden from the reference
viewpoint but visible from nearby viewpoints.

For time-varying datasets the superimage should anticipate
changes in the dataset time parameter. The problem has received
little attention so far—depth image modeling/rendering efforts have
only considered static datasets or datasets where motion was limited
to a few objects. Truly time-varying datasets are challenging: motion
essentially replicates data, and it creates complex occlusions.

In this paper we address the problem of creating an image that
covers a time interval as opposed to a time step. We introduce
animated depth images, which not only store depth and color
samples, but also store an approximation of the trajectory of the
samples over time. Like conventional depth images, animated depth
images allow adapting the level of detail, provide occlusion culling,
and bound the amount of data that has to be transferred. Unlike
conventional depth images that can only capture a single snapshot of
a dataset, animated depth images provide a quality approximation of
a time-varying dataset for an entire time interval. Compared to a
static/pre-computed video sequence, animated depth images have the
advantage of interactivity, as the user is free to translate anywhere in
the vicinity of a reference point, and the advantage of allowing to
slow down the animation to any desired rate.

Animated depth images imply the following challenges. First,
sample trajectories have to be stored compactly. Storing the

trajectory of every sample is prohibitively expensive. Instead, we
leverage sample coherence to assign trajectories to groups of samples
based on a semi-rigid body decomposition of the image. Second, the
reconstruction of output frames has to be done by taking into account
sample connectivity that changes as samples move. The third
problem is that of disocclusion errors, due not only to viewpoint
translations, but now also due to motion within the dataset. We take
the approach of sampling the dataset adaptively from multiple
viewpoints and multiple time steps to derive on the server a good
approximation of the set of necessary and sufficient samples, which
are then transferred to the client. The approach is robust in the
context of extremely challenging occlusion patterns. When the
viewpoint desired at the client moves outside the neighborhood
covered by the set of samples, or when the client desires to visualize
the dataset at a time step outside of the interval covered, the adaptive
sampling process is repeated, and a new set of animated samples are
transferred from the server to the client.

We apply animated depth images in the context of interactive
remote visualization of finite element analysis (FEA) datasets. FEA
datasets are particularly challenging time-varying datasets since there
are millions of degrees of freedom, with nodes moving
independently, which creates complex occlusion patterns and
massive data replication. Figure 1 and the accompanying video [47]
(http://www.cs.purdue.edu/cgvlab/popescu/remotevis/) show that
animated depth images enable the reconstruction of quality
visualization frames that are comparable to frames rendered directly
from the original FEA dataset. We also extend our approach to SPH
datasets (video [47] and Figure 11).

2 PRIOR WORK

We review prior work in remote visualization and prior work aimed
at overcoming the problem of disocclusion errors.

2.1 Remote Visualization

We classify remote visualization approaches based on the
computational load distribution between client and server. At one
end of the spectrum is the approach of doing all the work on the
server and of sending visualization frames to the client, which acts
like a simple terminal that displays images [1, 2, 3, 4, 44]. The
approach is appealing because it doesn’t require any storage or
computation capability at the client, which is particularly beneficial
when the client runs on limited hardware such a smartphone [40].
Moreover the approach is general—any visualization algorithm and
any type of dataset are supported as long as the server can produce
the visualization frames which are displayed at the client. The
approach suffers from the disadvantage of limited interactivity due to
network bandwidth limitations and latency, which can be addressed
by reducing resolution or by aggressive compression. Moreover, the
approach implies frequent requests from the client to the server, i.e.
once for every change in the visualization path requested by the user,
which can lead to server overload, and to poor visualization service
quality when connection to the server is lost. The problem has been
addressed in the context of virtual environments by anticipating user
interactions [43, 45], which however comes at a loss of generality
and which is difficult to extend to the context of remote visualization
where the visualization target might not be known a priori.

At the other end of the spectrum is the approach of reducing the
dataset to a manageable size, to transfer the reduced dataset to the
client, and to run the visualization algorithm at the client. There is a
large variety of techniques for reducing dataset size, including multi-
resolution and level of detail [5, 6], feature extraction [7, 8],
progressive refinement [9, 10], occlusion culling [11, 12], and data
compression [13, 14] techniques. One technique [15] targets
dynamic datasets specifically and reduces the dataset by compressing
the trajectories of the simulation nodes (i.e. vertices of finite element
geometry) through rigid body decomposition. The strength of the
general approach of reducing the dataset at the server is that once the
reduced dataset is transferred to the client, the visualization doesn’t

http://www.cs.purdue.edu/cgvlab/popescu/remotevis/

4

depend on the network anymore. One weakness of the approach is
the need for data reduction algorithms for specific data types and
visualizations. Another weakness is the challenge of reducing large
datasets aggressively while preserving features of interest that are
typically not known a priori.

In the middle of the spectrum are hybrid approaches: most of the
work is done at the server while the client also shoulders part of the
burden with the reward of improved interactivity. One example are
approaches that use sophisticated compression schemes on the server
that require decompression at the client in parallel [16, 17], or with
the help of GPUs [18]. Another example are systems that send
enhanced images, or superimages, from the server to the client, such
as depth images [19, 20], or non-uniformly sampled images [21].

View-dependent effects such as volume rendering or reflections
are challenging for such approaches since it requires either
computing the expensive effect at the client, or increasing the size of
the representation considerably to include view-dependent color. The
visualization by proxy framework [37] succeeds at decomposing and
translating a static volume dataset into a compact set of proxy depth
and attenuation images that serve as an intermediate representation in
the context of volume rendering. Occlusions are addressed using a
single-pole occlusion camera [29], which creates multi-perspective
proxy images that avoid simple occlusion patterns between a small
number of features. Visualization by proxy provides a general
framework where volume rendering operations can be quickly
approximated, without accessing the original dataset. The coherent
visualization of a time-varying volume dataset without access to the
entire dataset, as needed for example in the case of remote
visualization, has been proposed using ray attenuation functions [38].
The method has the limitations of not allowing viewpoint changes
and of restriction to exploratory use due to approximation errors. Our
method focuses on viewpoint changes in opaque surface rendering
for dynamic FEA datasets, it handles arbitrarily complex occlusion
patterns, and it enforces a user selected error bound on sample
trajectory approximation.

The animated depth images introduced in this paper falls in the
category of hybrid approaches. Hybrid approaches are general as far
as the client is concerned—like conventional images, superimages
insulate the client from the complexity and variety of visualization
algorithms and dataset types. Hybrid approaches also improve
interactivity—like reduced datasets, superimages are sufficient to
reconstruct frames at the client without any additional data from the
server. The challenge of the hybrid approach is to devise
superimages that can cover a large volume of the multidimensional
space of visualization parameters. Previous work was concerned with
view rotations and focal length variations [21] and with viewpoint
translations [19]. Animated depth images target the changes in the
time parameter for time-varying datasets.

Like the previous method for dynamic dataset reduction through
rigid body decomposition discussed above [15], our method
compresses animation data by leveraging motion coherence of
animated depth image samples. However, the previous method
works at dataset level and does not scale with dataset size. Animated
depth image are a hybrid remote visualization approach, with cost
independent of dataset extent or resolution, and only dependent on
output image resolution. In order to achieve this, the animated depth
image approach contributes solutions to the problems of fast,
hierarchical rigid body decomposition of the animated depth image
samples, of adaptive sampling to avoid disocclusion errors due to
viewpoint translation and sample motion, and of visualization output
frame reconstruction from the animated depth image samples.

2.2 Alleviating Disocclusion Errors

The idea of using a depth image as a rendering primitive dates back
to early image-based rendering work [22]. However, a single depth
image is not sufficient—the slightest viewpoint translation creates
disturbing disocclusion errors. Disocclusion errors have been
addressed by combining multiple depth images at run time [22, 23,
24] or off-line [25, 26, 27]. Another approach is to render the depth

image with a non-pinhole camera model, such as a multiple-center-
of-projection camera [28], an occlusion camera [29], a general linear
camera [30], or a graph camera [31]. The advantage of the non-
pinhole camera approach is that the samples needed for the view
region are arranged in a single-layer depth image with good pixel to
pixel coherence, which is compact and compresses well. This is of
great importance in our context where we aim to reduce the amount
of data that has to be transferred from the server to the client.
However, constructing non-pinhole camera models that capture all
samples needed in the context of the complex occlusion patterns that
arise in FEA datasets is challenging. We opt instead for the approach
of pre-combining multiple depth images. This suits the remote
visualization scenario well—the work of rendering multiple depth
images and of combining them into a non-redundant set of samples is
done at the server, before transmission.

