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Abstract 
This paper describes the work of a team of researchers in 
computer graphics, geometric computing, and civil engineering to 
produce a visualization of the September 2001 attack on the 
Pentagon. The immediate motivation for the project was to 
understand the behavior of the building under the impact. The 
longer term motivation was to establish a path for producing high-
quality visualizations of large scale simulations.  

The first challenge was managing the enormous complexity of the 
scene to fit within the limits of state-of-the art simulation software 
systems and supercomputing resources. The second challenge was 
to integrate the simulation results into a high-quality visualization. 
To meet this challenge, we implemented a custom importer that 
simplifies and loads the massive simulation data in a commercial 
animation system. The surrounding scene is modeled using 
image-based techniques and is also imported in the animation 
system where the visualization is produced. 

A specific issue for us was to federate the simulation and the 
animation systems, both commercial systems not under our 
control and following internally different conceptualizations of 
geometry and animation.  This had to be done such that scalability 
was achieved.  The reusable link created between the two systems 
allows communicating the results to non-specialists and the public 
at large, as well as facilitating communication in teams with 
members having diverse technical backgrounds. 

CR Categories and Subject Descriptors: I.3.3 [Computer 
Graphics]: Applications, Three-dimensional Graphics and 
Realism, Graphics Utilities. I.6. [Simulation and Modeling]: 
Applications, Model Validation and Analysis, Output Analysis. 

1. INTRODUCTION 

1.1 Problem description 
Since Ken Wilson’s articulation of simulation as third paradigm 
of science in the mid-1980s [14], co-equal with experimental and 
theoretical science, simulations have become essential tools in 
many fields of science and engineering. Scientific simulations are 
used to crash-test an automobile before it is built, to study the 
interaction between a hip implant and the femur, to evaluate and 
renovate medieval bridges, to assess the effectiveness of 
electronic circuit packaging by running circuit-board drop tests, or 
to build virtual wind tunnels.  

In particular, finite-element analysis (FEA) plays a fundamental 
role in engineering because of its ability to integrate multiple 
physical phenomena, such as fluid flow, fluid/solid interaction, 
and material behavior. FEA systems compute a variety of physical 
parameters over the time span of the simulation, such as position, 
velocity, acceleration, stress, and pressure. The visual presentation 
of the results is either handed off to generic post-processors or 
else is studied in specific contexts in the field of scientific 
visualization. 

Three dimensional computer graphics has advanced 
tremendously, driven mostly by the popularity of its applications 
in entertainment. Consumer-level priced personal computers with 
add-in graphics cards can produce high-quality images of complex 
3D scenes at interactive rates or can run sophisticated animation 
software systems to produce, off-line, video sequences that very 
closely approach photorealism. Because of the specifics of the 
applications that commissioned their development, animation 
systems are mainly concerned with minimizing the production 
effort and maximizing the entertainment value of animations. 
They focus on the rendering quality, on the expressivity of the 
animated characters and are less concerned with closely following 
the laws of physics. 

Our team had the goal of producing a visualization of the 
September 2001 attack on the Pentagon that is both physically and 
visually accurate (Figure 1, Figure 3 and accompanying video). 
The obvious solution is to take advantage of the strengths of both 
simulation and animation systems. The project had two distinct 
parts. During the first part we designed, tested and then ran at full 
scale the FEA simulation of the aircraft impacting the building 
structure. For this part we used LS-DYNA [5], a commercial FEA 
system often used for crashworthiness simulations. In the second 
phase the efforts were focused on producing a high-quality 
visualization of the massive data resulting from the simulation. In 
order to do so we created a scalable link between the FEA system 
and a commercial animation system (3ds max [19]). The link can 
be directly reused to create animations with physical fidelity 
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Figure 1 Animation frame. The top floors are not shown to 
reveal the simulated aircraft / concrete columns impact. 
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regardless of the scientific or engineering domain. 

