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Fig. 1. Frames rendered from animated depth images (top) and from the original FEA dataset (bottom), for comparison. The animated depth 
images approximate sample trajectories with a user-specified maximum error of 10mm, which represents 0.01% of the spatial extent of the 
aircraft dataset (left and middle), and 0.1% for the truck dataset (right). An adaptive sampling strategy reduces disocclusion errors below 1% 
for viewpoint translations of up to 10m around the reference viewpoint. 
 

Abstract—Remote visualization has become both a necessity, as dataset sizes have grown faster than computer network 

performance, and an opportunity, as laptop, tablet, and smartphone mobile computing platforms have become ubiquitous. However, 

the conventional remote visualization approach of sending a new image from the server to the client for every view parameter 

change suffers from reduced interactivity. One problem is high latency, as the network has to be traversed twice, once to 

communicate the view parameters to the server and once to transmit the new image to the client. A second problem is reduced 

image quality due to aggressive compression or low resolution. 

We address these problems by constructing and transmitting enhanced images that are sufficient for quality output frame 

reconstruction at the client for a range of view parameter values. The client reconstructs thousands of frames locally, without any 

additional data from the server, which avoids latency and aggressive compression. We introduce animated depth images, which not 

only store a color and depth sample at every pixel, but also store the trajectory of the samples for a given time interval. Sample 

trajectories are stored compactly by partitioning the image into semi-rigid sample clusters and by storing one sequence of rigid body 

transformations per cluster. Animated depth images leverage sample trajectory coherence to achieve a good compression of 

animation data, with a small and user-controllable approximation error. We demonstrate animated depth images in the context of 

finite element analysis and SPH datasets. 

Index Terms—Remote visualization, time-varying datasets, animation data compression, rigid-body decomposition, bounded error.

 

1 INTRODUCTION  

The importance of remote visualization has grown and will continue 
to grow for the foreseeable future. One reason is that the amount of 
data obtained through observations and simulations increases much 
faster than our ability to transfer data from one geographic location 
to another. Another reason is that storing, processing, and displaying 
large datasets requires advanced capabilities which cannot and 

should not be replicated at all sites interested in a given dataset. 
Finally, the number of locations from where access to a given dataset 
is desired has increased with the proliferation of mobile computing 
platforms such as laptops, tablets, or even smartphones.  

One approach in interactive remote visualization is to send the 
visualization parameters from the client interested in the 
visualization to the server who stores the dataset of interest, to 
compute the desired visualization frame on the server, and to send 
the frame to the client where it is displayed. The approach requires 
no storage, computing, or visualization capabilities at the client and 
therefore it is suitable for any type of client that can display an 
image. However, for networks such as the internet, the approach can 
suffer from long latency—the network has to be traversed twice for 
each frame, once to send the visualization parameters and once to 
receive the image. Moreover, even though a single frame is much 
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more compact than the entire dataset, sending a frame several times a 
second still requires aggressive compression or reduced resolution. 
Another challenge is achieving scalability with the number of clients, 
as each client sends frequent frame requests to the server. 

Based on the observation that a conventional image becomes 
obsolete with the slightest change in visualization parameters, we 
take the approach of sending enhanced images, or superimages, from 
the server to the client. A superimage contains sufficient data to 
enable the quality reconstruction of thousands of frames at the client, 
without any additional data from the server. Reconstruction is fast 
and local, which greatly alleviates latency and achieves interactive 
rates without aggressive compression or reduced resolution. 
Moreover, client requests to the server are much less frequent, which 
improves scalability with the number of clients. 

The challenge of the proposed approach is to construct a 
superimage that is robust to visualization parameter changes. In the 
case of time-varying spatial datasets, visualization parameters 
typically include three translations (x, y, z), three rotations (rx, ry, rz), 
and the focal length (f) for the view, as well as the time parameter (t). 
Whereas a frame is valid for a single point (x0, y0, z0, rx0, ry0, rz0, f0, 
t0) in this multidimensional space of visualization parameters, it is 
our goal to construct a superimage that is valid for an entire volume 
(x0+∆x, y0+∆y, z0+∆z, rx0+∆rx, ry0+∆ry, rz0+∆rz, f0+∆f, t0+∆t). The 
superimage should allow reconstructing quality output frames for 
any visualization parameter values in the volume it covers. 

Anticipating rotations and focal length changes is straight 
forward—the superimage should simply have a larger field of view 
and a higher resolution than the frame. This way the view can rotate 
and zoom in without running out of samples and without blurriness 
due to undersampling. The output image is computed through ray re-
sampling and the result is correct, including for view dependent 
effects such volume rendering and reflections. Anticipating 
translations is much more challenging. The first step is to enhance 
the image with per pixel depth, which allows reconstructing frames 
from novel viewpoints. However, this is not sufficient as the result 
suffers from disturbing disocclusion errors even for small viewpoint 
translations. As the viewpoint translates, the output frame requires 
samples that are not visible form the viewpoint of the input depth 
image, and therefore are not stored in the input depth image. Such 
samples are missing from the reconstruction creating disocclusion 
errors. The main approaches for combatting disocclusion errors are 
to use multiple images and to combine them on the fly, to pre-
combine multiple images offline into a non-redundant set of samples, 
or to render the depth image with a non-pinhole camera model. Such 
a camera not only captures samples visible from a reference 
viewpoint, but also captures samples hidden from the reference 
viewpoint but visible from nearby viewpoints. 

For time-varying datasets the superimage should anticipate 
changes in the dataset time parameter. The problem has received 
little attention so far—depth image modeling/rendering efforts have 
only considered static datasets or datasets where motion was limited 
to a few objects. Truly time-varying datasets are challenging: motion 
essentially replicates data, and it creates complex occlusions. 

In this paper we address the problem of creating an image that 
covers a time interval as opposed to a time step. We introduce 
animated depth images, which not only store depth and color 
samples, but also store an approximation of the trajectory of the 
samples over time. Like conventional depth images, animated depth 
images allow adapting the level of detail, provide occlusion culling, 
and bound the amount of data that has to be transferred. Unlike 
conventional depth images that can only capture a single snapshot of 
a dataset, animated depth images provide a quality approximation of 
a time-varying dataset for an entire time interval. Compared to a 
static/pre-computed video sequence, animated depth images have the 
advantage of interactivity, as the user is free to translate anywhere in 
the vicinity of a reference point, and the advantage of allowing to 
slow down the animation to any desired rate. 

Animated depth images imply the following challenges. First, 
sample trajectories have to be stored compactly. Storing the 

trajectory of every sample is prohibitively expensive. Instead, we 
leverage sample coherence to assign trajectories to groups of samples 
based on a semi-rigid body decomposition of the image. Second, the 
reconstruction of output frames has to be done by taking into account 
sample connectivity that changes as samples move. The third 
problem is that of disocclusion errors, due not only to viewpoint 
translations, but now also due to motion within the dataset. We take 
the approach of sampling the dataset adaptively from multiple 
viewpoints and multiple time steps to derive on the server a good 
approximation of the set of necessary and sufficient samples, which 
are then transferred to the client. The approach is robust in the 
context of extremely challenging occlusion patterns. When the 
viewpoint desired at the client moves outside the neighborhood 
covered by the set of samples, or when the client desires to visualize 
the dataset at a time step outside of the interval covered, the adaptive 
sampling process is repeated, and a new set of animated samples are 
transferred from the server to the client. 

We apply animated depth images in the context of interactive 
remote visualization of finite element analysis (FEA) datasets. FEA 
datasets are particularly challenging time-varying datasets since there 
are millions of degrees of freedom, with nodes moving 
independently, which creates complex occlusion patterns and 
massive data replication. Figure 1 and the accompanying video [47] 
(http://www.cs.purdue.edu/cgvlab/popescu/remotevis/) show that 
animated depth images enable the reconstruction of quality 
visualization frames that are comparable to frames rendered directly 
from the original FEA dataset. We also extend our approach to SPH 
datasets (video [47] and Figure 11). 

2 PRIOR WORK 

We review prior work in remote visualization and prior work aimed 
at overcoming the problem of disocclusion errors. 