3 ANIMATED DEPTH IMAGE DEFINITION

An animated depth image stores:
(a) color and depth samples to approximate the color and geometry

of the dataset,
(b) sample trajectories to approximate the motion in the time-

varying dataset, and
(c) sample connectivity to enable a quality triangle-mesh-based

reconstruction of visualization frames.
(a) Like a conventional depth image, an animated depth image is

an image that stores color and depth per pixel, obtained by rendering
the dataset for a given view PPC0 and at a given time step t0. The
pixel data can be unprojected to a 3-D point with color using PPC0.
In Figure 2, the eye of PPC0 is E, and pixels a, b, and c are
unprojected to 3-D points A, B, and C using the PPC0 rays Ea, Eb,
and Ec and the depths za, zb, and zc stored at the three pixels.

(b) Unlike a conventional depth image, an animated depth image
also encodes the trajectories of its samples. Consider a sample A that
belongs to a dataset triangle V0V1V2 (Figure 2). The sample is
defined by its barycentric coordinates α, β, and γ:

 (1)

As the triangle vertices move to V01, V11, and V21, respectively,
the sample moves to A1 which is found using the sample’s
barycentric coordinates:

 (2)

In complex time varying datasets, such as for example FEA
datasets, triangles have complex trajectories modeled with hundreds

c
E

a

A

b

B

C

V0

V1

V2

V01

V11

V21

Animated depth image

A1

γ

β
β

γ

Fig. 2. Animated depth image illustration. Pixel a is unprojected to

3-D point A, which belongs to dataset triangle V0V1V2. As the

triangle moves to V01V11V21, sample A moves to A1. Sample motion

is approximated by partitioning the image into rigid bodies (see

color highlights). The implicit sample connectivity is used to define

a 3-D mesh used for high-quality reconstruction of output frames.

5

of time steps. Storing the trajectory of each of individual sample of
an animated depth image results in a large data size that precludes
applications such as remote visualization. We leverage the local
coherence of motion in time-varying datasets and group nearby
animated depth image samples into rigid bodies. A rigid body is a
cluster of samples whose motion is approximated well with a single
sequence of rigid body transformations X1, X2, …, Xn-1, where Xi is a
conventional 4×4 transformation matrix that encodes a rotation and a
translation but no scaling, and n is the number of time steps. Instead
of storing the trajectory A0, A1, …, An-1 of each sample in the rigid
body, the animated depth image only stores the initial position A0 of
each sample and the sequence of transformations X1, X2, …, Xn-1. The
subsequent positions Ai of the sample are approximated with:

 (3)

Consider for example a piece of an axle of the truck in the FEA
simulation shown in Figure 1 (right). When the truck impacts the
barrier the piece breaks off and flies away spinning. The samples of
the piece can be grouped into a rigid body because their motion
throughout the simulation can be approximated with the same
sequence of rigid body transformations. The piece can also bend
slightly as it breaks off, as long as a user imposed maximum
trajectory approximation error is not exceeded. If the piece bends
significantly and the error threshold would be exceeded when using a
single rigid body, the piece is approximated with two or more
smaller rigid bodies. In Figure 2 there are four rigid bodies
highlighted with green, blue, purple and yellow. Not all samples are
assigned to rigid bodies (red in Figure 2). Such unassigned samples
have their trajectory encoded explicitly.

 (c) The animated depth image samples are used to reconstruct
output visualization frames from novel views. One approach is to
resort to a point-based rendering technique that does not require
explicit sample connectivity. A high-quality reconstruction approach
is to connect samples in a triangle mesh leveraging the connectivity
defined implicit by the regular grid of pixels. However, not all four
adjacent samples should be connected by two triangles. Like for a
conventional depth image, samples should be disconnected if they
are on opposite sides of a depth discontinuity: the silhouette samples
of a foreground object should not be connected to their neighboring
samples that belong to the background object. Animated depth
images also require that samples be disconnected when they belong
to surfaces that move apart over the course of the simulation. The
animated depth image stores at sample A the connectivity in the 2×2
sample neighborhood that has A as its top left sample (Figure 2). The
issue of connectivity for the purpose of reconstruction is of course
orthogonal to the issue of rigid body decomposition for sample
trajectory approximation (Figure 3).

4 ANIMATED DEPTH IMAGE CONSTRUCTION

Consider a time-varying dataset D modelled with triangles whose
vertices move on piecewise linear trajectories over n time steps from
t0 to tn-1. Given a reference view PPC0 and a sample trajectory
approximation error threshold ε, an animated depth image of D is
constructed in three major steps, with each step computing one of the
main components of the animated depth image (Section 3):

(a) Compute samples by rendering D at t0 from PPC0.
(b) Compress sample trajectory through rigid body clustering.
(c) Compute sample connectivity.

The first step (a) computes a conventional depth image of the
dataset by rendering the triangles in D at their t0 position. The
triangle color could originate for example from materials or from

false color schemes, and could be encoded for example with a color
per vertex or with textures. No matter what the origin of the color or
encoding mechanism, the color is transferred to the depth image
which stores a color sample per pixel. In addition to color and depth,
each pixel stores the ID of the dataset triangle it samples. The
triangle ID is used to compute the barycentric coordinates of the
pixel sample using Equation 1.

4.1 Rigid body clustering

The second step (b) of animated depth image construction computes
a compact representation of sample trajectories by clustering samples
into rigid bodies. This clustering is based on the reasonable
assumption that samples that move together like a rigid body are
close together in model space, and hence in image space. The sample
trajectory approximation error is bound by the threshold ε. The
clustering proceeds in bottom-up fashion with the following steps:

(b.1) Seed rigid bodies in 2×2 sample neighborhoods.
(b.2) Merge rigid bodies recursively.
(b.3) Finalize rigid bodies.

Step b.1 takes a pass over the depth image computed at Step (a)
and forms initial rigid bodies of 2×2 neighboring samples, whenever
possible. Let S0, S1, S2 and S3 be the four samples of the 2x2
neighborhood. The samples form a rigid body if a sequence of rigid
body transformations X1, X2, …, Xn-1 places each of the four samples
for each time step within epsilon of its true dataset position.

|
 |

(4)

In Equation 4, Sji
* is the position of sample Sj at time step i as

approximated using the rigid body transformations (Equation 3), Sji
is the true position of sample Sj at time step i as given by the dataset
using the barycentric coordinates computed at Step (a) (Equation 2),
and the Euclidian distance between Sji

*
 and Sij has to be smaller than

ε for each sample j and for each time step i.
We construct the rigid body transformations Xi one at the time,

starting with X1 and ending with Xn-1. Xi is constructed using three
samples by adapting a previously developed method [15] as shown
in Figure 4. Xi is constructed by combining a translation that takes
the initial position S00 of sample S0 to its position S0i at time step i,
with a rotation that aligns the planes of triangles S00S10S20 and
S0iS1iS2i, and with a rotation about the normal of the common triangle
plane that aligns edges S00S20 and S0iS2i. Once Xi is constructed, the
approximate sample positions at time step i are computed by
applying the transformation Xi to the initial sample positions.

The approximation error for S0i is 0 since transformation Xi is
constructed such that S0i

* and S0i coincide. If the distance between
the true and approximated position of any of the other three samples,
including S3, exceeds ε, the four samples cannot form a rigid body
and the iterative construction of the sequence of transformations Xi
stops. If all errors are within ε, the algorithm proceeds with
constructing transformation Xi+1. Once Xn-1 is constructed, the four
samples define a rigid body. Figure 5, top, illustrates the 2×2 sample

Fig. 3. Illustration of the six possible connectivity scenarios for a

neighborhood of 2x2 samples.

S00

S10

S30

S20

S0i*

S1i*

S2i*

S3i* S3i

S2i

S1i

S0i ,

Xi

Fig. 4. Construction of rigid body transformation Xi. Xi is maps S00

to S0i, triangle plane S00S10S20 to triangle plane SoiS1iS2i, and

triangle edge S00S20 to triangle edge S0iS2i.

6

rigid bodies constructed by Step b.1. For the 2×2 neighborhoods
where rigid body construction fails, the four samples remain
unassigned (white in Figure 5, top).

Step b.2 reduces the number of rigid bodies through merging.
Merging proceeds in bottom-up quadtree fashion. The rigid bodies of
four neighboring nodes at the current level of the quadtree are
merged to form the rigid bodies of the parent node at next level up.
The inner horizontal and vertical boundaries are traversed one pair of
samples at the time. If the two samples of a pair belong to different
rigid bodies, the algorithm attempts to merge the two rigid bodies.

Given two rigid bodies A and B, rigid body B could be merged
into A if the sequence of rigid body transformations of A
approximates the trajectories of all the samples in B within ε. When
B is merged into A, the rigid body B is abandoned while the
transformations in A will represent all samples in both A and B.
Figure 5, middle, shows the rigid bodies obtained after Step b.2. The
rigid bodies are larger and in smaller number compared to the
starting seed rigid bodies (top).