1.2 Motivation 
A high-quality visualization of the results of a simulation first 
requires that the objects whose interaction is simulated be 
rendered using state-of-the-art rendering techniques. The second 
requirement is that the simulation be placed in the context of the 
immediate surrounding scene. For this the scene has to be 
modeled and rendered along with the simulation results.  

Such a visualization makes the results and conclusions of the 
simulation directly accessible to others than the specialists that 
designed the simulation, without sacrificing scientific accuracy. 
This will make scientific simulations powerful tools that will 
routinely be used in a variety of fields including national security, 
emergency management, forensic science, and media. 

A good visualization ultimately leads to improvements of the 
simulation itself. High-quality images quickly reveal 
discrepancies with experimental data observed over the years or 
recorded specifically for fine tuning the current simulation. 

1.3 Process overview 
Figure 2 gives an overview of the process that converted the 
heterogeneous data documenting the event into the desired 
visualization.  

The first step in creating the simulation was to generate the 
element meshes suitable for FEA. To keep the scene complexity 
within manageable limits, only the most relevant components of 
the aircraft and of the building were meshed. Then, the material 
model parameters were tuned during test simulations to achieve 
correct load deflection behavior. The FEA code was run on the 
full resolution meshes to simulate the first 250 milliseconds of the 
impact over 50 states.  

The visualization part of the project began with modeling the 
Pentagon building from architectural blueprints using a CAD tool. 
The geometric model of the building and the surroundings were 
enhanced with textures projected from high-resolution satellite 
and aerial imagery using a custom tool. The 3ds max aircraft 
model used for visualizing the approach was readily available. 
The 3.5 GB of state data describing the mesh deformations was 
simplified, converted and imported into the animation system 
through a custom plugin. The imported meshes were aligned with 
the surrounding scene and enhanced with rendering material 
properties. Finally the integrated scene was rendered from the 
desired camera paths. 

Prior work is discussed next. The remainder of the paper is 
organized as follows. Section 3 describes the simulation; section 4 
describes modeling the part of the scene not involved in the 
simulation; section 5 covers importing the simulation data into the 
animation system. Results are presented for each section 
separately. All the timing data was obtained on Pentium 4 Xeon, 2 
GHz, 2 GB workstations. Discussion and directions for future 
work conclude the paper. 

2. PRIOR WORK  
Baker et al. [1] describe the simulation of a bomb blast and its 
impact on a neighboring building. The scenario investigated 
matches the 1996 attack on the Khobar towers. Two 
computational codes were used. The blast propagation was 
computed using CTH [3] at the Army’s research lab in Vicksburg 
[6]. Results of the CTH calculation are used as initial pressure 
loadings on the buildings and Dyna3D [4] is then used to model 
the structural response of the building to the blast. The results 
were visualized in the Dyna3D postprocessor and VTK 
(visualization toolkit [7]) using standard visualization techniques 
such as slicing and isosurfacing. The researchers report the 
difficulty of visualizing the large data sets; the solutions employed 
are reducing resolution, decimation and extraction of regions of 
interest. Enhancing the quality of the visualization using 
photographs is mentioned as future work. 

A considerable body of literature in nuclear engineering is 
dedicated to simulating the crash of an aircraft into a concrete 
structure. Provisions for aircraft impact on reinforced concrete 
structures are incorporated into the Civil Engineering codes used 
for the design of nuclear containment structures. A full-scale test 
was conducted by Sugano et al. [2] to measure the impact force 
exerted by fighter aircraft (F-4D) on a reinforced concrete target 
slab. The study provided important information on the 
deformation and disintegration of the aircraft. A simplified 
computational model was also developed in order to capture the 
global response of the impact. This study provided us the 
experimental evidence that the airframe and the skin of the aircraft 
alone are not likely to cause the major damage on reinforced 
concrete targets. 

To place the simulation in context we had to model and render the 
surroundings of the Pentagon. Research in image-based rendering 
(IBR) has produced several successful approaches for rendering Figure 2 Process overview. 