2.1 Remote Visualization 

We classify remote visualization approaches based on the 
computational load distribution between client and server. At one 
end of the spectrum is the approach of doing all the work on the 
server and of sending visualization frames to the client, which acts 
like a simple terminal that displays images [1, 2, 3, 4, 44]. The 
approach is appealing because it doesn’t require any storage or 
computation capability at the client, which is particularly beneficial 
when the client runs on limited hardware such a smartphone [40]. 
Moreover the approach is general—any visualization algorithm and 
any type of dataset are supported as long as the server can produce 
the visualization frames which are displayed at the client. The 
approach suffers from the disadvantage of limited interactivity due to 
network bandwidth limitations and latency, which can be addressed 
by reducing resolution or by aggressive compression. Moreover, the 
approach implies frequent requests from the client to the server, i.e. 
once for every change in the visualization path requested by the user, 
which can lead to server overload, and to poor visualization service 
quality when connection to the server is lost. The problem has been 
addressed in the context of virtual environments by anticipating user 
interactions [43, 45], which however comes at a loss of generality 
and which is difficult to extend to the context of remote visualization 
where the visualization target might not be known a priori. 

At the other end of the spectrum is the approach of reducing the 
dataset to a manageable size, to transfer the reduced dataset to the 
client, and to run the visualization algorithm at the client. There is a 
large variety of techniques for reducing dataset size, including multi-
resolution and level of detail [5, 6], feature extraction [7, 8], 
progressive refinement [9, 10], occlusion culling [11, 12], and data 
compression [13, 14] techniques. One technique [15] targets 
dynamic datasets specifically and reduces the dataset by compressing 
the trajectories of the simulation nodes (i.e. vertices of finite element 
geometry) through rigid body decomposition. The strength of the 
general approach of reducing the dataset at the server is that once the 
reduced dataset is transferred to the client, the visualization doesn’t 

http://www.cs.purdue.edu/cgvlab/popescu/remotevis/
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depend on the network anymore. One weakness of the approach is 
the need for data reduction algorithms for specific data types and 
visualizations. Another weakness is the challenge of reducing large 
datasets aggressively while preserving features of interest that are 
typically not known a priori. 

In the middle of the spectrum are hybrid approaches: most of the 
work is done at the server while the client also shoulders part of the 
burden with the reward of improved interactivity. One example are 
approaches that use sophisticated compression schemes on the server 
that require decompression at the client in parallel [16, 17], or with 
the help of GPUs [18]. Another example are systems that send 
enhanced images, or superimages, from the server to the client, such 
as depth images [19, 20], or non-uniformly sampled images [21]. 

View-dependent effects such as volume rendering or reflections 
are challenging for such approaches since it requires either 
computing the expensive effect at the client, or increasing the size of 
the representation considerably to include view-dependent color. The 
visualization by proxy framework [37] succeeds at decomposing and 
translating a static volume dataset into a compact set of proxy depth 
and attenuation images that serve as an intermediate representation in 
the context of volume rendering. Occlusions are addressed using a 
single-pole occlusion camera [29], which creates multi-perspective 
proxy images that avoid simple occlusion patterns between a small 
number of features. Visualization by proxy provides a general 
framework where volume rendering operations can be quickly 
approximated, without accessing the original dataset. The coherent 
visualization of a time-varying volume dataset without access to the 
entire dataset, as needed for example in the case of remote 
visualization, has been proposed using ray attenuation functions [38]. 
The method has the limitations of not allowing viewpoint changes 
and of restriction to exploratory use due to approximation errors. Our 
method focuses on viewpoint changes in opaque surface rendering 
for dynamic FEA datasets, it handles arbitrarily complex occlusion 
patterns, and it enforces a user selected error bound on sample 
trajectory approximation.  

The animated depth images introduced in this paper falls in the 
category of hybrid approaches. Hybrid approaches are general as far 
as the client is concerned—like conventional images, superimages 
insulate the client from the complexity and variety of visualization 
algorithms and dataset types. Hybrid approaches also improve 
interactivity—like reduced datasets, superimages are sufficient to 
reconstruct frames at the client without any additional data from the 
server. The challenge of the hybrid approach is to devise 
superimages that can cover a large volume of the multidimensional 
space of visualization parameters. Previous work was concerned with 
view rotations and focal length variations [21] and with viewpoint 
translations [19]. Animated depth images target the changes in the 
time parameter for time-varying datasets. 

Like the previous method for dynamic dataset reduction through 
rigid body decomposition discussed above [15], our method 
compresses animation data by leveraging motion coherence of 
animated depth image samples. However, the previous method 
works at dataset level and does not scale with dataset size. Animated 
depth image are a hybrid remote visualization approach, with cost 
independent of dataset extent or resolution, and only dependent on 
output image resolution. In order to achieve this, the animated depth 
image approach contributes solutions to the problems of fast, 
hierarchical rigid body decomposition of the animated depth image 
samples, of adaptive sampling to avoid disocclusion errors due to 
viewpoint translation and sample motion, and of visualization output 
frame reconstruction from the animated depth image samples. 

2.2 Alleviating Disocclusion Errors 

The idea of using a depth image as a rendering primitive dates back 
to early image-based rendering work [22]. However, a single depth 
image is not sufficient—the slightest viewpoint translation creates 
disturbing disocclusion errors. Disocclusion errors have been 
addressed by combining multiple depth images at run time [22, 23, 
24] or off-line [25, 26, 27]. Another approach is to render the depth 

image with a non-pinhole camera model, such as a multiple-center-
of-projection camera [28], an occlusion camera [29], a general linear 
camera [30], or a graph camera [31]. The advantage of the non-
pinhole camera approach is that the samples needed for the view 
region are arranged in a single-layer depth image with good pixel to 
pixel coherence, which is compact and compresses well. This is of 
great importance in our context where we aim to reduce the amount 
of data that has to be transferred from the server to the client. 
However, constructing non-pinhole camera models that capture all 
samples needed in the context of the complex occlusion patterns that 
arise in FEA datasets is challenging. We opt instead for the approach 
of pre-combining multiple depth images. This suits the remote 
visualization scenario well—the work of rendering multiple depth 
images and of combining them into a non-redundant set of samples is 
done at the server, before transmission. 

3 ANIMATED DEPTH IMAGE DEFINITION  

An animated depth image stores: 
(a) color and depth samples to approximate the color and geometry 

of the dataset,  
(b) sample trajectories to approximate the motion in the time-

varying dataset, and 
(c) sample connectivity to enable a quality triangle-mesh-based 

reconstruction of visualization frames. 
(a) Like a conventional depth image, an animated depth image is 

an image that stores color and depth per pixel, obtained by rendering 
the dataset for a given view PPC0 and at a given time step t0. The 
pixel data can be unprojected to a 3-D point with color using PPC0. 
In Figure 2, the eye of PPC0 is E, and pixels a, b, and c are 
unprojected to 3-D points A, B, and C using the PPC0 rays Ea, Eb, 
and Ec and the depths za, zb, and zc stored at the three pixels. 

(b) Unlike a conventional depth image, an animated depth image 
also encodes the trajectories of its samples. Consider a sample A that 
belongs to a dataset triangle V0V1V2 (Figure 2). The sample is 
defined by its barycentric coordinates α, β, and γ: 

              (1) 

As the triangle vertices move to V01, V11, and V21, respectively, 
the sample moves to A1 which is found using the sample’s 
barycentric coordinates: 

                  (2) 

In complex time varying datasets, such as for example FEA 
datasets, triangles have complex trajectories modeled with hundreds 
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Fig. 2. Animated depth image illustration. Pixel a is unprojected to 

3-D point A, which belongs to dataset triangle V0V1V2. As the 

triangle moves to V01V11V21, sample A moves to A1. Sample motion 

is approximated by partitioning the image into rigid bodies (see 

color highlights). The implicit sample connectivity is used to define 

a 3-D mesh used for high-quality reconstruction of output frames. 
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of time steps. Storing the trajectory of each of individual sample of 
an animated depth image results in a large data size that precludes 
applications such as remote visualization. We leverage the local 
coherence of motion in time-varying datasets and group nearby 
animated depth image samples into rigid bodies. A rigid body is a 
cluster of samples whose motion is approximated well with a single 
sequence of rigid body transformations X1, X2, …, Xn-1, where Xi is a 
conventional 4×4 transformation matrix that encodes a rotation and a 
translation but no scaling, and n is the number of time steps. Instead 
of storing the trajectory A0, A1, …, An-1 of each sample in the rigid 
body, the animated depth image only stores the initial position A0 of 
each sample and the sequence of transformations X1, X2, …, Xn-1. The 
subsequent positions Ai of the sample are approximated with: 

  
       (3) 

Consider for example a piece of an axle of the truck in the FEA 
simulation shown in Figure 1 (right). When the truck impacts the 
barrier the piece breaks off and flies away spinning. The samples of 
the piece can be grouped into a rigid body because their motion 
throughout the simulation can be approximated with the same 
sequence of rigid body transformations. The piece can also bend 
slightly as it breaks off, as long as a user imposed maximum 
trajectory approximation error is not exceeded. If the piece bends 
significantly and the error threshold would be exceeded when using a 
single rigid body, the piece is approximated with two or more 
smaller rigid bodies. In Figure 2 there are four rigid bodies 
highlighted with green, blue, purple and yellow. Not all samples are 
assigned to rigid bodies (red in Figure 2). Such unassigned samples 
have their trajectory encoded explicitly. 