Transformations Xi are rigid body transformations that exclude
scaling. Scaling would increase the trajectory modeling capability of
the transformation, which would lead to finding more rigid body
seeds at Step b.1. However, allowing for scaling can seed rigid
bodies from four samples that belong to different dataset entities, and
such anomalous rigid bodies cannot be merged, resulting in a large
number of small rigid bodies which is inefficient.

Step b.3 improves the rigid body partitioning of the animated
depth image by overcoming limitations of Steps b.1 and b.2. First,
Step b.1 only attempts to form a rigid body between the four samples
of a 2×2 neighborhood. If the attempt fails, the four samples remain
unassigned, whereas, for example, it could be that sample S0 can be
assigned to the rigid body to the left of the 2×2 neighborhood, or
even to a distant rigid body. To overcome this limitation, Step b.3

tests each unassigned sample for possible inclusion into each of the
existing rigid bodies. Second, Step b.2 only attempts to merge rigid
bodies that are adjacent. Step b.3 attempts to merge all pairs of rigid
bodies. Figure 5, bottom, shows the final rigid bodies. Some large
rigid bodies are formed by merging non-adjacent rigid bodies. As
expected, the few remaining unassigned samples are concentrated
around the impact region where samples move chaotically. The

trajectories of the unassigned samples are approximated using the
greedy polyline simplification algorithm of Ramer [32] and
Douglas-Peucker [33], conforming to the same error threshold ε.

4.2 Sample connectivity computation

The third and final step (c) of the construction of the animated depth
image computes sample connectivity to enable triangle-mesh-based
reconstruction of output visualization frames.

For conventional depth images, connectivity is computed using
the second order derivative of the depth map. Values larger than a
threshold indicate depth discontinuities, and reconstruction triangles
spanning across depth discontinuities are removed [24]. However,
naively using such connectivity data computed at t0 for all time steps
of an animated depth image results in severe artifacts (Figure 6) due
to sample motion and erosion. When a finite element, e.g. a piece of
a structural steel beam, undergoes excessive stress, the element
“erodes”, i.e. it is eliminated from the FEA simulation for the
subsequent time steps. When an element erodes, all the dataset
triangles used to represent the element erode as well, as do all
samples contributed by the eroding dataset triangles. A
reconstruction triangle connecting three samples should clearly not
outlive its first eroding sample, but this is not always sufficient.

Consider a structural steel beam in the aircraft impact simulation
shown in Figure 1. Let’s assume that the beam is modeled with six
dataset triangles with vertices V0 to V7 (Figure 7), and let’s assume
that dataset triangles V1V2V6 and V2V5V6 erode at time step i. If the
beam is far from the eye of the perspective camera PPC0 used to
construct the animated depth image, or if the beam is seen by PPC0
at an angle, it can happen that neither V1V2V6 nor V2V5V6 has a
sample in the animated depth image. In Figure 7, samples S0, S1, S2
and S3 skip V1V2V6 and V2V5V6. Simply checking for erosion at the
vertices of the reconstruction triangles will lead to the erroneous
conclusion that the reconstruction triangles do not erode.

 The correct eroding time step of each reconstruction triangle is
set as follows. Consider reconstruction triangle S0S1S2. For each of
its edges, e.g. S1S2, compute the shortest path P12 between the dataset

Fig. 5. Visualization of rigid bodies and magnified fragment after Step

b.1 (top), Step b.2 (middle) and Step b.3 (bottom) of the animated

depth image construction algorithm. The number of rigid bodies and

the percentage of unassigned samples for each of the three images

are 125,752 and 20.72%, 12,945 and 20.72%, and 6,322 and 1.45%.

Fig. 6. Incorrect reconstruction that does not take into account the

temporal changes in sample connectivity.

S0 S3

S1 S2

S0

V7

V0 V1 V2 V3

V6 V5 V4

Fig. 7. Reconstruction triangles S0S1S2 and S2S3S4 should erode

when dataset triangles V1V2V6 and V2V5V6 (red) erode, even

though samples Si belong to dataset triangles that do not erode.

7

triangles of the two samples, i.e. V0V1V7 and V2V3V5, respectively.
The shortest path is computed in the dataset triangle adjacency graph
at t0. The dataset triangle adjacency graph is an undirected graph
with nodes corresponding to dataset triangles and with edges
corresponding to dataset triangles sharing a vertex. The eroding time
step of edge S1S2 is set as the first time step where P12 is interrupted.
A path is interrupted when one of the dataset triangles it enumerates
erodes. Finally, the eroding time step of the reconstruction triangle is
set to be the earliest of the eroding time steps of its three edges. For
the example in Figure 7, each reconstruction triangle has two edges
that erode at time step i and one edge that does not erode, and thus
the eroding time step for the two reconstruction triangles is i.

5 ADAPTIVE SAMPLING IN SPACE AND T IME

Like a conventional depth image, an animated depth image suffers
from disocclusion errors when the viewpoint translates. Moreover,
disocclusion errors also occur when sample motion uncovers new
samples. We alleviate disocclusion errors by sampling the dataset
adaptively from multiple viewpoints and at multiple time steps
(Section 5.1), and by eliminating redundant samples (Section 5.2).

5.1 Adaptive Sampling

Given an animated depth image ADI0 with view PPC0 covering nt
time steps starting at t0, the goal is to enhance ADI0 with sufficient
samples to ensure a disocclusion error free reconstruction from
anywhere in a neighborhood of PPC0, and at any time in [t0, t0 + nt].
We define the neighborhood of PPC0 with an equilateral triangle of
radius q (i.e. the radius of its circumscribed circle), perpendicular to
the view direction of PPC0, and centered at its eye. The length q is
an input parameter. The larger the triangle, the bigger the viewpoint
translation range at the client, but also the bigger the data size.

Our adaptive sampling scheme renders conventional depth
images from various locations inside the viewpoint triangle and at
various time steps. The sampling process stops when the percentage
of non-redundant samples contributed by a new depth image drops
below a threshold g. In order to enable the elimination of redundant
samples, depth images and animated depth images are split into
square tiles of size tw × tw (we use tw = 4). Figure 8 shows the tiles
containing the non-redundant samples contributed by a depth image.
Tiles, like complete images, allow storing connectivity information
compactly. Given a tile size tw and a threshold g for the percentage of
new samples contributed by a new image, our adaptive sampling
algorithm proceeds as follows.

1. Initialize the set S of animated depth image tiles to empty.
2. Subdivide viewpoint triangle and time interval recursively.

For each new viewpoint e and new time interval t:
a. Render a depth image DIet
b. Compute non-redundant samples DIet – S
c. If |DIet – S| / |DIet| > g

i. Set* = Tile(DIet – S, tw)

ii. Set = ConstructADI(Set
*)

iii. S = S ∪ Set

iv. Continue recursive subdivision at e and t

The algorithm samples the space of possible viewpoints and time
steps recursively. For each point in this space, a new depth image
DIet is rendered at Step 2.a. Step 2.b checks for each sample in DIet
whether it is redundant with the samples already collected in S. If the
percentage of non-redundant samples in DIet is below the value of
the input parameter g, the recursive subdivision stops. If DIet
contributes a sufficient number of non-redundant samples, the non-
redundant parts of DIet are partitioned into tiles (Step 2.c.i), an
animated depth image tile is computed for each depth image tile
(Step 2.c.ii), the new set of tiles is added to S (Step 2.c.iii), and the
subdivision continues recursively (Step 2.c.iv). The first depth image
computed by the adaptive sampling algorithm corresponds to the
center of the viewpoint triangle (also the eye of PPC0) and to t0.
Since S is initially empty, S will contain the entire animated depth
image constructed for PPC0, which guarantees highest-quality
reconstructions for the view PPC0.

5.2 Sample Redundancy

The first task is to define sample redundancy. Depth images contain
point samples and two samples will in general not correspond to the
same 3-D point. We define two samples as redundant if and only if
they project within one pixel in all views PPCi, where PPCi is
identical with PPC0 except that the viewpoint can be anywhere
inside the equilateral viewpoint triangle with radius q. If two samples
belonging to different surfaces happen to project at nearby locations
from a viewpoint, motion parallax separates the two samples when
seen from a different viewpoint, and the samples are correctly
labeled as non-redundant. Our definition of redundancy ignores view
rotations which only introduce a negligible variation of the distance
between the projections of two samples. Given two samples defined
at different time steps ta and tb, the samples are redundant if they are
redundant when the second sample is brought to time step ta.