Figure 3 Visualization of the jet fuel. 
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complex large-scale natural scenes. The QuicktimeVR [9] system 
models the scene by acquiring a set of overlapping same-center-
of-projection photographs that are stitched together to form 
panoramas. During rendering the desired view is confined to the 
centers of the panoramas. In our case it was important to allow for 
unrestrained camera motion so we dismissed the approach.  

Image-based rendering by warping (IBRW) [10] relies on images 
enhanced with per-pixel depth. The depth and color samples are 
3D warped (reprojected) to create novel views. Airborne LIDAR 
sensors can provide the depth data at appropriate resolution and 
precision. In the case of our project no depth maps of the 
Pentagon scene were available and we could not use IBRW. In 
light field rendering the scene is modeled with a database 
containing all rays potentially needed during rendering. The 
method does not scale well: the number of images that need to be 
acquired and the ray database grow to impractical sizes for large-
scale scenes. 

An approach frequently used for modeling large urban scenes 
combines images with coarse geometry into a hybrid 
representation. A representative example is the Façade system 
[11] which maps photographs onto buildings modeled with simple 
primitive shapes. The system was used to model and realistically 
render a university campus environment. The relatively simple 
geometry of the Pentagon building and the availability of 
photographs of the area motivated us to choose a hybrid geometry 
/ images approach as described in section 4. 

3. LARGE SCALE SIMULATION 
FEA codes are among the most flexible and competent tools for 
simulating physical phenomena.  A simulation is described by 
providing a geometric description, a set of constitutive models 
that capture non-linear material behavior, initial conditions, and 
the interaction of various components of the model through 
contact algorithms.  The geometric description is in terms of 
nodes (points in 3-space) and elements (beam, shell and volume) 
partitioning the geometric objects. The elements have associated 
material properties that describe their behavior under strain.  The 
simulation code integrates differential equations that express the 
material characteristics and the interaction and energy exchange 
between materials in contact (or in a field). Failure of elements in 
the simulation is achieved by imposing a maximum strain limit in 
the material model, and eroding elements that reach the limit. 
These elements are not considered in the dynamic equilibrium of 

the model in the following time steps. 
Physically this means that the material 
tears or breaks at that locale. This 
approach enables the wings to cut through 
the reinforced concrete columns. Erosion 
of elements is a technique that is essential 
for simulating penetration problems.  

Based on careful consideration, our 
simulation hypothesis is that the most 
massive structure, causing the bulk of the 
damage through its kinetic energy, has 
been the liquid fuel (kerosene) in the tanks 
of the aircraft.  At impact, the plane was 
carrying an estimated 5,200 gallons of fuel 
and had a speed estimated at 480 mph.  
Damage inspection revealed that the 
performance of the building depended 
crucially on the spirally reinforced 
concrete columns of the building.  

Accordingly we concentrated on modeling the columns and the 
fuel. Figure 4 shows the finite element mesh (FEM) for the 
spirally reinforced concrete columns. We modeled the confined 
concrete core, the steel rebars, and the unconfined concrete cover 
(fluff). The column hexahedral elements are 7.5 x 7.5 x 15 cm in 
size. The column is anchored by the floor and ceiling supports 
(red in the figure). The fuel was modeled using an Arbitrary 
Lagrangian-Eulerian (ALE) formulation that integrates the 
Navier-Stokes equations of fluid dynamics for the motion of the 
liquid fuel. The Eulerian mesh is able to expand in order to 
enclose the splashing liquid fuel. Automatic mesh motion is 
achieved by following the mass-weighted average velocity of the 
ALE mesh. The fuel is specified in the Eulerian mesh in terms of 
per-cell fractional occupancy values. Figure 5 shows the liquid in 
the initial configuration. The Eulerian mesh elements are 15 x 15 
x 15 cm in size. 