 (c) The animated depth image samples are used to reconstruct 
output visualization frames from novel views. One approach is to 
resort to a point-based rendering technique that does not require 
explicit sample connectivity. A high-quality reconstruction approach 
is to connect samples in a triangle mesh leveraging the connectivity 
defined implicit by the regular grid of pixels. However, not all four 
adjacent samples should be connected by two triangles. Like for a 
conventional depth image, samples should be disconnected if they 
are on opposite sides of a depth discontinuity: the silhouette samples 
of a foreground object should not be connected to their neighboring 
samples that belong to the background object. Animated depth 
images also require that samples be disconnected when they belong 
to surfaces that move apart over the course of the simulation. The 
animated depth image stores at sample A the connectivity in the 2×2 
sample neighborhood that has A as its top left sample (Figure 2). The 
issue of connectivity for the purpose of reconstruction is of course 
orthogonal to the issue of rigid body decomposition for sample 
trajectory approximation (Figure 3). 

4 ANIMATED DEPTH IMAGE CONSTRUCTION  

Consider a time-varying dataset D modelled with triangles whose 
vertices move on piecewise linear trajectories over n time steps from 
t0 to tn-1. Given a reference view PPC0 and a sample trajectory 
approximation error threshold ε, an animated depth image of D is 
constructed in three major steps, with each step computing one of the 
main components of the animated depth image (Section 3): 

(a) Compute samples by rendering D at t0 from PPC0. 
(b) Compress sample trajectory through rigid body clustering. 
(c) Compute sample connectivity. 

The first step (a) computes a conventional depth image of the 
dataset by rendering the triangles in D at their t0 position. The 
triangle color could originate for example from materials or from 

false color schemes, and could be encoded for example with a color 
per vertex or with textures. No matter what the origin of the color or 
encoding mechanism, the color is transferred to the depth image 
which stores a color sample per pixel. In addition to color and depth, 
each pixel stores the ID of the dataset triangle it samples. The 
triangle ID is used to compute the barycentric coordinates of the 
pixel sample using Equation 1. 

4.1 Rigid body clustering 

The second step (b) of animated depth image construction computes 
a compact representation of sample trajectories by clustering samples 
into rigid bodies. This clustering is based on the reasonable 
assumption that samples that move together like a rigid body are 
close together in model space, and hence in image space. The sample 
trajectory approximation error is bound by the threshold ε. The 
clustering proceeds in bottom-up fashion with the following steps: 

(b.1) Seed rigid bodies in 2×2 sample neighborhoods. 
(b.2) Merge rigid bodies recursively. 
(b.3) Finalize rigid bodies. 

Step b.1 takes a pass over the depth image computed at Step (a) 
and forms initial rigid bodies of 2×2 neighboring samples, whenever 
possible. Let S0, S1, S2 and S3 be the four samples of the 2x2 
neighborhood. The samples form a rigid body if a sequence of rigid 
body transformations X1, X2, …, Xn-1 places each of the four samples 
for each time step within epsilon of its true dataset position. 

    
        

|    
     |    

                  

(4) 

In Equation 4, Sji
* is the position of sample Sj at time step i as 

approximated using the rigid body transformations (Equation 3), Sji 
is the true position of sample Sj at time step i as given by the dataset 
using the barycentric coordinates computed at Step (a) (Equation 2), 
and the Euclidian distance between Sji

*
 and Sij has to be smaller than 

ε for each sample j and for each time step i. 
We construct the rigid body transformations Xi one at the time, 

starting with X1 and ending with Xn-1. Xi is constructed using three 
samples by adapting a previously developed method [15] as shown 
in Figure 4. Xi is constructed by combining a translation that takes 
the initial position S00 of sample S0 to its position S0i at time step i, 
with a rotation that aligns the planes of triangles S00S10S20 and 
S0iS1iS2i, and with a rotation about the normal of the common triangle 
plane that aligns edges S00S20 and S0iS2i. Once Xi is constructed, the 
approximate sample positions at time step i are computed by 
applying the transformation Xi to the initial sample positions. 

The approximation error for S0i is 0 since transformation Xi is 
constructed such that S0i

* and S0i coincide. If the distance between 
the true and approximated position of any of the other three samples, 
including S3, exceeds ε, the four samples cannot form a rigid body 
and the iterative construction of the sequence of transformations Xi 
stops. If all errors are within ε, the algorithm proceeds with 
constructing transformation Xi+1. Once Xn-1 is constructed, the four 
samples define a rigid body. Figure 5, top, illustrates the 2×2 sample 

 
Fig. 3. Illustration of the six possible connectivity scenarios for a 

neighborhood of 2x2 samples. 
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Fig. 4. Construction of rigid body transformation Xi. Xi is maps S00 

to S0i, triangle plane S00S10S20 to triangle plane SoiS1iS2i, and 

triangle edge S00S20 to triangle edge S0iS2i. 
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rigid bodies constructed by Step b.1. For the 2×2 neighborhoods 
where rigid body construction fails, the four samples remain 
unassigned (white in Figure 5, top). 

Step b.2 reduces the number of rigid bodies through merging. 
Merging proceeds in bottom-up quadtree fashion. The rigid bodies of 
four neighboring nodes at the current level of the quadtree are 
merged to form the rigid bodies of the parent node at next level up. 
The inner horizontal and vertical boundaries are traversed one pair of 
samples at the time. If the two samples of a pair belong to different 
rigid bodies, the algorithm attempts to merge the two rigid bodies. 

Given two rigid bodies A and B, rigid body B could be merged 
into A if the sequence of rigid body transformations of A 
approximates the trajectories of all the samples in B within ε. When 
B is merged into A, the rigid body B is abandoned while the 
transformations in A will represent all samples in both A and B. 
Figure 5, middle, shows the rigid bodies obtained after Step b.2. The 
rigid bodies are larger and in smaller number compared to the 
starting seed rigid bodies (top). 

Transformations Xi are rigid body transformations that exclude 
scaling. Scaling would increase the trajectory modeling capability of 
the transformation, which would lead to finding more rigid body 
seeds at Step b.1. However, allowing for scaling can seed rigid 
bodies from four samples that belong to different dataset entities, and 
such anomalous rigid bodies cannot be merged, resulting in a large 
number of small rigid bodies which is inefficient. 

Step b.3 improves the rigid body partitioning of the animated 
depth image by overcoming limitations of Steps b.1 and b.2. First, 
Step b.1 only attempts to form a rigid body between the four samples 
of a 2×2 neighborhood. If the attempt fails, the four samples remain 
unassigned, whereas, for example, it could be that sample S0 can be 
assigned to the rigid body to the left of the 2×2 neighborhood, or 
even to a distant rigid body. To overcome this limitation, Step b.3 

tests each unassigned sample for possible inclusion into each of the 
existing rigid bodies. Second, Step b.2 only attempts to merge rigid 
bodies that are adjacent. Step b.3 attempts to merge all pairs of rigid 
bodies. Figure 5, bottom, shows the final rigid bodies. Some large 
rigid bodies are formed by merging non-adjacent rigid bodies. As 
expected, the few remaining unassigned samples are concentrated 
around the impact region where samples move chaotically. The 

trajectories of the unassigned samples are approximated using the 
greedy polyline simplification algorithm of Ramer [32] and 
Douglas-Peucker [33], conforming to the same error threshold ε. 

4.2 Sample connectivity computation 

The third and final step (c) of the construction of the animated depth 
image computes sample connectivity to enable triangle-mesh-based 
reconstruction of output visualization frames. 

