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ABSTRACT 
Today’s technology enables a rich set of virtual and mixed-

reality applications and provides a degree of connectivity and 
interactivity beyond that of traditional teleconferencing scenarios. 
In this paper, we present the Mixed-Reality Tabletop (MRT), an 
example of a teleconferencing framework for networked mixed 
reality in which real and virtual worlds coexist and users can fo-
cus on the task instead of computer interaction. For example, 
students could use real-world objects to participate in physical 
simulations such as orbital motion, collisions, and fluid flow in a 
common virtual environment. Our framework isolates the low-
level system details from the developer and provides a simple 
programming interface for developing novel applications in as 
little as a few minutes, using low-cost hardware. We discuss our 
implementation complete with methods of hand and object track-
ing, user interface, and example applications focused on remote 
teaching and learning. 

Keywords: D.2.6.b Graphical environments; H.4.3.b Computer 
conferencing, teleconferencing, and videoconferencing; H.5.1.b 
Artificial, augmented, and virtual realities; I.3.2.a Distrib-
uted/network graphics. 

1. INTRODUCTION 
The proliferation of high-performance audio, video, and network-
ing technologies enables distant parties to interact in rich collabo-
rative environments. Simultaneously, virtual and mixed reality 
technology supports more direct and natural interactions with 
computer systems than is possible with standard input devices. 
Together, these technologies enable a more immersive collabora-
tion than is possible in traditional teleconferencing.  

In an effort to make mixed-reality available to a widespread 
audience and to enable rapid development of applications, we 
have developed the Mixed-Reality Tabletop (MRT) to demon-
strate the viability of a low-cost, networked mixed-reality system 
(Fig. 1). The MRT provides a common plane for immersive dem-
onstration and perception in which the real and virtual worlds 
coexist. As opposed to traditional video conferencing in which 
two areas of attention are required (computer and real-world), the 
MRT merges the two to allow more natural and direct interaction 
with the task at hand, free of traditional devices like the monitor, 
keyboard, and mouse. A MRT station comprises a physical table-
top, a PC, camera, and projector. The projector displays virtual 
output such as video, text, interface, and other imagery onto the 
tabletop. The camera tracks real-world objects and user hand 
movements to allow natural, device-free interaction. 

There is a wide spectrum of application scenarios made pos-
sible by the MRT environment. Given its low-cost infrastructure, 
schools can install the system to enable children at several differ-
ent stations to work collaboratively on a virtual puzzle, a painting, 
or learn a skill like origami from a remotely stationed teacher. The 
MRT keeps children focused on the learning task instead of com-
puter interaction. Students could also use real-world objects to 
participate in physical simulations such as orbital motion, colli-
sions, and fluid flow in a common virtual environment. Because 
there are no physical input devices involved, several students can 
participate on the same station without restriction. 

Our general framework provides the essential functionality 
common to networked mixed-reality environments wrapped in a 
flexible application programmer interface (API). We have chosen 
a demonstrative group of features for the MRT that will showcase 
the viability of such a networked mixed-reality system. We dis-
cuss our implementation complete with methods of hand and ob-
ject tracking, user interface, and sample applications.  

A rich history of research in virtual, augmented, and mixed 
reality systems provide a foundation for our work. Application 
development platforms for mixed-reality applications have been 
developed such as MR platform [1], Tinmith-evo5 [2], VITA [3], 
and Teleport [4]. These platforms target 3-D mixed-reality appli-
cations that require head-mounted displays and complicated infra-
structure making widespead deployment difficult. On the other 
hand, MRT targets 2-D collaborative scenarios that enrich tradi-
tional conferencing applications and can be installed at signifi-
cantly less cost. As opposed to using a touch screen (e.g. a Tablet 
PC), we use a large desktop and a more natural interface. 

Closely related to the MRT are several flavors of custom 
mixed-reality workbenches [5][6][7][8], systems that support a 
variety of display surfaces (e.g., Emancipated Pixels [9], IBM’s 
Everywhere Displays [10], TouchLight [11], and Build-It [12]), 
and Hi-Space Enhanced [13] (a powerful test-bed and API for 
implementing, measuring and analyzing direct interactions of 
multiple users standing around a single tabletop display surface). 
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 Figure 1. MRT setup. A MRT station consists of (a) a physi-

cal tabletop, (b) a PC, and (c) an overhead camera-projector 
tandem, and (d) synchronization device. 
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These systems provide a very useful basis for developing a single 
MRT station, though none currently create both a networked 
mixed-reality environment and support simultaneous real-world 
and virtual display.  

