Graph Camera Projection

Voicu Popescu, Paul Rosen, Nicoletta Adamo-Villani

Purdue University

We derive the mapping Q_{k+1} of a point on the image plane of planar pinhole camera $k+1\left(P P C_{k+1}\right)$ to $P P C_{0}$ by first establishing the mapping R_{k+1} between $P P C_{k+1}$ and $P P C_{k}$ as shown in Figure 1. Then we show by induction that $Q_{k+1}=$ $R_{l} R_{2} \ldots R_{k+l}$. The base case is verified as follows:

$$
\left[\begin{array}{c}
u_{0} \\
v_{0} \\
1
\end{array}\right] w_{0}=R_{1}\left[\begin{array}{c}
u_{1} \\
v_{1} \\
1
\end{array}\right],\left[\begin{array}{c}
u_{1} \\
v_{1} \\
1
\end{array}\right] w_{1}=R_{2}\left[\begin{array}{c}
u_{2} \\
v_{2} \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{c}
u_{0} \\
v_{0} \\
1
\end{array}\right] w_{0}=R_{1} \frac{1}{w_{1}} R_{2}\left[\begin{array}{c}
u_{2} \\
v_{2} \\
1
\end{array}\right]=\frac{1}{w_{1}} R_{1} R_{2}\left[\begin{array}{c}
u_{2} \\
v_{2} \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{c}
u_{0} \\
v_{0} \\
1
\end{array}\right] w_{0} w_{1}=R_{1} R_{2}\left[\begin{array}{c}
u_{2} \\
v_{2} \\
1
\end{array}\right]
$$

$$
Q_{2}=R_{1} R_{2}
$$

By the induction hypothesis:

$$
\begin{align*}
& Q_{k}=R_{1} R_{2} \ldots R_{k} \\
& {\left[\begin{array}{c}
u_{0} \\
v_{0} \\
1
\end{array}\right] w_{0}=R_{1} R_{2} \ldots R_{k}\left[\begin{array}{c}
u_{k} \\
v_{k} \\
1
\end{array}\right]} \tag{A.2}
\end{align*}
$$

Using the equations in Figure 1 we obtain:

$$
\left[\begin{array}{c}
u_{k} \tag{A.3}\\
v_{k} \\
1
\end{array}\right] w_{k}=R_{k+1}\left[\begin{array}{c}
u_{k+1} \\
v_{k+1} \\
1
\end{array}\right]
$$

Combining equations A. 2 and A. 3 terminates the proof:

$$
P_{k+1}=C_{k}+\left[\begin{array}{lll}
x_{k} & y_{k} & o_{k}\left[\begin{array}{c}
u_{k} \\
v_{k} \\
1
\end{array}\right] w_{k} . w_{k} .
\end{array}\right.
$$

$R_{k+1}=\left[\begin{array}{lllll}x_{k} & y_{k} & \left.o_{k}\right\}^{-1}\left[\begin{array}{lll}x_{k+1} & y_{k+1} & \left(C_{k+1}-C_{k}+o_{k+1}\right)\end{array}\right]\end{array}\right.$ $\left[\begin{array}{c}u_{k} \\ v_{k} \\ 1\end{array}\right] \quad w_{k}=R_{k+1}\left[\begin{array}{c}u_{k+1} \\ v_{k+1} \\ 1\end{array}\right]$

Figure 1 Derivation of mapping $P P C_{k+1}$ and $P P C_{k}$ with COP's C_{k+1} and C_{k}. Vectors x and y give the row and column direction and are one pixel width and one pixel length long, respectively. Vectors o point from the COP to the top left corner of the image. Point P_{k+1} on the image plane of PPC $k+1$ is mapped to point P_{k} on the image plane of PPC k through matrix R_{k+1}.