For conventional depth images, connectivity is computed using 
the second order derivative of the depth map. Values larger than a 
threshold indicate depth discontinuities, and reconstruction triangles 
spanning across depth discontinuities are removed [24]. However, 
naively using such connectivity data computed at t0 for all time steps 
of an animated depth image results in severe artifacts (Figure 6) due 
to sample motion and erosion. When a finite element, e.g. a piece of 
a structural steel beam, undergoes excessive stress, the element 
“erodes”, i.e. it is eliminated from the FEA simulation for the 
subsequent time steps. When an element erodes, all the dataset 
triangles used to represent the element erode as well, as do all 
samples contributed by the eroding dataset triangles. A 
reconstruction triangle connecting three samples should clearly not 
outlive its first eroding sample, but this is not always sufficient.  

Consider a structural steel beam in the aircraft impact simulation 
shown in Figure 1. Let’s assume that the beam is modeled with six 
dataset triangles with vertices V0 to V7 (Figure 7), and let’s assume 
that dataset triangles V1V2V6  and V2V5V6 erode at time step i. If the 
beam is far from the eye of the perspective camera PPC0 used to 
construct the animated depth image, or if the beam is seen by PPC0 
at an angle, it can happen that neither V1V2V6 nor V2V5V6 has a 
sample in the animated depth image. In Figure 7, samples S0, S1, S2 
and S3 skip V1V2V6 and V2V5V6. Simply checking for erosion at the 
vertices of the reconstruction triangles will lead to the erroneous 
conclusion that the reconstruction triangles do not erode. 

 The correct eroding time step of each reconstruction triangle is 
set as follows. Consider reconstruction triangle S0S1S2. For each of 
its edges, e.g. S1S2, compute the shortest path P12 between the dataset 

 

 

 

Fig. 5. Visualization of rigid bodies and magnified fragment after Step 

b.1 (top), Step b.2 (middle) and Step b.3 (bottom) of the animated 

depth image construction algorithm. The number of rigid bodies and 

the percentage of unassigned samples for each of the three images 

are 125,752 and 20.72%, 12,945 and 20.72%, and 6,322 and 1.45%. 

 

Fig. 6. Incorrect reconstruction that does not take into account the 

temporal changes in sample connectivity.  
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Fig. 7. Reconstruction triangles S0S1S2 and S2S3S4 should erode 

when dataset triangles V1V2V6 and V2V5V6 (red) erode, even 

though samples Si belong to dataset triangles that do not erode. 
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triangles of the two samples, i.e. V0V1V7 and V2V3V5, respectively. 
The shortest path is computed in the dataset triangle adjacency graph 
at t0. The dataset triangle adjacency graph is an undirected graph 
with nodes corresponding to dataset triangles and with edges 
corresponding to dataset triangles sharing a vertex. The eroding time 
step of edge S1S2 is set as the first time step where P12 is interrupted. 
A path is interrupted when one of the dataset triangles it enumerates 
erodes. Finally, the eroding time step of the reconstruction triangle is 
set to be the earliest of the eroding time steps of its three edges. For 
the example in Figure 7, each reconstruction triangle has two edges 
that erode at time step i and one edge that does not erode, and thus 
the eroding time step for the two reconstruction triangles is i. 

5 ADAPTIVE SAMPLING IN SPACE AND T IME  

Like a conventional depth image, an animated depth image suffers 
from disocclusion errors when the viewpoint translates. Moreover, 
disocclusion errors also occur when sample motion uncovers new 
samples. We alleviate disocclusion errors by sampling the dataset 
adaptively from multiple viewpoints and at multiple time steps 
(Section 5.1), and by eliminating redundant samples (Section 5.2). 

5.1 Adaptive Sampling 

Given an animated depth image ADI0 with view PPC0 covering nt 
time steps starting at t0, the goal is to enhance ADI0 with sufficient 
samples to ensure a disocclusion error free reconstruction from 
anywhere in a neighborhood of PPC0, and at any time in [t0, t0 + nt]. 
We define the neighborhood of PPC0 with an equilateral triangle of 
radius q (i.e. the radius of its circumscribed circle), perpendicular to 
the view direction of PPC0, and centered at its eye. The length q is 
an input parameter. The larger the triangle, the bigger the viewpoint 
translation range at the client, but also the bigger the data size. 

Our adaptive sampling scheme renders conventional depth 
images from various locations inside the viewpoint triangle and at 
various time steps. The sampling process stops when the percentage 
of non-redundant samples contributed by a new depth image drops 
below a threshold g. In order to enable the elimination of redundant 
samples, depth images and animated depth images are split into 
square tiles of size tw × tw (we use tw = 4). Figure 8 shows the tiles 
containing the non-redundant samples contributed by a depth image. 
Tiles, like complete images, allow storing connectivity information 
compactly. Given a tile size tw and a threshold g for the percentage of 
new samples contributed by a new image, our adaptive sampling 
algorithm proceeds as follows. 

1. Initialize the set S of animated depth image tiles to empty. 
2. Subdivide viewpoint triangle and time interval recursively. 

For each new viewpoint e and new time interval t: 
a. Render a depth image DIet 
b. Compute non-redundant samples DIet – S 
c. If |DIet – S| / |DIet| > g 

i. Set* = Tile(DIet – S, tw) 

ii. Set = ConstructADI(Set
*) 

iii. S = S ∪ Set 

iv. Continue recursive subdivision at e and t 

The algorithm samples the space of possible viewpoints and time 
steps recursively. For each point in this space, a new depth image 
DIet is rendered at Step 2.a. Step 2.b checks for each sample in DIet 
whether it is redundant with the samples already collected in S. If the 
percentage of non-redundant samples in DIet is below the value of 
the input parameter g, the recursive subdivision stops. If DIet 
contributes a sufficient number of non-redundant samples, the non-
redundant parts of DIet are partitioned into tiles (Step 2.c.i), an 
animated depth image tile is computed for each depth image tile 
(Step 2.c.ii), the new set of tiles is added to S (Step 2.c.iii), and the 
subdivision continues recursively (Step 2.c.iv). The first depth image 
computed by the adaptive sampling algorithm corresponds to the 
center of the viewpoint triangle (also the eye of PPC0) and to t0. 
Since S is initially empty, S will contain the entire animated depth 
image constructed for PPC0, which guarantees highest-quality 
reconstructions for the view PPC0. 

5.2 Sample Redundancy 

The first task is to define sample redundancy. Depth images contain 
point samples and two samples will in general not correspond to the 
same 3-D point. We define two samples as redundant if and only if 
they project within one pixel in all views PPCi, where PPCi is 
identical with PPC0 except that the viewpoint can be anywhere 
inside the equilateral viewpoint triangle with radius q. If two samples 
belonging to different surfaces happen to project at nearby locations 
from a viewpoint, motion parallax separates the two samples when 
seen from a different viewpoint, and the samples are correctly 
labeled as non-redundant. Our definition of redundancy ignores view 
rotations which only introduce a negligible variation of the distance 
between the projections of two samples. Given two samples defined 
at different time steps ta and tb, the samples are redundant if they are 
redundant when the second sample is brought to time step ta. 

The second task is to find a method for quickly checking for 
sample redundancy, given our definition. Figure 9 illustrates the 
projection of a pair of two samples P0 and P1 as the viewpoint 
translates on the plane of the viewpoint triangle. The image plane is 
constant as there are no view direction rotations. Let C0 be the 
intersection between P0P1 and the viewpoint plane. For a viewpoint 
C, the square of the distance d between the image plane projections 
q0 and q1 of P0 and P1 is given by: 

   |     |
         

     (5) 

where wi (i = 0, 1) and x are defined as: 

   
|     

 |

|    |
 

|     |

|     |
 

  |    |                                        

(6) 

 Since w0 and wi do not depend on the current viewpoint C, d2 is a 
quadratic function in x, with the minimum value of 0 reached when 
C = C0.  Distance d increases away from C0. Over the entire 
viewpoint triangle, the maximum distance occurs at one of the three 

 

Fig. 8. Non-redundant samples gathered by our adaptive algorithm. 

Viewpoint 

Plane

Image 

Plane

P0

P1

C0C

q0', q1'

q0 q1

S0

O0

S1

O1

d=0

d

 

Fig. 9. Projections of samples P0 and P1 onto the image plane as the 

viewpoint translates on the viewpoint triangle plane. The distance d 

between the projections is 0 at C0 where q0’ and q1’ coincide, and it 

increases away from C0. 
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vertices of the viewpoint triangle. Consequently, given two samples, 
the largest distance between the projections of the samples over all 
viewpoints inside the viewpoint triangle can be easily computed as 
the maximum over the three distances obtained at the viewpoint 
triangle vertices. If the maximum is less than one pixel, the new 
sample is discarded as redundant. 