A 3ds max model 
of the Boeing 757 
was obtained from 
a game company 
[15] and formed 
the basis for 
creating the FEM 
of the plane.  The 
meshed model 
includes fuselage 

stringers 
reinforcing the 
body of the plane 
and ribs in the 
wing structure, as 
well as the 
fuselage floor.  
Those are the 

structural 
elements of the 
plane deemed to 
be most 
significant.  Our 
custom mesh 
generation tool 
uses a set of hard 
points in the 
wings and the 
body. The mesh 
generation is 
parametric, which 
allows for 

Figure 4 column 
FEM.

Figure 5 Eulerian mesh cells with >25% liquid occupancy. 

 
 

 
Figure 6 Test simulation for tuning 
column / liquid interaction. 
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conveniently generating meshes at various resolutions. 

In order to calibrate the columns used in the simulation, a 
reinforced concrete column was analyzed under impact loading. 
Figure 6 (top) shows the calibration column subjected to high-
speed impact with liquid. The liquid mass was idealized as a block 
(shown in red color). Figure 6 (bottom) illustrates the damaged 
state of the column after impact. Erosion of elements in the 
column allowed us to model penetration of the fluid and the 
splitting of the column into two pieces after impact. Different 
failure strain limits were used for the unconfined fluff cover and 
the confined concrete inner core. The steel rebars were also 
assigned failure strain limits in order to model the rupture 
behavior of the reinforcement. 

The mesh density balances accuracy and model size to maximize 
resolution and fidelity while staying within software and hardware 
limitations.  At 954 K nodes, the simulation took approximately 6 
hours per recorded state on an IBM Power-4 platform with 8 
processors and 64 GB of memory.  The integration step size was 
0.1 milliseconds, and we recorded 50 states, 5 milliseconds apart. 
The disk size of each state is 70 MB, for a total of 3.5 GB. 

4. SURROUNDING SCENE 
We decided to model the surrounding scene for two reasons. First 
we wanted to visualize the trajectory of the plane immediately 
before the collision. Second, we wanted to place the simulation 
results in context to make it easily understood by someone who 
was not closely involved with the investigation.  

As described earlier, our approach was dictated by the available 
data documenting the scene. From the architectural blueprints we 
produced a CAD model of the building. The damage in the 
collapsed area was modeled by hand to match available 
photographs. The region surrounding the Pentagon was simply 
modeled with a large plane. The geometric models were enhanced 
with color using high-resolution satellite [16] and aerial imagery 
[8]. 

In order to apply a photograph to a geometric model two problems 
need to be solved. First one has to find the pose of the camera in a 
model-defined coordinate system (camera matching). Second the 
photograph pixels need to be mapped to the model triangles that 
are visible to the camera (projective texture mapping [17]). The 
basic functionality is available in animation systems such as 3ds 
max and Maya. We decided to implement our own camera 
matching / projective texture mapping tool to have more control 
over the camera matching and to create a conventionally texture 
mapped model. Such a model with individually texture mapped 
triangles can then be easily combined with other models (namely 
the approaching aircraft and the results of the simulation) and 
allows using multiple reference photographs with good control 
over the triangle to photograph assignment. 

We find the camera pose using correspondences between the 
photograph and the geometric model. Since the camera used to 
take the photographs is not available we also calibrate for the 
focal length. The focal length is the only intrinsic parameter of the 
camera model used: the center of projection is assumed to project 
in the center of the pixel grid, the pixels are assumed to be square 
and the lens distortion is ignored. We use this idealized model 
since the scene is flat (the height of the Pentagon building is small 
compared to its horizontal dimensions) and nearly coplanar points 
make the calibration for complex camera models numerically 
unstable. We search for the seven unknowns using the downhill 

simplex method. The starting position is obtained by rendering the 
model and manually adjusting the view such that the rendered 
image roughly matches the photograph. Convergence is achieved 
in negligible time. For a 3000 x 2000 pixels image the camera 
matching error is on average 3.5 pixels for 10 correspondences. 