The second task is to find a method for quickly checking for
sample redundancy, given our definition. Figure 9 illustrates the
projection of a pair of two samples P0 and P1 as the viewpoint
translates on the plane of the viewpoint triangle. The image plane is
constant as there are no view direction rotations. Let C0 be the
intersection between P0P1 and the viewpoint plane. For a viewpoint
C, the square of the distance d between the image plane projections
q0 and q1 of P0 and P1 is given by:

 | |

 (5)

where wi (i = 0, 1) and x are defined as:

|

 |

| |

| |

| |

 | |

(6)

 Since w0 and wi do not depend on the current viewpoint C, d2 is a
quadratic function in x, with the minimum value of 0 reached when
C = C0. Distance d increases away from C0. Over the entire
viewpoint triangle, the maximum distance occurs at one of the three

Fig. 8. Non-redundant samples gathered by our adaptive algorithm.

Viewpoint

Plane

Image

Plane

P0

P1

C0C

q0', q1'

q0 q1

S0

O0

S1

O1

d=0

d

Fig. 9. Projections of samples P0 and P1 onto the image plane as the

viewpoint translates on the viewpoint triangle plane. The distance d

between the projections is 0 at C0 where q0’ and q1’ coincide, and it

increases away from C0.

8

vertices of the viewpoint triangle. Consequently, given two samples,
the largest distance between the projections of the samples over all
viewpoints inside the viewpoint triangle can be easily computed as
the maximum over the three distances obtained at the viewpoint
triangle vertices. If the maximum is less than one pixel, the new
sample is discarded as redundant.

6 V ISUALIZATION FRAME RECONSTRUCTION

Given a set of animated depth image tiles S, an output image view
PPCi, and time parameter value tj, the client reconstructs the
corresponding visualization frame by rendering each tile in S.

A first step computes the positions at time ti of each 3-D sample
stored in the tiles in S. If a sample belongs to a rigid body, the
position is reconstructed by applying to the initial position of the
sample the appropriate transformation from the rigid body trajectory.
If the sample is unassigned, that is it does not belong to a rigid body,
the current position is inferred from the trajectory of the sample
which is stored explicitly in the animated depth image
representation. The time value ti need not be one of the simulation
time steps: the simulation can be visualized at arbitrarily slower
speeds by interpolating simulation computed sample positions.

Once the current position of the 3-D samples is established, the
frame reconstruction problem is reduced to the well-studied problem
of reconstructing output images with novel viewpoints from input
depth images. Any prior work method developed for rendering from
depth images can be used, including splats [34], surfels [35], forward
rasterization [36], and triangle-mesh reconstruction [22].

We use two reconstruction modes: an efficient point-based
rendering approach where each sample is rendered with a 2×2 output
image pixel splat, and a high-quality triangle-mesh reconstruction. A
tw × tw tile defines a mesh of up to (tw-1) × (tw-1) × 2 triangles by
connecting any 4 neighboring samples with 2 triangles. The
connectivity information stored by the tiles is used to avoid defining
triangles across depth discontinuities. Samples not connected in any
triangle are drawn as points. Depending on the rendering capability
at the client, more shading flexibility can be supported by
incorporating into the animated depth image additional per-sample
shading parameters. We have extended animated depth images to
also store per-sample normal, which allows for dynamic relighting at
the client (see Figure 10 and video [47]).

7 EXTENSION TO SPH DATASETS

The animated depth image is a general compact representation of
time-varying color and depth datasets. So far we have demonstrated
animated depth images in the context of triangle meshes resulting
from FEA simulations. Animated should be extendable to other types
of time-varying datasets, with certain modifications. Consider, for
example, a smoothed-particle hydrodynamics (SPH) dataset where
the 3-D position of each particle center is recorded over a sequence
of time steps. One option for visualizing such a dataset is to render
each moving particle as an opaque, shaded sphere. Tessellating each
sphere would result in a dataset of moving triangles that can be
handled as described. However, tessellating each particle results in a
one hundred-fold explosion in the number of primitives. Instead we
modify our method to handle particles directly.

Like before, the animated depth image stores color and depth
samples. A pixel sample is a reference to its particle and not a 3-D
point—the triangle ID is replaced with the particle ID and no
barycentric coordinates are needed. Rigid bodies are computed using

the center of the particle to which each sample belongs, and not the
sample’s 3-D point. The animated depth image encodes the
trajectories of the centers of the particles and not the trajectories of
individual samples. Sample connectivity is not needed, as output
visualization frames are reconstructed by rendering each particle as
an (independent) sphere. The adaptive sampling in space and time
remains the same. Sample redundancy detection is now replaced
with a simple test for particle ID uniqueness. For the example in
Figure 11 the SPH dataset was captured using the animated depth
image approach. The trajectory approximation error threshold is 1%
of the radius of the sphere modelling the particle, the average
disocclusion error rate is 0.17%, and the compression factor is 40.

8 RESULTS AND D ISCUSSION

We have applied animated depth images to multiple reference views
in two FEA datasets—the truck dataset (Figure 1, right) and the
aircraft dataset (Figure 1 left and middle), as well as to an SPH dam
break simulation dataset (Figure 11). The truck dataset has 81 time
steps and covers a region of 15m × 5m × 3.3 m. The truck dataset
contains 0.63M triangles and 0.28M vertices, for a total of 23M
vertex positions. The aircraft dataset has 170 time steps, it is
segmented into 3 segments of 58, 58, and 56 time steps, and it covers
a region of 110m × 90m × 60m. The aircraft dataset contains 2.08M
triangles and 2.01M vertices, for a total of 342M vertex positions.
The SPH dataset has 82 time steps, it covers a region of 100 × 18 ×
20 and it contains 2.17M particles for a total of 178M particle center
positions. The particles are rendered as spheres with radius 0.1.

8.1 Quality

We investigate quality along three directions: sample trajectory
approximation, residual disocclusion, and reconstruction errors.

Sample trajectory approximation error
Animated depth images approximate sample trajectories with a

user-controlled maximum approximation error. Larger error bounds ε
lead of course to fewer rigid bodies, fewer unassigned samples, and a
more compact representation. Table 1 shows how the data size
decreases as the approximation error ε increases for the aircraft
dataset. ε is given in absolute values (e.g. 10mm), in approximate
relative values (e.g. 10mm/100m = 0.0001 = 0.01%), and in
maximum image plane error values (e.g. 0.01pix). The error in the
image plane is estimated by projecting a segment of length ε on the
view PPC0 of the animated depth image. The segment is parallel to
the image plane and it is located at the depth of the closest sample in
the animated depth image, which provides a conservative upper
bound of the image plane error. The image resolution is 1,280 × 720.

Table 1. Data size variation with trajectory approximation error for
the aircraft dataset.

ε

[mm] 5 10 25 50 100 500 1000

[%] 0.005 0.01 0.025 0.05 0.1 0.5 1.0

[pix] 0.04 0.09 0.21 0.43 0.85 4.25 8.50

Size [MB] 39 29 22 19 18 17 16

Fig. 10. Frames with lighting computed at the client.

Fig. 11. Frame reconstructed from an animated depth image (top)

and frame obtained by rendering the original SPH dataset (bottom).

The residual disocclusion error is 0.35%.

9

Residual Disocclusion Error
Given an output frame F, we measure the residual disocclusion

error rate in F as the percentage of samples in the corresponding
truth frame F0 that are not present in F. Table 2 shows the number of
depth images the adaptive sampling algorithm uses, the size of the
resulting set of animated depth image tiles, and the maximum and
average residual disocclusion error rates for various values of the
convergence threshold g. The maximum and average residual
disocclusion error rates are computed over a visualization sequence
of 50,000 frames, which were reconstructed from viewpoints and at
time steps that sample the viewpoint triangle and time step interval
densely and comprehensively. As expected, a smaller g value yields
fewer residual disocclusion errors at the cost of sampling the dataset
more. Disocclusion errors are not linear, as seen in the jump of the
maximum error rate when the g value changes from 0.3% to 0.5%.
The size of the resulting representation decreases slowly as the
residual disocclusion error is small (i.e. up to g = 0.3%) and then it
decreases rapidly indicating that samples are missed. For all the
images shown in the paper and in the video, the value for g is 0.1%.

Table 2. Adaptive sampling performance for various convergence
threshold g values for the aircraft dataset.

g [%]

Number of

Sampling

Depth Images

Data size

[MB]

Residual Disocclusion

Error Rate [%]

Max Avg.

0.05 208 24 0.31 0.084

0.1 184 24 0.31 0.11

0.2 136 23 0.37 0.14

0.3 124 23 0.46 0.16

0.5 76 20 40.0 0.65

Table 3 reports typical residual disocclusion error rates for the

truck and aircraft datasets. The 3 regions of the aircraft dataset that
were investigated are shown in Figure 1 left (outside), Figure 12
(side), and Figure 1 middle (reverse). The residual disocclusion
errors is small in all cases.