Three mixed-reality systems that do take advantage of net-
working capabilities are the Tele-Graffiti [14] project, blue-c pro-
ject [15], and Augmented Surfaces [16]. Tele-Graffiti uses net-
worked camera-projector setups to perform remote sketching, but 
does not offer a method of object tracking and focuses on one 
application. The blue-c project is developing a system to enable 
real-time reconstruction of the participants and their full immer-
sion in a virtual world. Their approach, which uses a custom 3D 
stereo projection theatre, distributed computing architecture and 
dedicated highspeed networks, is not readily deployable to a large 
user-base. The Augmented Surfaces project extends the desktop of 
portable computers to tables and to displays using a custom in-
frastucture and visually-tagged objects and does not readily ex-
pose a programming interface.  

2. SYSTEM OVERVIEW 
The MRT configuration consists of a PC, camera, projector, and 
tabletop. Multiple stations are connected via a network to create a 
common, interactive mixed-reality environment. The cost for 
converting an existing PC into an MRT station is about $100-$500 
for a camera and $1000 for an entry-level projector. 

We have created a framework that handles all of the low-
level details of a MRT application. Figure 2 provides a conceptual 
diagram of the software pipeline of a single MRT station. During 
the incoming pipeline, the station receives and processes video 
from remote stations before displaying output to the projector. 
During the outgoing pipeline, it receives and processes local video 
before sending it to the network. Remote video is formatted and 
displayed during the incoming pipeline, while object and hand 
tracking takes place during the outgoing pipeline. The application 
accesses the video data via callbacks. 

3. SYNCHRONIZATION AND CALIBRATION 
One of the most challenging problems in composing real and 
virtual objects is simultaneously displaying output to and accept-
ing input from the same location. A single overhead camera sees 
both the real-world objects as well as the projected virtual image, 
so a system is needed for differentiating between the two. 

Our approach is to control the shuttering of the camera and 
projector so that the camera only captures the real-world objects. 
To accomplish this, we synchronize the projector with the camera, 
making sure the projector is showing black while the camera is 
taking a snapshot. A “black box” electronic device receives a sync 
signal from the PC and sends out sync signals to the camera and 

to the projector. We use a Point Grey Firewire camera that accepts 
external trigger and send sync signals to the project via a standard 
RGBHV connection. Our projector runs at 60 Hz, and we take a 
snapshot of the table every third frame, or at 20 Hz (Fig. 3). While 
this effectively solves the problem, it does result in a noticeable 
flicker. We discuss possible improvements to this method in the 
future work section. 

Because of misalignment between the camera and projector 
it is necessary to calibrate each device to obtain a consistent stan-
dard coordinate system. Calibration is performed during installa-
tion by establishing correspondences between points in the cam-
era image, projector image and physical table. During each frame, 
the camera image is postwarped into canonical space before mak-
ing it available to the application and the output image is pre-
warped before projection onto the tabletop. 

4. APPLICATION PROGRAMMING INTERFACE 
Our application programming interface provides access to events 
related to incoming and outgoing table images, network data, 
object tracking, and hand tracking. Because the hand tracking 
system is similar to a standard point-and-click interface, MRT 
application code is nearly identical to standard GUI application 
code. The API also provides controls such as buttons, panels, and 
labels, as well as an easy way to create custom controls. 

4.1 Programmability 
The API, developed in C++, takes advantage of class inheritance 
and virtual functions. In order to create a fully functional MRT 
application, the programmer simply creates a class derived from 
the MRTApp base class and provides function overrides for the 
desired events (Fig. 4). The framework includes a networking 
layer to send both video and data at 30 frames per second. Sepa-
rate sockets are established for each and are accessible via the 
API. Point-and-click events are exposed in their most essential 
form. However, the application still has access to the tracked ob-
jects, hands, and raw local and remote video images.  

There are several MRT configurations that make sense in a 
networked environment, and not all of them require the same set 
of features. The application can disable unneeded features in order 

Figure 2. MRT pipeline. A conceptual diagram of the soft-
ware pipeline of a MRT station. 
 

Figure 3. Synchronization. The camera becomes active 
during every third frame. c) 
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 class SampleApp : public MRTApp { 

 public: 

    SampleApp() { } 

    void Initialize() { 

        btnQuit = new MRTButton("Quit", 0.5, 0.5, 0.25, 0.25); 

        AddControl(btnQuit); } 

    void OnRender(); // OpenGL per-frame rendering code 

    void OnVideoIncoming(uchar *video); // process in images 

    void OnVideoOutgoing(GLubyte *video); // process out images 

    void OnPointerDown(int pointerId, float x, float y); 

    void OnPointerMove(int pointerId, float x, float y); 

 protected: 

    MRTButton *btnQuit;  

    // add application data here 

};

Figure 4: Example application. A simple application derived 
from MRTApp base class that creates a clickable quit button.