Once the view is known, 
the camera is 
transformed in a 
projector and the 
photograph pixels are 
deposited on the surface 
of the triangles to create 
individual texture maps. 
The algorithm proceeds 
as follows (Pseudocode 
1). IB stores the IDs of 
the triangles that are 
seen by the photograph.  

A texture map is 
generated for each visible triangle. The texture is aligned with the 
longest edge of the projected triangle and with its corresponding 
height. The lengths of the two segments in pixels give the texture 
resolution. By choosing the resolution this way, the texture 
subsamples the photograph in the part of the triangle near the 
camera and supersamples it at the far end. Subsampling implies 
losing some of the color information of the photograph. We have 
experimented with setting the texture resolution to the maximum 
sampling rate encountered at the near end of the triangle. The 
Pentagon building model contains long triangles and the 
conservative resolution produced excessively large textures. 
Using the z buffer the texture is set only for the part of the triangle 
actually seen in the photograph. This is important when other 
images are used to complete the texture of the triangle. To 
correctly handle triangles that have a thin projection, the texels 
traversed by the edges are set the same way (without the triangle 
membership test). 

The building and ground plane 
model consisting of 25 K triangles 
was sprayed with a 3000 x 2000 
pixels photograph. The resulting 
texture mapped model produced 
realistic visualizations of the 
Pentagon scene. Figure 8 shows an 
image rendered from a 
considerably different view than 

Render model from camera view CV 
    in item buffer IB and z buffer ZB 
For each triangle T in IB 
    Project T in CV 
    Find longest edge e, corr. height h
    Allocate e x h texture map TM 
    Set texture coordinates for T 
    For each texel t in TM 
        If t outside T continue 
        Project t in CV at p 
        If hidden by ZB continue 
        Set t to photograph pixel p 
    Set edge texels 

Pseudocode 1 Texture generation

Figure 7 Photograph

 
Figure 8 Image rendered from texture mapped model 
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the view of the reference photograph, which is shown in Figure 7. 
The total disk size of the texture files is 160 MB. The difference 
when comparing to the 24 MB of the reference photograph is due 
to the texels outside of the triangle, to the texels corresponding to 
the hidden part of the triangle, to the thin triangles that have a 
texture larger than their area and to our simple merging of 
individual texture images that vertically collates 10 images to 
reduce the number of files. For now we rendered the scene offline 
so the large total texture size was not a concern. For real time 
rendering, the texture size has to be reduced. A simple greedy 
algorithm for packing the textures involving shifts and rotations is 
likely to yield good results. The rotation can be propagated 
upstream to the spraying to avoid the additional resampling. 

5. INTEGRATION 
The simulation results files are directly imported in 3ds max via a 
custom plugin. The 954 K nodes of the FEM define 355 K 
hexahedral (solid) elements used to model the column core and 
the fluff, 438 K hexahedral elements for the liquid elements, 15 K 
quadrilateral (shell) elements used to define the fuselage and floor 
of the aircraft, and 61 K segment (beam) elements used to define 
the ribs and stringers of the aircraft. The importer subdivides the 
simulation scene into objects according to materials to facilitate 
assigning rendering materials. 

5.1 Solid objects 
Ignoring the liquid for now, the 12, 2 and 1 triangles per solid, 
shell and beam elements respectively imply about 4.3 M triangles 
for the solid materials in the simulation scene. This number is 
reduced by eliminating internal faces, which are irrelevant during 
rendering. An internal face is a face shared by two hexahedral 
elements. Because elements erode, faces that are initially internal 
can become visible at the fracture area. For this an object is 
subdivided according to the simulation states; subobject k groups 
all the elements that erode at state k. Discarding the internal faces 
of each subobject is done in linear time using hashing. This 
reduces the number of triangles to 1.3 M, which is easily handled 
by the animation system. 