6 V ISUALIZATION FRAME RECONSTRUCTION  

Given a set of animated depth image tiles S, an output image view 
PPCi, and time parameter value tj, the client reconstructs the 
corresponding visualization frame by rendering each tile in S.  

A first step computes the positions at time ti of each 3-D sample 
stored in the tiles in S. If a sample belongs to a rigid body, the 
position is reconstructed by applying to the initial position of the 
sample the appropriate transformation from the rigid body trajectory. 
If the sample is unassigned, that is it does not belong to a rigid body, 
the current position is inferred from the trajectory of the sample 
which is stored explicitly in the animated depth image 
representation. The time value ti need not be one of the simulation 
time steps: the simulation can be visualized at arbitrarily slower 
speeds by interpolating simulation computed sample positions.  

Once the current position of the 3-D samples is established, the 
frame reconstruction problem is reduced to the well-studied problem 
of reconstructing output images with novel viewpoints from input 
depth images. Any prior work method developed for rendering from 
depth images can be used, including splats [34], surfels [35], forward 
rasterization [36], and triangle-mesh reconstruction [22]. 

We use two reconstruction modes: an efficient point-based 
rendering approach where each sample is rendered with a 2×2 output 
image pixel splat, and a high-quality triangle-mesh reconstruction. A 
tw × tw tile defines a mesh of up to (tw-1) × (tw-1) × 2 triangles by 
connecting any 4 neighboring samples with 2 triangles. The 
connectivity information stored by the tiles is used to avoid defining 
triangles across depth discontinuities. Samples not connected in any 
triangle are drawn as points. Depending on the rendering capability 
at the client, more shading flexibility can be supported by 
incorporating into the animated depth image additional per-sample 
shading parameters. We have extended animated depth images to 
also store per-sample normal, which allows for dynamic relighting at 
the client (see Figure 10 and video [47]). 

7 EXTENSION TO SPH  DATASETS  

The animated depth image is a general compact representation of 
time-varying color and depth datasets. So far we have demonstrated 
animated depth images in the context of triangle meshes resulting 
from FEA simulations. Animated should be extendable to other types 
of time-varying datasets, with certain modifications. Consider, for 
example, a smoothed-particle hydrodynamics (SPH) dataset where 
the 3-D position of each particle center is recorded over a sequence 
of time steps. One option for visualizing such a dataset is to render 
each moving particle as an opaque, shaded sphere. Tessellating each 
sphere would result in a dataset of moving triangles that can be 
handled as described. However, tessellating each particle results in a 
one hundred-fold explosion in the number of primitives. Instead we 
modify our method to handle particles directly. 

Like before, the animated depth image stores color and depth 
samples. A pixel sample is a reference to its particle and not a 3-D 
point—the triangle ID is replaced with the particle ID and no 
barycentric coordinates are needed. Rigid bodies are computed using 

the center of the particle to which each sample belongs, and not the 
sample’s 3-D point. The animated depth image encodes the 
trajectories of the centers of the particles and not the trajectories of 
individual samples. Sample connectivity is not needed, as output 
visualization frames are reconstructed by rendering each particle as 
an (independent) sphere. The adaptive sampling in space and time 
remains the same. Sample redundancy detection is now replaced 
with a simple test for particle ID uniqueness. For the example in 
Figure 11 the SPH dataset was captured using the animated depth 
image approach. The trajectory approximation error threshold is 1% 
of the radius of the sphere modelling the particle, the average 
disocclusion error rate is 0.17%, and the compression factor is 40. 

8 RESULTS AND D ISCUSSION  

We have applied animated depth images to multiple reference views 
in two FEA datasets—the truck dataset (Figure 1, right) and the 
aircraft dataset (Figure 1 left and middle), as well as to an SPH dam 
break simulation dataset (Figure 11). The truck dataset has 81 time 
steps and covers a region of 15m × 5m × 3.3 m. The truck dataset 
contains 0.63M triangles and 0.28M vertices, for a total of 23M 
vertex positions. The aircraft dataset has 170 time steps, it is 
segmented into 3 segments of 58, 58, and 56 time steps, and it covers 
a region of 110m × 90m × 60m. The aircraft dataset contains 2.08M 
triangles and 2.01M vertices, for a total of 342M vertex positions. 
The SPH dataset has 82 time steps, it covers a region of 100 × 18 × 
20 and it contains 2.17M particles for a total of 178M particle center 
positions. The particles are rendered as spheres with radius 0.1. 

8.1 Quality 

We investigate quality along three directions: sample trajectory 
approximation, residual disocclusion, and reconstruction errors. 

Sample trajectory approximation error 
Animated depth images approximate sample trajectories with a 

user-controlled maximum approximation error. Larger error bounds ε 
lead of course to fewer rigid bodies, fewer unassigned samples, and a 
more compact representation. Table 1 shows how the data size 
decreases as the approximation error ε increases for the aircraft 
dataset. ε is given in absolute values (e.g. 10mm), in approximate 
relative values (e.g. 10mm/100m = 0.0001 = 0.01%), and in 
maximum image plane error values (e.g. 0.01pix). The error in the 
image plane is estimated by projecting a segment of length ε on the 
view PPC0 of the animated depth image. The segment is parallel to 
the image plane and it is located at the depth of the closest sample in 
the animated depth image, which provides a conservative upper 
bound of the image plane error. The image resolution is 1,280 × 720.  

Table 1. Data size variation with trajectory approximation error for 
the aircraft dataset. 

ε  

[mm] 5 10 25 50 100 500 1000 

[%] 0.005 0.01 0.025 0.05 0.1 0.5 1.0 

[pix] 0.04 0.09 0.21 0.43 0.85 4.25 8.50 

Size [MB] 39 29 22 19 18 17 16 

    

Fig. 10. Frames with lighting computed at the client. 

 

 

Fig. 11. Frame reconstructed from an animated depth image (top) 

and frame obtained by rendering the original SPH dataset (bottom). 

The residual disocclusion error is 0.35%. 
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Residual Disocclusion Error 
Given an output frame F, we measure the residual disocclusion 

error rate in F as the percentage of samples in the corresponding 
truth frame F0 that are not present in F. Table 2 shows the number of 
depth images the adaptive sampling algorithm uses, the size of the 
resulting set of animated depth image tiles, and the maximum and 
average residual disocclusion error rates for various values of the 
convergence threshold g. The maximum and average residual 
disocclusion error rates are computed over a visualization sequence 
of 50,000 frames, which were reconstructed from viewpoints and at 
time steps that sample the viewpoint triangle and time step interval 
densely and comprehensively. As expected, a smaller g value yields 
fewer residual disocclusion errors at the cost of sampling the dataset 
more. Disocclusion errors are not linear, as seen in the jump of the 
maximum error rate when the g value changes from 0.3% to 0.5%. 
The size of the resulting representation decreases slowly as the 
residual disocclusion error is small (i.e. up to g = 0.3%) and then it 
decreases rapidly indicating that samples are missed. For all the 
images shown in the paper and in the video, the value for g is 0.1%.  

Table 2. Adaptive sampling performance for various convergence 
threshold g values for the aircraft dataset. 

g [%] 

Number of 

Sampling 

Depth Images 

Data size 

[MB] 

Residual Disocclusion 

Error Rate [%] 

Max Avg. 

0.05 208 24 0.31 0.084 

0.1 184 24 0.31 0.11 

0.2 136 23 0.37 0.14 

0.3 124 23 0.46 0.16 

0.5 76 20 40.0 0.65 

 
Table 3 reports typical residual disocclusion error rates for the 

truck and aircraft datasets. The 3 regions of the aircraft dataset that 
were investigated are shown in Figure 1 left (outside), Figure 12 
(side), and Figure 1 middle (reverse). The residual disocclusion 
errors is small in all cases. 

The graph in Figure 13 shows the variation of the average and 
maximum residual disocclusion error rates over all viewpoints as a 
function of time step for the outside, side, and reverse regions of the 
aircraft dataset. The maximum graph line for the reverse region 
(solid green) varies considerably due to the fast and chaotic motion 
in that dataset region and the proximity of the reference viewpoint. 

Table 3 Maximum and average residual disocclusion error rates. 

Dataset 
Residual Disocclusion Error Rate [%] 

Max Avg. 