The graph in Figure 13 shows the variation of the average and
maximum residual disocclusion error rates over all viewpoints as a
function of time step for the outside, side, and reverse regions of the
aircraft dataset. The maximum graph line for the reverse region
(solid green) varies considerably due to the fast and chaotic motion
in that dataset region and the proximity of the reference viewpoint.

Table 3 Maximum and average residual disocclusion error rates.

Dataset
Residual Disocclusion Error Rate [%]

Max Avg.

Truck 0.23 0.05

Aircraft

outside 0.64 0.17

side 0.46 0.16

reverse 0.69 0.21

SPH 1.1 0.17

Reconstruction Error

Even if all samples needed are captured, the reconstructed frame
will differ slightly from a frame rendered directly from the original
dataset. Figure 14 shows that such differences are small. The largest
errors are seen at residual disocclusion errors and at edges. The
reasons for the differences include:

- the additional resampling introduced by the intermediate
animated depth image representation; the output frame has the same
resolution as the input animated depth image, whereas, for
conservative reconstruction, the input should have twice the
resolution of the output;

- the undersampling caused when the screen footprint of samples
increases from the reference view due to view changes or sample
animation;

- the conservative early elimination of a triangle between samples
that erode at different time steps, as opposed to splitting the triangle
into fragments each eroding at a different time.

8.2 Performance

8.2.1 Data size

Table 4 shows the data size variation for the animated depth image
representation as a function of the length q of the viewpoint triangle
side. The data was measured for the outside region of the aircraft
dataset, the output resolution is 1,280 × 720, and the number of
simulation time steps is 58. As can be seen in the relative size row,
the ratio of the data size to the viewpoint triangle edge length
decreases as the viewpoint triangle gets bigger, which indicates that
the animated depth image representation is more efficient as the
viewpoint triangle grows. We chose a triangular viewpoint region for
simplicity—more complex regions can be built from multiple
triangles. Moreover, the adaptive sampling algorithm can be easily
extended to more complex 2-D or 3-D regions (e.g. a cuboid sampled
in octree fashion).

The viewpoint triangle is the set of viewpoints used by the
adaptive sampling algorithm to capture all samples needed.
However, the viewpoint triangle is a conservative approximation of
the set of viewpoints from where the animated depth image
representation has sufficient samples. Other viewpoints close to the

Fig. 12. Side view of the aircraft dataset.

Fig. 13. Variation of residual disocclusion error rates over time steps.

Fig. 14. Visualization of differences between a frame reconstructed

from our method and the corresponding frame rendered from

original dataset. The frames are shown in Figure 1, middle.

0.0%

0.2%

0.4%

0.6%

0.8%

1 9 17 25 33 41 49 57

Outside Max. Side Max. Reverse Max.

Outside Avg. Side Avg. Reverse Avg.

Time steps

Error rate

10

triangle are likely to have sufficient samples, such as points off the
triangle plane behind and in front of the center of the triangle, or
points on the triangle plane just beyond the triangle. The image in
Figure 15 shows the viewpoint triangle (solid orange) enlarged
(orange triangular contour) and extruded (blue and yellow).

Reconstructions from 66% of the viewpoints inside the prism
defined by the blue and yellow triangles have a smaller residual
disocclusion error than reconstructions from the viewpoint triangle.
Consequently the user can navigate the viewpoint away from the
triangle viewpoint, and good reconstructions are obtained even at a
considerable distance from the viewpoint triangle (compare the size
of the prism to that of the viewpoint triangle in Figure 15). When the
viewpoint leaves the viewpoint triangle, the user (or the system) can
request a new animated depth image representation. Visualization
continues using the current representation, with good results, until
the new representation arrives from the server.

The last row of Table 4 gives the compression factor achieved by
the rigid body decomposition and the compression of the trajectories
of unassigned samples. The compression factor is computed by
comparison to storing the trajectory of every sample uncompressed,
with one position per simulation time step. Tables 1 and 2 report the
variation of the size of the animated depth image representation with
the trajectory approximation error threshold ε and with the
convergence factor g. For the SPH dataset, the animated depth image
representation requires 49.4MB of storage space, a 41.67
compression factor over the original dataset (2.01GB) that stores
each particle position for each time step.

8.2.2 Frame rate

Table 5 gives the average rate at which frames are reconstructed at
the client from the animated depth image representation. The
measurements were performed on an Intel i7 workstation with an
nVidia GTX660 graphics card. Four output frame rendering modes
are investigated. For static the simulation time step is fixed. For
dynamic the simulation time advances from frame to frame. PB
corresponds to a straight forward point-based reconstruction with
2x2 splats (Figure 16). TM corresponds to triangle mesh
reconstruction. The primitives (points and triangles) are sorted in
descending order based on their erosion times; this way the
primitives needed at a time step are simply determined by choosing
the appropriate prefix of the connectivity array without having to
enable and disable individual triangles. As expected, higher frame
rates are obtained for lower output resolutions, since that implies
fewer samples during reconstruction, for the point-based
reconstruction mode which is less expensive than the triangle mesh
reconstruction, and for the static visualization mode since it does not
imply updating the geometry for every frame. For all aircraft dataset
experiments at the 1,280 x 270 resolution, the minimum, average and
maximum frame rates are (98, 145, 212), (13, 18, 23), (16, 28, 40),

and (9, 14, 20) for Static PB, Static TM, Dynamic PB, and Dynamic
TM , respectively.

 Before the client can reconstruct output visualization frames, the
animated depth image representation has to be decompressed.
Decompression time ranges between 0.4 and 2.5s (Table 5), which is
comparable to the transmission time in the case of high bandwidth
networks, and negligible in the case of low bandwidth networks, as
discussed in Section 8.2.5.

 Table 5. Frame rate for various visualization modes.

Data-

set

Sequ

ence

Re-

gion

Frame

Resolution

Decom-

pression

[s]

Frame rate [fps]

Static Dynamic

PB TM PB TM

Truck 0-80 N/A 1280 × 720 0.60 566 106 100 68

A
ir

cr
af

t

0-57

out.

1280 × 720 1.4 201 23 38 18

960 × 640 0.66 266 31 50 27

640 × 480 0.42 480 56 111 45

side

1280 × 720 1.2 111 14 23 12

960 × 640 0.88 160 22 31 17

640 × 480 0.48 311 46 60 33

rev.

1280 × 720 1.2 135 22 25 15

960 × 640 0.85 194 28 56 21

640 × 480 0.45 394 74 113 45

58-

115

out.

1280 × 720 1.40 212 21 38 20

960 × 640 0.65 275 37 49 26

640 × 480 0.40 505 57 75 47

side

1280 × 720 1.2 109 13 23 12

960 × 640 0.89 157 21 30 15

640 × 480 0.51 312 45 59 34

rev.

1280 × 720 1.8 119 16 22 12

960 × 640 1.3 165 24 30 17

640 × 480 0.72 319 40 53 36

116-

171

out.

1280 × 720 1.3 211 22 40 17

960 × 640 0.55 298 36 54 28

640 × 480 0.32 550 68 114 52

side

1280 × 720 1.1 112 16 24 12

960 × 640 0.91 167 22 34 18

640 × 480 0.51 315 42 58 31

rev.

1280 × 720 2.5 98 14 16 9

960 × 640 1.9 137 18 22 12

640 × 480 1.0 270 40 48 26

SPH 0-81 N/A 1280 x 720 0.33 3280 20 352 20

Fig. 15. Visualization of viewpoints outside of viewpoint triangle (solid

orange) with conforming residual disocclusion error.

Table 4. Data size for various viewpoint triangle sizes.

q [m] 1 2 3 4 5 8 10

Size [MB] 16 19 21 25 26 36 42

Rel. Size 16 9 7 6 5 4.5 4

C. F. 17 15 15 14 14 13 13

Fig. 16. Comparison between frames reconstructed using 2x2 pixel

splats (top), and using a triangle mesh (bottom).

11

8.2.3 Scalability

Animated depth images inherit from conventional depth images the
desirable property of cost independence from dataset size. Dataset
size depends on two factors: extent and resolution. The animated
depth image performs occlusion culling and geometry resampling to
achieve cost independence from both factors. Consider an FEA
simulation of an earthquake in a city with thousands of buildings. In
output views that focus on one or a few buildings, the buildings not
visible are culled away. In output views that show the entire city, the
resolution of the animated geometry is reduced. The number of
samples remains capped by the animated depth image resolution.
Although the cost of a single animated depth image is capped, the
adaptive sampling algorithm uses multiple animated depth images to
prevent disocclusion errors. The total number of samples depends on
the complexity of the occlusion patterns and on the size of the
viewpoint triangle. Although, to the limit, in a dataset with an
infinite number of infinitely small particles every two viewpoints
gather disjoint sets of samples and thus the number of samples is
infinite, for FEA datasets there is substantial sample redundancy
between neighboring viewpoints and the number of samples needed
for a given viewpoint triangle is bounded.