However, importing the mesh deformation into the animation 
system proved to be a serious bottleneck. The mesh deformations 
are saved by the FEA code as node positions at every state. The 
animation system supports per vertex animation but creating 50 
position controllers for each of the remaining 700 K nodes takes 
days and the resulting scene file is unusable. The practical limit on 
the number of animation controllers is about 1 M. The number of 
animation controllers is reduced in two ways. First, the importer 
does not animate nodes with a total movement (sum of state to 
state movement) below a user chosen threshold (typical value 1 
cm). Second, the trajectories of each node are simplified 
independently by eliminating (i.e. not creating) controllers for the 
nearly linear parts. We have experimented with two ways of 
simplifying the trajectory. In the first approach, a controller is 
removed if the resulting trajectory is, at every state, within a 
threshold (typical value 1 cm) of the original trajectory. This 
enforces the threshold globally at the cost of an order Ns2 running 
time where N is the number of nodes and s is the number of states. 
Our second approach considers triples of states A, B, C and 
removes the controller for B if B is closer than 1 cm from the line 
AC. The next triple considered is A, C, D if B is removed and B, 
C, D if not. When the threshold is considerably less than the 
amount a node moves between states, the result is virtually the 
same as in the case of the first approach, with the benefit of an 
order Ns running time. After simplification, 1.8 M controllers 

remained. We distributed the simulation scene over three files, 
each covering one third of the simulation. Materials and cameras 
can of course easily be shared among several files. Importing the 
solid objects takes 2 hours total, out of which 1 hour is needed for 
the third part of the simulation. Once the solid objects are loaded, 
the animator assigns them standard 3ds max materials.   

5.2 Liquid objects 
The liquid data saved at every state contains the position of the 
nodes of the Eulerian mesh and the fractional occupancy values at 
that state. The liquid could be directly rendered from the 
occupancy data using volume rendering techniques. We chose to 
build a surface boundary representation first in order to take 
advantage of the rendering capabilities of the animation system. 
For every state the importer selects the Eulerian mesh elements 
that have a liquid occupancy above a certain threshold (typical 
value 25%).  The internal faces are eliminated similarly to the 
solid object case. Once the liquid is imported, two 3dsmax 
modifiers are applied. For now the modifiers are applied manually 
by the animator; in the future this step will be moved inside the 
importer. The first is the "relax" modifier, which changes the 
apparent tension of the surface by moving vertices toward an 
average center point.  By relaxing the mesh, it rounds the edges 
without adding or removing faces.  After relaxing the mesh, a 
"smooth" modifier is added to average the object's normals, which 
creates a surface that reacts well to light, reflection, and 
refraction. 

Figure 9 Fuel rendered in animation system 

Raytracing

Alpha transparency

Raytracing
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The liquid material is a 3ds max standard material with a falloff 
map in the opacity channel.  This map attenuates the transparency 
of the object relative to the camera.  It makes the object appear 
transparent where its normals are pointing in the same direction as 
the camera (the Fresnel effect). Optional raytrace maps are also 
controlling the reflection and refraction of the liquid material. 
Figure 9 shows the liquid rendered once without the raytrace maps 
(5 seconds render time, top image) and then twice with the 
raytrace maps (5 minutes middle image, 55 minutes bottom 
image). Refraction and surface reflections improve the realism of 
the second image while the less expensive technique produces 
acceptable results when the liquid is integrated with the complex 
scene. 

As in the case of the solid objects, animating the liquid is 
challenging. There are two fundamental approaches: to consider 
the liquid a complex object that moves and deforms over the 
simulation time or to frequently recompute the liquid object from 
the occupancy data, possibly at every animation frame.  

The first approach is in the spirit of animation systems where the 
same geometric entity suffers a series of transformations over the 
animation time span. The state of the geometric entity is known at 
the simulation states; it can be computed by thresholding or 
isosurfacing the occupancy data. In order to define a morph that 
produces the animation frames in between the states, 
correspondences need to be established. This is challenging since 
the liquid can change considerably from one state to another; this 
implies different number of vertices, different local topologies 
(drops, liquid chunks separating and reuniting). 