Truck 0.23 0.05 

Aircraft 

outside  0.64 0.17 

side 0.46 0.16 

reverse 0.69 0.21 

SPH 1.1 0.17 

 

Reconstruction Error 

Even if all samples needed are captured, the reconstructed frame 
will differ slightly from a frame rendered directly from the original 
dataset. Figure 14 shows that such differences are small. The largest 
errors are seen at residual disocclusion errors and at edges. The 
reasons for the differences include: 

- the additional resampling introduced by the intermediate 
animated depth image representation; the output frame has the same 
resolution as the input animated depth image, whereas, for 
conservative reconstruction, the input should have twice the 
resolution of the output; 

- the undersampling caused when the screen footprint of samples 
increases from the reference view due to view changes or sample 
animation; 

- the conservative early elimination of a triangle between samples 
that erode at different time steps, as opposed to splitting the triangle 
into fragments each eroding at a different time. 

8.2 Performance 

8.2.1 Data size 

Table 4 shows the data size variation for the animated depth image 
representation as a function of the length q of the viewpoint triangle 
side. The data was measured for the outside region of the aircraft 
dataset, the output resolution is 1,280 × 720, and the number of 
simulation time steps is 58. As can be seen in the relative size row, 
the ratio of the data size to the viewpoint triangle edge length 
decreases as the viewpoint triangle gets bigger, which indicates that 
the animated depth image representation is more efficient as the 
viewpoint triangle grows. We chose a triangular viewpoint region for 
simplicity—more complex regions can be built from multiple 
triangles. Moreover, the adaptive sampling algorithm can be easily  
extended to more complex 2-D or 3-D regions (e.g. a cuboid sampled 
in octree fashion).  

The viewpoint triangle is the set of viewpoints used by the 
adaptive sampling algorithm to capture all samples needed. 
However, the viewpoint triangle is a conservative approximation of 
the set of viewpoints from where the animated depth image 
representation has sufficient samples. Other viewpoints close to the 

 

Fig. 12. Side view of the aircraft dataset. 
 

Fig. 13. Variation of residual disocclusion error rates over time steps. 

 

Fig. 14. Visualization of differences between a frame reconstructed 

from our method and the corresponding frame rendered from 

original dataset. The frames are shown in Figure 1, middle. 

0.0%

0.2%

0.4%

0.6%

0.8%

1 9 17 25 33 41 49 57

Outside Max. Side Max. Reverse Max.

Outside Avg. Side Avg. Reverse Avg.

Time steps 

Error rate 



 

10 

 

triangle are likely to have sufficient samples, such as points off the 
triangle plane behind and in front of the center of the triangle, or 
points on the triangle plane just beyond the triangle. The image in 
Figure 15 shows the viewpoint triangle (solid orange) enlarged 
(orange triangular contour) and extruded (blue and yellow).  

Reconstructions from 66% of the viewpoints inside the prism 
defined by the blue and yellow triangles have a smaller residual 
disocclusion error than reconstructions from the viewpoint triangle. 
Consequently the user can navigate the viewpoint away from the 
triangle viewpoint, and good reconstructions are obtained even at a 
considerable distance from the viewpoint triangle (compare the size 
of the prism to that of the viewpoint triangle in Figure 15). When the 
viewpoint leaves the viewpoint triangle, the user (or the system) can 
request a new animated depth image representation. Visualization 
continues using the current representation, with good results, until 
the new representation arrives from the server. 

The last row of Table 4 gives the compression factor achieved by 
the rigid body decomposition and the compression of the trajectories 
of unassigned samples. The compression factor is computed by 
comparison to storing the trajectory of every sample uncompressed, 
with one position per simulation time step. Tables 1 and 2 report the 
variation of the size of the animated depth image representation with 
the trajectory approximation error threshold ε and with the 
convergence factor g. For the SPH dataset, the animated depth image 
representation requires 49.4MB of storage space, a 41.67 
compression factor over the original dataset (2.01GB) that stores 
each particle position for each time step. 

8.2.2 Frame rate 

Table 5 gives the average rate at which frames are reconstructed at 
the client from the animated depth image representation. The 
measurements were performed on an Intel i7 workstation with an 
nVidia GTX660 graphics card. Four output frame rendering modes 
are investigated. For static the simulation time step is fixed. For 
dynamic the simulation time advances from frame to frame. PB 
corresponds to a straight forward point-based reconstruction with 
2x2 splats (Figure 16). TM corresponds to triangle mesh 
reconstruction. The primitives (points and triangles) are sorted in 
descending order based on their erosion times; this way the 
primitives needed at a time step are simply determined by choosing 
the appropriate prefix of the connectivity array without having to 
enable and disable individual triangles. As expected, higher frame 
rates are obtained for lower output resolutions, since that implies 
fewer samples during reconstruction, for the point-based 
reconstruction mode which is less expensive than the triangle mesh 
reconstruction, and for the static visualization mode since it does not 
imply updating the geometry for every frame. For all aircraft dataset 
experiments at the 1,280 x 270 resolution, the minimum, average and 
maximum frame rates are (98, 145, 212), (13, 18, 23), (16, 28, 40), 

and (9, 14, 20) for Static PB, Static TM, Dynamic PB, and Dynamic 
TM , respectively. 

 Before the client can reconstruct output visualization frames, the 
animated depth image representation has to be decompressed. 
Decompression time ranges between 0.4 and 2.5s (Table 5), which is 
comparable to the transmission time in the case of high bandwidth 
networks, and negligible in the case of low bandwidth networks, as 
discussed in Section 8.2.5. 

 Table 5. Frame rate for various visualization modes. 

Data- 

set 

Sequ

ence 

Re-

gion 

Frame 

Resolution 

Decom-

pression 

[s] 

Frame rate [fps] 

Static Dynamic 

PB TM PB TM 

Truck 0-80 N/A 1280 × 720 0.60 566 106 100 68 

A
ir

cr
af

t 

0-57 

out. 

1280 × 720 1.4 201 23 38 18 

960 × 640 0.66 266 31 50 27 

640 × 480 0.42 480 56 111 45 

side 

1280 × 720 1.2 111 14 23 12 

960 × 640 0.88 160 22 31 17 

640 × 480 0.48 311 46 60 33 

rev. 

1280 × 720 1.2 135 22 25 15 

960 × 640 0.85 194 28 56 21 

640 × 480 0.45 394 74 113 45 

58-

115 

out. 

1280 × 720 1.40 212 21 38 20 

960 × 640 0.65 275 37 49 26 

640 × 480 0.40 505 57 75 47 

side 

1280 × 720 1.2 109 13 23 12 

960 × 640 0.89 157 21 30 15 

640 × 480 0.51 312 45 59 34 

rev. 

1280 × 720 1.8 119 16 22 12 

960 × 640 1.3 165 24 30 17 

640 × 480 0.72 319 40 53 36 

116-

171 

out. 

1280 × 720 1.3 211 22 40 17 

960 × 640 0.55 298 36 54 28 

640 × 480 0.32 550 68 114 52 

side 

1280 × 720 1.1 112 16 24 12 

960 × 640 0.91 167 22 34 18 

640 × 480 0.51 315 42 58 31 

rev. 

1280 × 720 2.5 98 14 16 9 

960 × 640 1.9 137 18 22 12 

640 × 480 1.0 270 40 48 26 

SPH 0-81 N/A 1280 x 720 0.33 3280 20 352 20 

 

 

Fig. 15. Visualization of viewpoints outside of viewpoint triangle (solid 

orange) with conforming residual disocclusion error. 

Table 4. Data size for various viewpoint triangle sizes. 

q [m] 1 2 3 4 5 8 10 

Size [MB] 16 19 21 25 26 36 42 

Rel. Size 16 9 7 6 5 4.5 4 

C. F. 17 15 15 14 14 13 13 

  

   

Fig. 16. Comparison between frames reconstructed using 2x2 pixel 

splats (top), and using a triangle mesh (bottom). 
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8.2.3 Scalability 

Animated depth images inherit from conventional depth images the 
desirable property of cost independence from dataset size. Dataset 
size depends on two factors: extent and resolution. The animated 
depth image performs occlusion culling and geometry resampling to 
achieve cost independence from both factors. Consider an FEA 
simulation of an earthquake in a city with thousands of buildings. In 
output views that focus on one or a few buildings, the buildings not 
visible are culled away. In output views that show the entire city, the 
resolution of the animated geometry is reduced. The number of 
samples remains capped by the animated depth image resolution. 
Although the cost of a single animated depth image is capped, the 
adaptive sampling algorithm uses multiple animated depth images to 
prevent disocclusion errors. The total number of samples depends on 
the complexity of the occlusion patterns and on the size of the 
viewpoint triangle. Although, to the limit, in a dataset with an 
infinite number of infinitely small particles every two viewpoints 
gather disjoint sets of samples and thus the number of samples is 
infinite, for FEA datasets there is substantial sample redundancy 
between neighboring viewpoints and the number of samples needed 
for a given viewpoint triangle is bounded. 