The cost of the animated depth image does depend on output
image resolution. As the output image resolution grows, a quality
reconstruction requires that the resolution of the animated depth
images increases as well. In all our experiments the resolution of
images increases as well. In all our experiments the resolution of the
animated depth images equals the resolution of the output frame.

Table 6 reports the relative change in number of samples, in data
size, and in reconstruction frame rate as the resolution increases from
640x480 to 1,280x720, which corresponds to an increase in number
of pixels by a factor of 3. Data is provided for each sequence of the
aircraft dataset and for each region (i.e. O for outside, S for side, and
R for reverse). The number of samples never increases by a factor
greater than 3. The storage size increases with the number of pixels
sub-linearly, which is a strongpoint of the compression based on
rigid body decomposition employed by our approach. The higher the
resolution, the more coherent neighboring samples are, the more
samples per rigid body, and the more effective the compression. The
frame rate at higher resolution is typically higher than a third of the
frame at lower resolution, which indicates good scalability.

Table 6. Relative cost increase as output image resolution
changes from 640x480 to 1,280x720.

 Sequence

0-57 58-115 116-171

O S R O S R O S R

Samples 2.35 2.92 2.97 2.40 2.90 2.92 2.52 2.97 2.82

Data size 2.13 1.96 2.13 2.17 2.16 2.24 2.56 2.19 2.13

Frame rate 0.38 0.43 0.38 0.29 0.43 0.49 0.32 0.37 0.43

8.2.4 Thin client performance estimate

The proliferation of mobile devices with quality displays and with
limited graphics hardware acceleration capability presents the
opportunity and demands that remote visualization solutions target
such thin client scenarios.

Table 7. Visualization frame rate estimate for thin clients.

Device

Rendering

Performance

[Mtris/s]

Display

Resolution

[Mpix]

Frame rate [fps]

k = 1 k = 3

iPhone 5 133 0.73 91 30

Galaxy S4 79 2.1 19 6.3

Lumia 920 34 0.98 17 5.8

iPad 4 154 3.1 25 8.3

Table 7 gives frame rate estimates for three smartphones running the
iOS, Android, and Windows operating systems, as well as for an iOS
tablet. The frame rate f is estimated with the formula:

 (7)

where T is the triangle rendering performance of the device [41], R is
the display resolution, 2 is the number of triangles per sample, and k
is the number of complete animated depth images with resolution R
from which the frame is reconstructed.

For the experiments reported we estimate k by dividing the
number of samples gathered by our adaptive sampling algorithm
(and thus used to reconstruct output frames) to the number of
samples in a complete animated depth image. For the experiments in
Table 5, k was 0.47 for the truck dataset (due to empty background
pixels), and between 1.26 and 2.76 for the aircraft dataset. As shown
in Table 7, even when the frame is reconstructed from the equivalent
of three animated depth images (i.e. k = 3 column), an interactive
frame rate can potentially be sustained by all devices. The iPhone
has the best performance because of its advantageous triangle
rendering performance to display resolution ratio. The iPad brings a
substantial increase in display resolution that isn’t backed up by a
commensurate increase in triangle rendering performance.

The figures in Table 7 correspond to the static TM column in
Table 5. Changing the triangles that are rendered for every frame as
needed for the dynamic case translates to a high memory bandwidth
requirement, and the frame rate will decrease as it did for the
graphics card used for Table 5.

8.2.5 Comparison to other remote visualization approaches

The animated depth image approach enables remote visualization of
dynamic datasets and produces high-quality frames that are very
close to frames rendered directly from the dataset. Compared to
transferring a conventional depth image, our representation requires
a larger initial transfer, but then supports changing the view and
advancing the simulation time at the client.

We now compare our approach to the conventional remote
visualization approach of computing each frame on the server. The
performance of a remote visualization system is characterized by
three quantities: the startup time t0, defined as the time it takes for
the first frame F0 to be displayed, the frame to frame latency l,
defined as the average time elapsed from when a frame Fi (i > 0) is
requested by the user to when Fi is displayed, and the total amount D
of data transferred for a remote visualization sequence. To estimate
these quantities we have to further define the visualization context.

First, we need to define how the frame is compressed for the
conventional approach. We investigate two scenarios: each frame is
compressed individually using jpeg, and each frame is compressed
by taking into account that previous frames have already been sent to
the client. We approximate conservatively the second scenario by
compiling off-line a video file for all the frames from a visualization
sequence with the state of the art H.264 codec. This provides an
upper bound on the compression performance that live streaming can
achieve. For the aircraft dataset, the average per frame data size is
422kB for 1,280 × 720 resolution and individually compressed
frames, 58kB for 1,280 × 720 resolution and streaming. For 640 ×
480 resolution the same numbers are 45kB and 4kB, respectively.

Second, we need to estimate the time it takes the server to service
the request from the client. We assume that the server has substantial
computational resources so we consider this time as negligible.

Third, we need to estimate the ping time between the server and
the client, defined as the time it takes a short message to be
transferred from the client to the server and back, and the network
download bandwidth, defined as the amount of data that can be
transferred from the server to the client per second. Upload speed is
not a concern since the request for a new frame implies small data
amounts. Average ping times from our Purdue University laboratory
to servers at Purdue University, at University of Illinois at Urbana-
Champaign, at Columbia University, at University of North Carolina
at Chapel Hill, at the University of Utah, at Stanford University, at

12

the Technical University of Berlin, Germany, at the Lomonosov
Moscow State University, Russia, at the India Institute of
Technology Delhi, India, at Tsinghua University, China, at the
University of Tokyo, Japan, and at the University of Queensland,
Australia are 81, 71, 57, 69, 105, 109, 162, 184, 285, 277, 222,
276ms, respectively. In our comparison we use the values of 50ms
and 300ms for a short and a long ping time. The download
bandwidths we measured in West Lafayette IN for 4G, 4G LTE,
residential broadband, and wide area network (WAN) are 2.5, 10, 20,
and 100 Mbps, respectively. In our comparison we use 1Mbps and
100Mbps for high and low bandwidth values.

Finally, we need to define a visualization sequence as the series
of consecutive visualization frames requested by the user for a
particular region of the dataset and for a particular interval of
simulation time steps. In the case of the animated depth image
approach, a visualization sequence is reconstructed from the same set
of animation depth image tiles. The number of frames in such a
visualization sequence depends on the dataset, on the region of the
dataset, and on the time interval. We have observed the civil
engineers in our project examine each of the outside, side, and
reverse regions of the aircraft dataset for over 10 minutes, which at
30Hz implies sequences of 18,000 frames. In our comparison we
assume visualization sequences of 10,240 frames.

Table 8. Comparison between conventional and animated depth
image remote visualization for various network scenarios.

Resolution
Conventional Animated Depth Image

l [ms] D [MB] t0 [s] l [ms] D [MB]

Scenario A: ping 300ms, bandwidth 1Mbps

1,280 × 720 603-3,447 580 – 4,220 192 2 – 111 24

600 × 480 300-502 40 – 450 88 2 – 38 11

Scenario B: ping 300ms, bandwidth 100Mbps

1,280 × 720 300 580 – 4,220 1.92 2 – 111 24

600 × 480 300 40 – 450 0.88 2 – 38 11

Scenario C: ping 50ms, bandwidth 1Mbps

1,280 × 720 478-3,322 580 – 4,220 192 2 – 111 24

600 × 480 56-377 40 – 450 88 2 – 38 11

Scenario D: ping 50ms, bandwidth 100Mbps

1,280 × 720 50-58 580 – 4,220 1.92 2 – 111 24

600 × 480 50 40 – 450 0.88 2 – 38 11

Table 8 gives the performance of the animated depth image

remote visualization approach for the aircraft dataset and compares it
to that of conventional remote visualization. Four scenarios are
investigated: long ping time and low bandwidth (A), long ping time
and high bandwidth (B), short ping time and low bandwidth (C), and
finally short ping time and high bandwidth (D). For each scenario
two output resolutions are investigated. For the animated depth
image approach, the data size is estimated by averaging the
representation size over the three regions outside, side, and reverse,
for each resolution (resulting in the values of 24MB and 11MB). The
startup time t0 is computed by dividing the data size to the bandwidth
to obtain the 192s and 88s values. The frame to frame latency l is
computed by inverting the reconstruction frame rate, and it is given
as a range, using the fastest and slowest frame rates given in Table 5
for the same resolution, and over all reconstruction modes (i.e.
566fps and 9fps for 1,280 x 720, and 550fps and 26fps for 640 x
480). l does not depend on the network parameters (i.e. ping and
bandwidth). In fact the visualization can continue at the client even if
the connection to the server is lost after the initial transfer.