We have attempted to implement this approach using the Eulerian 
mesh as a link between states. First, for each simulation state, the 
liquid elements occupied above a given threshold are selected. 
Then the Eulerian mesh is split in liquid objects (i, j) defined by 
the set of elements that contain liquid from state i to j, and do not 
contain liquid at states i-1 and j+1. In other words the object (i, j) 
contains the liquid “alive” between states i and j. The internal 
faces are removed and the object, which is a subset of the Eulerian 
mesh, is animated according to the known positions of the mesh 
nodes. Because the occupancy values vary considerably from one 
frame to another, many small liquid objects are generated. This 
leads to a large number of position controllers. 

The approach of defining the liquid with independent objects 
corresponding to snapshots along the simulation timeline has 
proven to be more practical. Visibility controllers automatically 
generated by the plugin define the appropriate life span for each 
object. To smooth the transition the objects are faded in and out at 
a negligible cost of 4 controllers per liquid object. Currently the 
liquid is modeled with one object per state. The 50 liquid objects 
total 1.5 M triangles. By interpolating the occupancy data one 
could generate one snapshot for every animation step. When 
playing back the 50 states over 30 seconds at 30 Hz, 900 liquid 
objects need to be generated, which exceeds a practical geometry 
budget. We are investigating generating the liquid objects during 
rendering. This implies finding a way for applying the modifiers 
and assigning the liquid material automatically, during rendering. 

6. DISCUSSION AND FUTURE WORK 
As one of the five member team to inspect the damaged building, 
Mete Sozen is a coauthor of the Pentagon Building Performance 
report [8].  The most massive impacting element was the fuel.  
The fuselage of the aircraft has little strength under axial impact, 
as confirmed by the simulation and validated by actual 

experiments [2]. The simulation clearly shows that the structural 
damage occurs only when the fuel mass hits. The simulation can 
be extended to cover a longer period of time, with denser states, 
involving higher resolution meshes; other possible extensions are 
modeling the building and aircraft in more detail and including the 
effects of the explosion, of the high temperatures and of the 
combustion. The bottleneck in the simulation runs was the amount 
of memory available on the various platforms used. The power of 
large memory spaces has recently been combined with the 
convenience of desktop computing. We are in the process of 
setting up simulation runs on recently acquired Itanium PCs. 

We have implemented a set of tools for integrating the simulation 
results with the surrounding scene in a commercial animation 
package. All tools can directly be reused for producing other 
visualizations. The plugin importer and 3ds max are now 
commonly used by the civil engineering researchers of our team. 
Initially the use was restricted to producing illustrations of their 
work; they are now using it to inspect the result of simulations. 
Scientific simulation researchers and commercial-simulation-
systems developers have shown great interest in the quality of the 
visualizations and we have initiated several collaborations. Except 
for the liquid raytracing, the integrated scene could be explored 
interactively. The VRML format for example does support 
triangle meshes with per vertex animation and can be rendered 
with hardware support by many browser plugin or stand alone 3D 
viewers. 

The link created between simulation and animation has to be 
further developed. The current bottleneck is the animation of the 
deforming meshes. Paradoxically the animation system performs 
better if the animation is specified by geometry replication. We 
will continue to investigate this problem. The importer could be 
extended to create dust, smoke and fire automatically. For 
example when a concrete element erodes, it should be turned in 
fine debris or dust animated according to the momentum that the 
element had before eroding. The simulation driven recreation of 
low visibility conditions will be valuable in virtual training. The 
first effort described here relied as much as possible on the 
capabilities of the animation system. These can be extended to 
include classic visualization techniques. Well studied algorithms 
can be employed and we do not foresee any major difficulty. 

Good visualizations facilitate the comparison of the simulation 
results to observed or recorded real data. Providing tools to assist 
and then fully automate the comparison is one of our longer term 
goals. Computer vision techniques are a possibility. This task is 
greatly facilitated if the experiment scene or actual event scene are 
captured by depth maps in addition to the traditional photographs. 
In our case, recording the shape of the columns affected by the 
impact would have been both easy and very beneficial. 
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