The cost of the animated depth image does depend on output 
image resolution. As the output image resolution grows, a quality 
reconstruction requires that the resolution of the animated depth 
images increases as well. In all our experiments the resolution of 
images increases as well. In all our experiments the resolution of the 
animated depth images equals the resolution of the output frame. 

Table 6 reports the relative change in number of samples, in data 
size, and in reconstruction frame rate as the resolution increases from 
640x480 to 1,280x720, which corresponds to an increase in number 
of pixels by a factor of 3. Data is provided for each sequence of the 
aircraft dataset and for each region (i.e. O for outside, S for side, and 
R for reverse). The number of samples never increases by a factor 
greater than 3. The storage size increases with the number of pixels 
sub-linearly, which is a strongpoint of the compression based on 
rigid body decomposition employed by our approach. The higher the 
resolution, the more coherent neighboring samples are, the more 
samples per rigid body, and the more effective the compression. The 
frame rate at higher resolution is typically higher than a third of the 
frame at lower resolution, which indicates good scalability. 

Table 6. Relative cost increase as output image resolution 
changes from 640x480 to 1,280x720. 

 Sequence 

0-57 58-115 116-171 

O S R O S R O S R 

Samples 2.35 2.92 2.97 2.40 2.90 2.92 2.52 2.97 2.82 

Data size 2.13 1.96 2.13 2.17 2.16 2.24 2.56 2.19 2.13 

Frame rate 0.38 0.43 0.38 0.29 0.43 0.49 0.32 0.37 0.43 

 

8.2.4 Thin client performance estimate 

The proliferation of mobile devices with quality displays and with 
limited graphics hardware acceleration capability presents the 
opportunity and demands that remote visualization solutions target 
such thin client scenarios. 

Table 7. Visualization frame rate estimate for thin clients. 

Device 

Rendering 

Performance 

[Mtris/s] 

Display 

Resolution 

[Mpix] 

Frame rate [fps] 

k = 1 k = 3 

iPhone 5 133 0.73 91 30 

Galaxy S4 79 2.1 19 6.3 

Lumia 920 34 0.98 17 5.8 

iPad 4 154 3.1 25 8.3 

 

Table 7 gives frame rate estimates for three smartphones running the 
iOS, Android, and Windows operating systems, as well as for an iOS 
tablet. The frame rate f is estimated with the formula: 

            (7) 

where T is the triangle rendering performance of the device [41], R is 
the display resolution, 2 is the number of triangles per sample, and k 
is the number of complete animated depth images with resolution R 
from which the frame is reconstructed.  

For the experiments reported we estimate k by dividing the 
number of samples gathered by our adaptive sampling algorithm 
(and thus used to reconstruct output frames) to the number of 
samples in a complete animated depth image. For the experiments in 
Table 5, k was 0.47 for the truck dataset (due to empty background 
pixels), and between 1.26 and 2.76 for the aircraft dataset. As shown 
in Table 7, even when the frame is reconstructed from the equivalent 
of three animated depth images (i.e. k = 3 column), an interactive 
frame rate can potentially be sustained by all devices. The iPhone 
has the best performance because of its advantageous triangle 
rendering performance to display resolution ratio. The iPad brings a 
substantial increase in display resolution that isn’t backed up by a 
commensurate increase in triangle rendering performance. 

The figures in Table 7 correspond to the static TM column in 
Table 5. Changing the triangles that are rendered for every frame as 
needed for the dynamic case translates to a high memory bandwidth 
requirement, and the frame rate will decrease as it did for the 
graphics card used for Table 5. 

8.2.5 Comparison to other remote visualization approaches 

The animated depth image approach enables remote visualization of 
dynamic datasets and produces high-quality frames that are very 
close to frames rendered directly from the dataset. Compared to 
transferring a conventional depth image, our representation requires 
a larger initial transfer, but then supports changing the view and 
advancing the simulation time at the client.  

We now compare our approach to the conventional remote 
visualization approach of computing each frame on the server. The 
performance of a remote visualization system is characterized by 
three quantities: the startup time t0, defined as the time it takes for 
the first frame F0 to be displayed, the frame to frame latency l, 
defined as the average time elapsed from when a frame Fi (i > 0) is 
requested by the user to when Fi is displayed, and the total amount D 
of data transferred for a remote visualization sequence. To estimate 
these quantities we have to further define the visualization context. 

First, we need to define how the frame is compressed for the 
conventional approach. We investigate two scenarios: each frame is 
compressed individually using jpeg, and each frame is compressed 
by taking into account that previous frames have already been sent to 
the client. We approximate conservatively the second scenario by 
compiling off-line a video file for all the frames from a visualization 
sequence with the state of the art H.264 codec. This provides an 
upper bound on the compression performance that live streaming can 
achieve. For the aircraft dataset, the average per frame data size is 
422kB for 1,280 × 720 resolution and individually compressed 
frames, 58kB for 1,280 × 720 resolution and streaming. For 640 × 
480 resolution the same numbers are 45kB and 4kB, respectively. 

Second, we need to estimate the time it takes the server to service 
the request from the client. We assume that the server has substantial 
computational resources so we consider this time as negligible. 

Third, we need to estimate the ping time between the server and 
the client, defined as the time it takes a short message to be 
transferred from the client to the server and back, and the network 
download bandwidth, defined as the amount of data that can be 
transferred from the server to the client per second. Upload speed is 
not a concern since the request for a new frame implies small data 
amounts. Average ping times from our Purdue University laboratory 
to servers at Purdue University, at University of Illinois at Urbana-
Champaign, at Columbia University, at University of North Carolina 
at Chapel Hill, at the University of Utah, at Stanford University, at 
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the Technical University of Berlin, Germany, at the Lomonosov 
Moscow State University, Russia, at the India Institute of 
Technology Delhi, India, at Tsinghua University, China, at the 
University of Tokyo, Japan, and at the University of Queensland, 
Australia are 81, 71, 57, 69, 105, 109, 162, 184, 285, 277, 222, 
276ms, respectively. In our comparison we use the values of 50ms 
and 300ms for a short and a long ping time. The download 
bandwidths we measured in West Lafayette IN for 4G, 4G LTE, 
residential broadband, and wide area network (WAN) are 2.5, 10, 20, 
and 100 Mbps, respectively. In our comparison we use 1Mbps and 
100Mbps for high and low bandwidth values. 

Finally, we need to define a visualization sequence as the series 
of consecutive visualization frames requested by the user for a 
particular region of the dataset and for a particular interval of 
simulation time steps. In the case of the animated depth image 
approach, a visualization sequence is reconstructed from the same set 
of animation depth image tiles. The number of frames in such a 
visualization sequence depends on the dataset, on the region of the 
dataset, and on the time interval. We have observed the civil 
engineers in our project examine each of the outside, side, and 
reverse regions of the aircraft dataset for over 10 minutes, which at 
30Hz implies sequences of 18,000 frames. In our comparison we 
assume visualization sequences of 10,240 frames. 

Table 8. Comparison between conventional and animated depth 
image remote visualization for various network scenarios. 