For the conventional approach, the total amount of data
transferred D is obtained by multiplying the average frame size by
the number of frames in the sequence (i.e. 10,240). A frame size
range is used, from H.264 sequence compression to compression of
individual frames, as discussed above. The conventional approach
transfers substantially more data. The breakeven points are 424 and
58 frames for 1,280 × 720, and 2,816 and 250 frames for 640 × 480.

For the conventional approach, the time for the first frame is the
same as for any other frame, thus t0 = l. We estimate l as follows:

 (8)

where tping is the ping time, f is the size of the frame, and b is the
bandwidth. If b is sufficiently large for the network to transport a
frame in half the ping time, l is given by tping. In scenario A, the
advantage of the animated depth image (ADI) approach over the
conventional remote visualization (CRV) approach is substantial, for
both resolutions, and even when the highest quality reconstruction is
used for ADI and the most aggressive frame compression is used for
CRV. In scenario B, the high bandwidth reduces l for CRV to ping
time, which still exceeds even the highest quality reconstruction time
for ADI. In scenario C, ADI has substantial advantage for the 1,280
× 720 resolution. In scenario D, which corresponds to a very highly
performing network, ADI has an advantage only for the faster
reconstruction modes (i.e. PB static and dynamic, see Table 5). For
all scenarios, the fastest reconstruction (i.e. 2ms) gives at least a 25
fold advantage for ADI over CRV.

We conclude that, compared to the conventional remote
visualization approach of sending each frame from the server to the
client, the animated depth image approach improves frame to frame
latency in all but in the case of a very highly performing network,
and the advantage increases with output frame resolution. Moreover,
the frame to frame latency does not depend on the network
condition. These advantages come at the cost of a longer startup
time. The conventional approach will always be limited by the ping
time, a network characteristic which whose improvement is
challenging and costly.

8.3 Limitations

One of the limitations of animated depth images as of all hybrid
approaches to remote visualization is the large startup time.
Progressive refinement schemes such as transferring a lower
resolution animated depth image for the reference view could help
alleviate this problem. Another approach is to further reduce the size
of the animated depth image, for example by compressing the color
and depth maps. The trajectories of the unassigned samples currently
take up to 50% of the overall storage requirement, so further
improving the compression of those trajectories will translate in
sizeable storage gains. Although the amount of residual occlusion
errors is small even for the complex occlusion patterns in the dataset
regions explored, the adaptive sampling algorithm proceeds
nonetheless in greedy fashion. A global optimization approach could
be developed to bound residual disocclusion errors.

A second limitation of animated depth images is that they do not
support volume rendering. This limitation is inherited from
conventional depth images which can model opaque surfaces by
capturing the first surface sample seen along a ray, but cannot model
transparency. This does not mean that animated depth images cannot
be used to visualize opacity data. Visualizations of opacity data often
take the first step of computing a surface of interest (e.g. isosurface)
which can then be remotely visualized with our method. Volume
rendering is just one example of the more general challenge brought
to sample-based rendering by view dependent effects. Another
example is rendering reflections. One option is to render reflections
at the client, rendering capability permitting. We will also investigate
the extension of animated depth images to store view-dependent
color in a compressed form, leveraging the fact that color variability
is limited by the targeted range of reconstruction viewpoints.

Finally, the rigid body decomposition of the set of samples stored
by an animated depth image is done non-optimally in the interest of
performance. The heuristic used is based on the reasonable
assumption that samples whose motion is well approximated by a
rigid body transformation are also samples that are close to each
other in model space and thus in image space.

13

9 CONCLUSIONS AND FUTURE WORK

We have described animated depth images, a novel type of image
that not only stores color and depth samples but also stores sample
trajectories. An animated depth image covers a time interval as
opposed to the single time point covered by conventional depth
images. The difference between an animated depth image and a set
of conventional depth images comes from the fact that the
trajectories of the samples are stored in a compact way that leverages
sample trajectory coherence. The approximation is efficient: tight
user-selected error bounds are met while achieving considerable
storage savings. The approach does not rely on sample trajectory
simplicity, but rather on similarity of trajectories of nearby samples.
The approach uses one rigid body transformation per time step which
allows modeling complex trajectories with little or no time step to
time step coherence, as those arising in the impact and dam break
simulations considered in this paper. As we have shown, despite the
complexity of the motion in these simulations, trajectories do exhibit
sample to sample coherence. As the spatial resolution of simulations
continues to increase, so will the sample to sample coherence and
thus the efficacy of our approach.

Compared to a video segment, an animated depth image affords
interactivity. We have demonstrated the benefits of animated depth
images in the context of remote visualization of FEA datasets, which
exhibit complex occlusion patterns. We have shown that the
approach can be extended to SPH simulation datasets. Since
animated depth images are a general approximation of animated
geometry, we anticipate that the approach can be extended to other
representations. Like for any type of image, animated depth image
size is independent of dataset size and their relative benefit increases
with dataset size.

In computer graphics applications such as, for example, urban
simulation or games, most of the dynamic scenes used are static
where most of the moving triangles are part of explicitly defined
rigid bodies (e.g. cars through the city) whose trajectories are
encoded collectively with a single sequence or tree of
transformations, and the motion of most non-rigidly moving
triangles is governed by the motion of underlying skeletons (e.g.
computer animation characters). This allows animating the triangles
economically by skinning the skeleton for each new configuration.
Animated depth images are not suitable for such scenes. Animated
depth images are specifically designed for datasets where millions of
simulation nodes move independently resulting in millions of
triangles with small screen footprint whose vertices move
independently from frame to frame. Such datasets are common in
scientific visualization and they cannot be handled with the
conventional scene graph, transformation hierarchy, and skeleton
conceptualizations of motion used in computer graphics.

One direction for future work is incorporating animated depth
images into an actual remote visualization system, with one or a few
powerful servers, and with many thin clients. Output frame
reconstruction is equivalent to straight forward triangle rendering,
and even smartphones can render meshes with a number of triangles
commensurate to their screen resolution, so we do not foresee
problems with rendering performance at the client. One of the
potential advantages of our hybrid method is to decrease the
frequency of requests from the client to the server, compared to
conventional remote visualization where each client makes a request
for each frame displayed. However, the request for a new set of
animation depth image tiles is more complex than simply rendering a
single frame. In order to minimize the response time for such
requests, we will investigate parallelizing the computation of an
animated depth image and the adaptive space/time sampling over the
set of processors available at the server. Prior work has accelerated
the computation on the server side using a light field [39]—the
approach could be adapted to pre-compute all animated depth images
possibly needed by clients by tiling the viewing space.

Another direction for future work is to address other types of
visualization, such as volume rendering, computation that is harder

to cache in sample sets [42]. Finally, animated depth images
introduce sampling robustness with respect to variations of the time
parameter of time-varying datasets. In the future we will investigate
other image generalizations that bring robustness with variations of
other visualization parameters such as, for example, an isovalue used
in isosurface extraction.

10 ACKNOWLEDGEMENTS

We would like to thank Paul Rosen for his help with the
implementation and the anonymous reviewers for their help with
improving this manuscript. We would also like to thank National
High Technology Research and Development Program of China
through 863 Program NO.2013AA01A604, National Natural Science
Foundation of China through Projects 61190121 and 61272349
which supported the study of Zhiqiang.

REFERENCES

[1] G. Klimeck, M. McLennan, S. P. Brophy, G. B. Adams III, M. S.

Lundstrom. nanoHUB.org: Advancing Education and Research in

Nanotech. Computing in Sci. and Engineering, 10(5), pp. 17-23, 2008.

[2] S. Stegmaier, M. Magallón, and T. Ertl. A Generic Solution for

Hardware-Accelerated Remote Visualization. In EG/IEEE TCVG

Symp. on Data Visualization’02, pp. 87-94, 2002.

[3] F. Lamberti and A. Sanna. A Streaming-Based Solution for Remote Vis.

of 3-D Graphics on Mobile Devices. IEEE TVCG, pp. 247-260, 2007

[4] Silicon Graphics, Inc. OpenGL Vizserver 3.0—ApplicationTransparent

Remote Interactive Vis. and Collaboration, 2003.

[5] S. P. Callahan, J. L. D. Comba, P. Shirley, and C. T. Silva. Interactive

Rendering of Large Unstructured Grids using Dynamic Level-of-Detail.

IEEE Vis.’05, pp. 199-206, 2005.

[6] D. Luebke, M. Reddy, J. Cohen, A. Varshney, et al. Level of Detail for

3-D Graphics. Morgan-Kaufmann Publishers, 2002.

[7] Y. Livnat, S.G. Parker, C.R. Johnson. Fast Isosurface Extraction

Methods for Large Image Data Sets. In Handbook of Medical Imaging,

Academic Press, pp. 731--745, 2000.