Resolution 
Conventional Animated Depth Image 

l [ms] D [MB] t0 [s] l [ms] D [MB] 

Scenario A: ping 300ms, bandwidth 1Mbps 

1,280 × 720 603-3,447 580 – 4,220 192 2 – 111 24 

600 × 480 300-502 40 – 450 88 2 – 38 11 

Scenario B: ping 300ms, bandwidth 100Mbps 

1,280 × 720 300 580 – 4,220 1.92 2 – 111 24 

600 × 480 300 40 – 450 0.88 2 – 38 11 

Scenario C: ping 50ms, bandwidth 1Mbps 

1,280 × 720 478-3,322 580 – 4,220 192 2 – 111 24 

600 × 480 56-377 40 – 450 88 2 – 38 11 

Scenario D: ping 50ms, bandwidth 100Mbps 

1,280 × 720 50-58 580 – 4,220 1.92 2 – 111 24 

600 × 480 50 40 – 450 0.88 2 – 38 11 

 
Table 8 gives the performance of the animated depth image 

remote visualization approach for the aircraft dataset and compares it 
to that of conventional remote visualization. Four scenarios are 
investigated: long ping time and low bandwidth (A), long ping time 
and high bandwidth (B), short ping time and low bandwidth (C), and 
finally short ping time and high bandwidth (D). For each scenario 
two output resolutions are investigated. For the animated depth 
image approach, the data size is estimated by averaging the 
representation size over the three regions outside, side, and reverse, 
for each resolution (resulting in the values of 24MB and 11MB). The 
startup time t0 is computed by dividing the data size to the bandwidth 
to obtain the 192s and 88s values. The frame to frame latency l is 
computed by inverting the reconstruction frame rate, and it is given 
as a range, using the fastest and slowest frame rates given in Table 5 
for the same resolution, and over all reconstruction modes (i.e.  
566fps and 9fps for 1,280 x 720, and 550fps and 26fps for 640 x 
480). l does not depend on the network parameters (i.e. ping and 
bandwidth). In fact the visualization can continue at the client even if 
the connection to the server is lost after the initial transfer. 

For the conventional approach, the total amount of data 
transferred D is obtained by multiplying the average frame size by 
the number of frames in the sequence (i.e. 10,240). A frame size 
range is used, from H.264 sequence compression to compression of 
individual frames, as discussed above. The conventional approach 
transfers substantially more data. The breakeven points are 424 and 
58 frames for 1,280 × 720, and 2,816 and 250 frames for 640 × 480.  

For the conventional approach, the time for the first frame is the 
same as for any other frame, thus t0 = l. We estimate l as follows: 

             
     

 
 

 

 
  (8) 

where tping is the ping time, f is the size of the frame, and b is the 
bandwidth. If b is sufficiently large for the network to transport a 
frame in half the ping time, l is given by tping. In scenario A, the 
advantage of the animated depth image (ADI) approach over the 
conventional remote visualization (CRV) approach is substantial, for 
both resolutions, and even when the highest quality reconstruction is 
used for ADI and the most aggressive frame compression is used for 
CRV. In scenario B, the high bandwidth reduces l for CRV to ping 
time, which still exceeds even the highest quality reconstruction time 
for ADI. In scenario C, ADI has substantial advantage for the 1,280 
× 720 resolution. In scenario D, which corresponds to a very highly 
performing network, ADI has an advantage only for the faster 
reconstruction modes (i.e. PB static and dynamic, see Table 5). For 
all scenarios, the fastest reconstruction (i.e. 2ms) gives at least a 25 
fold advantage for ADI over CRV. 

We conclude that, compared to the conventional remote 
visualization approach of sending each frame from the server to the 
client, the animated depth image approach improves frame to frame 
latency in all but in the case of a very highly performing network, 
and the advantage increases with output frame resolution. Moreover, 
the frame to frame latency does not depend on the network 
condition. These advantages come at the cost of a longer startup 
time. The conventional approach will always be limited by the ping 
time, a network characteristic which whose improvement is 
challenging and costly. 

8.3 Limitations 

One of the limitations of animated depth images as of all hybrid 
approaches to remote visualization is the large startup time. 
Progressive refinement schemes such as transferring a lower 
resolution animated depth image for the reference view could help 
alleviate this problem. Another approach is to further reduce the size 
of the animated depth image, for example by compressing the color 
and depth maps. The trajectories of the unassigned samples currently 
take up to 50% of the overall storage requirement, so further 
improving the compression of those trajectories will translate in 
sizeable storage gains. Although the amount of residual occlusion 
errors is small even for the complex occlusion patterns in the dataset 
regions explored, the adaptive sampling algorithm proceeds 
nonetheless in greedy fashion. A global optimization approach could 
be developed to bound residual disocclusion errors. 

A second limitation of animated depth images is that they do not 
support volume rendering. This limitation is inherited from 
conventional depth images which can model opaque surfaces by 
capturing the first surface sample seen along a ray, but cannot model 
transparency. This does not mean that animated depth images cannot 
be used to visualize opacity data. Visualizations of opacity data often 
take the first step of computing a surface of interest (e.g. isosurface) 
which can then be remotely visualized with our method. Volume 
rendering is just one example of the more general challenge brought 
to sample-based rendering by view dependent effects. Another 
example is rendering reflections. One option is to render reflections 
at the client, rendering capability permitting. We will also investigate 
the extension of animated depth images to store view-dependent 
color in a compressed form, leveraging the fact that color variability 
is limited by the targeted range of reconstruction viewpoints. 

Finally, the rigid body decomposition of the set of samples stored 
by an animated depth image is done non-optimally in the interest of 
performance. The heuristic used is based on the reasonable 
assumption that samples whose motion is well approximated by a 
rigid body transformation are also samples that are close to each 
other in model space and thus in image space. 
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9 CONCLUSIONS AND FUTURE WORK  

We have described animated depth images, a novel type of image 
that not only stores color and depth samples but also stores sample 
trajectories. An animated depth image covers a time interval as 
opposed to the single time point covered by conventional depth 
images. The difference between an animated depth image and a set 
of conventional depth images comes from the fact that the 
trajectories of the samples are stored in a compact way that leverages 
sample trajectory coherence. The approximation is efficient: tight 
user-selected error bounds are met while achieving considerable 
storage savings. The approach does not rely on sample trajectory 
simplicity, but rather on similarity of trajectories of nearby samples. 
The approach uses one rigid body transformation per time step which 
allows modeling complex trajectories with little or no time step to 
time step coherence, as those arising in the impact and dam break 
simulations considered in this paper. As we have shown, despite the 
complexity of the motion in these simulations, trajectories do exhibit 
sample to sample coherence. As the spatial resolution of simulations 
continues to increase, so will the sample to sample coherence and 
thus the efficacy of our approach. 

Compared to a video segment, an animated depth image affords 
interactivity. We have demonstrated the benefits of animated depth 
images in the context of remote visualization of FEA datasets, which 
exhibit complex occlusion patterns. We have shown that the 
approach can be extended to SPH simulation datasets. Since 
animated depth images are a general approximation of animated 
geometry, we anticipate that the approach can be extended to other 
representations. Like for any type of image, animated depth image 
size is independent of dataset size and their relative benefit increases 
with dataset size. 

In computer graphics applications such as, for example, urban 
simulation or games, most of the dynamic scenes used are static 
where most of the moving triangles are part of explicitly defined 
rigid bodies (e.g. cars through the city) whose trajectories are 
encoded collectively with a single sequence or tree of 
transformations, and the motion of most non-rigidly moving 
triangles is governed by the motion of underlying skeletons (e.g. 
computer animation characters). This allows animating the triangles 
economically by skinning the skeleton for each new configuration. 
Animated depth images are not suitable for such scenes. Animated 
depth images are specifically designed for datasets where millions of 
simulation nodes move independently resulting in millions of 
triangles with small screen footprint whose vertices move 
independently from frame to frame. Such datasets are common in 
scientific visualization and they cannot be handled with the 
conventional scene graph, transformation hierarchy, and skeleton 
conceptualizations of motion used in computer graphics. 

One direction for future work is incorporating animated depth 
images into an actual remote visualization system, with one or a few 
powerful servers, and with many thin clients. Output frame 
reconstruction is equivalent to straight forward triangle rendering, 
and even smartphones can render meshes with a number of triangles 
commensurate to their screen resolution, so we do not foresee 
problems with rendering performance at the client. One of the 
potential advantages of our hybrid method is to decrease the 
frequency of requests from the client to the server, compared to 
conventional remote visualization where each client makes a request 
for each frame displayed. However, the request for a new set of 
animation depth image tiles is more complex than simply rendering a 
single frame. In order to minimize the response time for such 
requests, we will investigate parallelizing the computation of an 
animated depth image and the adaptive space/time sampling over the 
set of processors available at the server. Prior work has accelerated 
the computation on the server side using a light field [39]—the 
approach could be adapted to pre-compute all animated depth images 
possibly needed by clients by tiling the viewing space. 

Another direction for future work is to address other types of 
visualization, such as volume rendering, computation that is harder 

to cache in sample sets [42]. Finally, animated depth images 
introduce sampling robustness with respect to variations of the time 
parameter of time-varying datasets. In the future we will investigate 
other image generalizations that bring robustness with variations of 
other visualization parameters such as, for example, an isovalue used 
in isosurface extraction. 
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