[8] A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann.

Topology-Based Simplification for Feature Extraction from 3-D Scalar

Fields. IEEE Vis. ‘05, pp. 272-280, 2005.

[9] S. P. Callahan, L. Bavoil, V. Pascucci, and C. T. Silva. Progressive

Volume Rendering of Large Unstructured Grids. IEEE TVCG, pp.

1307-1314, 2006.

[10] H. Hoppe. Progressive Meshes. ACM SIGG., pp. 99-108, 1996

[11] S. Pesco, P. Lindstrom, V. Pascucci, and C. Silva. Implicit Occluders.

In IEEE/SIGGRAPH Symp. on Volume Visualization, pp. 47-54, 2004.

[12] J. Gao and H.-W. Shen. Parallel View-Dependent Isosurface Extraction

Using Multi-Pass Occlusion Culling. In IEEE Symp. on Parallel and

Large Data Vis. and Graphics, pp. 67-74, 2001.

[13] L. Lippert, M. H. Gross, and C. Kurmann. Compression Domain

Volume Rendering for Distributed Environments. Computer Graphics

Forum, 16(3):C95-C107, 1997.

[14] M. Isenburg, P. Lindstrom, and J. Snoeyink. Streaming Compression of

Triangle Meshes. Symp. on Geometry Processing, pp. 111-118, 2005.

[15] Paul Rosen and Voicu Popescu, Simplification of Node Position Data

for Interactive Visualization of Dynamic Datasets, IEEE Transactions

on Visualization and Computer Graphics, 2011

[16] K.-L. Ma and D. M. Camp. High Performance Visualization of Time-

Varying Volume Data over a Wide-Area Network. In SC’00.

[17] Anna Tikhonova, Hongfeng Yu, Carlos D. Correa, Jacqueline H. Chen,

Kwan-Liu Ma. A Preview and Exploratory Technique for Large-Scale

Scientific Simulations. Eurographics Workshop on Parallel Graphics

and Visualization (EGPGV) , 2011:111-120

[18] S. Stegmaier, J. Diepstraten, M. Weiler, and T. Ertl. Widening the

Remote Visualization Bottleneck. IEEE ISPA, pp. 1-6, 2003.

[19] E. J. Luke, C. D. Hansen. Semotus Visum: a Flexible Remote

Visualization Network. In Proceedings of the IEEE Conference on

Visualization ’02, pp. 61-68, 2002.

14

[20] W. Bethel, B. Tierney, J. Lee, D. Gunter, and S. Lau. Using High-Speed

WANs and Network Data Caches to enable Remote and Distributed

Visualization. In SC ’00, Article No. 28, 2000.

[21] V. Popescu, P. Rosen, L. Arns, X. Tricoche, C. Wyman, C. Hoffmann,

"The General Pinhole Camera: Effective and Efficient Non-Uniform

Sampling for Visualization", IEEE Transactions on Visualization and

Computer Graphics, 2010:777-790.

[22] L. Mcmillan, G. Bishop, Plenoptic modeling: An image based rendering

system. In proc. SIGGRAPH '95, 39-46.

[23] W. Mark., L. MCMILLAN, G BISHOP. Post-Rendering 3D Warping.

In proc. of 1997 Symposium on Interactive 3D Graphics (Providence,

Rhode Island, April 27-30, 1997).

[24] V. Popescu, et al. The WarpEngine: An Architecture for the

PostPolygonal Age. In proc. of SIGGRAPH 2000.

[25] N Max, K Ohsaki. Rendering trees from recomputed zbuffer views. In

Rendering Techniques ’95: Proc. of the Eurographics Rendering

Workshop, 45–54, June 1995.

[26] J. Shade et al. Layered Depth Images, In proc. of SIGGRAPH 98, 231-

242.

[27] C. F. Chang, G. Bishop., A Lastra. LDI Tree: A Hierarchical

Representation for Image-Based Rendering. In proc. of SIGGRAPH’99.

[28] P Rademacher, G. Bishop. Multiple-center-of-Projection Images. In

proc of SIGGRAPH ’98, 199–206.

[29] C. Mei, V. Popescu, E Sacks. The Occlusion Camera. In proc. of

Eurographics 2005, Computer Graphics Forum, vol. 24, issue 3, sept

2005.

[30] J. Yu, L. McMillan. General Linear Cameras. In Proc of the European

Conference on Computer Vision (ECCV), Vol. 2, pp. 14-27, 2004.

[31] V. Popescu, P. Rosen, N. Adamo-Villani. The Graph Camera.

International Conference on Computer Graphics and Interactive

Techniques, ACM SIGGRAPH Asia, 2009.

[32] U. Ramer, An iterative procedure for the polygonal approximation of

plane curves, Computer Graphics and Image Processing, vol. 1 no. 3,

pp. 244 – 256, 1972.

[33] D. Douglas and T. Peucker, Algorithms for the reduction of the number

of points required to represent a digitized line or its caricature,

Cartographica: The International Journal for Geographic Information

and Geovisualization, vol. 10, no. 2, pp. 112–122, 1973.

[34] S. Rusinkiewicz and M. Levoy, QSplat: a multiresolution point

rendering system for large meshes, Proceedings of the 27th annual

conference on Computer graphics and interactive techniques, p.343-

352, July 2000

[35] H. Pfister , M. Zwicker , J. van Baar , M. Gross, Surfels: surface

elements as rendering primitives, Proceedings of the 27th annual

conference on Computer graphics and interactive techniques, p.335-

342, July .

[36] V. Popescu and P. Rosen, Forward Rasterization. ACM Transactions on

Computer Graphics, 25(2), April 2006.

[37] A. Tikhonova, C. Correa, and K. Ma, Visualization by Proxy: A Novel

Framework for Deferred Interaction with Volume Data, IEEE TVCG,

VOL. 16, NO. 6, 2010

[38] A. Tikhonova, C. D. Correa and K.-L. Ma, An Exploratory Technique

for Coherent Visualization of Time-varying Volume Data,

Eurographics/ IEEE-VGTC Symposium on Visualization 2010, Volume

29 (2010), Number 3.

[39] Al-Saidi, A., Walker, D. W., & Rana, O. F. (2012). On-demand

transmission model for remote visualization using image-based

rendering. Concurrency Computation Practice and Experience.

[40] Paravati G; Celozzi C; Sanna A; Lamberti F. (2010) A Feedback-Based

Control Technique for Interactive Live Streaming Systems to Mobile

Devices. In: IEEE Transactions on Consumer Electronics, vol. 56:1, pp.

190-197. - ISSN 0098-3063.

[41] GFXBench. A unified 3D graphics performance benchmark suite.

http://gfxbench.com.

[42] Lalgudi, H. G., Marcellin, M. W., Bilgin, A., Oh, H., & Nadar, M. S.

(2009). View compensated compression of volume rendered images for

remote visualization. IEEE Transactions on Image Processing, 18(7),

1501-1511.

[43] Pazzi, R. W. N., Boukerche, A., & Huang, T. (2008). Implementation,

measurement, and analysis of an image-based virtual environment

streaming protocol for wireless mobile devices. IEEE Transactions on

Instrumentation and Measurement, 57(9), 1894-1907.

[44] Simoens, P., De Turck, F., Dhoedt, B., & Demeester, P. (2011). Remote

display solutions for mobile cloud computing. Computer, 44(8), 46-53.

[45] Hutanu, A., Allen, G., & Kosar, T. (2010). High-performance remote

data access for remote visualization. Paper presented at the Proceedings

- IEEE/ACM International Workshop on Grid Computing, 121-128.

[46] Video accompanying this paper submission.

 http://www.cs.purdue.edu/cgvlab/popescu/remotevis/

Jian Cui received his BS in computer science

from the Harbin Institute of Technology, China

in 2009. He is a PhD candidate in computer

science at Purdue University. His research

interests span computer graphics and

computer vision. His current work focuses on

image generalization through camera model

design to overcome the single viewpoint and

uniform sampling rate limitations of

conventional images.

Zhiqiang Ma is a Ph. D. candidate at the State

Key Laboratory of Virtual Reality Technology

and Systems of Beihang University. His

research interests include remote visualization,

global illumination and real time rendering

Voicu Popescu received the BS degree in

computer science from the Technical

University of Cluj-Napoca, Romania in 1995,

and the PhD degree in computer science from

the University of North Carolina at Chapel Hill

in 2001. He is an associate professor with the

Computer Science Department of Purdue

University. His research interests lie in the

areas of computer graphics, computer vision,

and visualization. His current projects include camera model design,

remote visualization, aggressive and exact visibility computation, and

applications of computer graphics in education.

http://www.cs.purdue.edu/cgvlab/popescu/remotevis/

15