  
 
 

to gain performance. For example, a simple tic-tac-toe application 
might use hand tracking and virtual graphics, but not video. The 
API makes all of the possible scenarios simple to realize and op-
timize for performance. Our sample applications demonstrate a 
variety of possible MRT configurations (Section 5). The features 
implemented for each application are summarized in Table 1. 

4.2 Object and Hand Tracking 
To provide the user with a list of objects on the table and to sup-
port point-and-click (e.g., a virtual mouse), we implemented a 
real-time method for separating foreground and background pixels 
and subsequently grouping pixels into objects using a single cam-
era. While a near-infrared camera could be used to assist with 
tracking, it would require an additional camera per station to cap-
ture color images for mixed-reality rendering. Instead, during 
each frame a snapshot of the empty tabletop is compared with the 
current snapshot. Foreground pixel regions are segmented by 
tracing the outline of each connected component in the image and 
creating a polygonal outline. By tracing the outline we ignore 
potential “holes” in the interior of an object. Regions touching the 
frame edge are classified as pointers (e.g., user’s arm and hand 
reaching to an object), while purely interior regions are counted as 
table objects (objects touching the frame edge at startup are also 
considered table objects). The API makes available to the pro-
grammer several object features such as object border, object 
center, and object size in pixels (Fig. 5a). 

Each object on the table is assigned a numeric label to allow 
the programmer to track its movement. During each frame, the 
objects in the current frame are compared to those of the previous 
frame in order to reassign labels. The size, shape of the polygonal 
outline, and location of each object is used to determine corre-
spondence between frames. Because tabletop objects are unlikely 
to move or change shape very quickly, this simple heuristic is 
sufficient and fast. 

It is also desirable to provide a mechanism of point-and-click 
that will be familiar to MRT users and therefore make the system 
more intuitive. Such a system also has the advantage of making 
MRT applications nearly identical to standard GUI applications, 
enabling a seamless transition from “PC-only” mode. We have 
found that it is very simple and natural to use fingers as both 
“pointers” and “clickers” by opening and closing the hand. For 
example, the index finger can be used to point, while the thumb 
can be used to click. Alternatively, a scissor motion can be made 
with the index and middle finger, or a grabbing motion can be 
performed with the entire hand. It is interesting to note that the 
MRT allows several pointer objects at once, as opposed to the 
traditional mouse. A single user can use both hands to perform 
tasks, and several users can perform point-and-click actions on the 
same table at once. 

Hand tracking is performed in software by observing the 
pixel-thinned skeleton of the hand and arm region (Fig. 5b-c). A 
graph is constructed describing the pixel connectivity, then in-
spected for certain features. A closed hand (mouse down) contains 
no sharp edges and its graph will therefore consist of a single edge 
oriented according to the forearm. An open hand (mouse up) will 
consist of a forearm edge as well as several edges corresponding 
to fingers. In each case, we take the farthest point from the table 
border as the current pointer position. Hand tracking is then a 
simple matter of 1) how many nodes are in the graph (mouse 
state), 2) where the farthest graph node from the edge is (mouse 
location). 

In practice, variations in shadows and lighting may cause ar-
tifacts in the form of superficial graph edges, which affects hand 
tracking. To address this, it suffices to use length metrics for the 
graph edges to determine if they represent fingers or noise. It is 
unlikely that edges due to noise will be as long as a finger. An 
especially noisy graph can simply be removed from consideration.  

5. SAMPLE APPLICATIONS 
We have implemented three sample applications using the MRT 
API for use in a classroom setting. The API is exposed as a C++ 
library of classes and methods. Each application demonstrates a 
different configuration and use of MRT. Two of the three applica-
tions were developed by programmers with no knowledge of the 
underlying system details. 

The Interactive Classroom application is designed as an aid 
to an actual classroom lecture held over the Internet (Fig. 6a). 
Video of real-world objects placed on the instructor’s tabletop is 
sent to the student tables, where they can identify certain parts of 
the object, ask questions about the object, or be quizzed interac-
tively by the instructor. The instructor could examine an artifact, 
perform a dissection, or disassemble a mechanical part. 

The Interactive Physics application allows students to ex-
periment with the physics behind gravitational motion (Fig. 6b). 
Students at each MRT station supply a real-world object to act as 
a satellite for the object at the teacher table. The students set the 
mass and initial velocity of their objects, and then view a simula-
tion showing the orbital path of their object. Since the real-world 
object cannot be animated, the projected background is animated 
instead. The background for each table includes images of the 
other tables’ objects, showing their relative motion and rotation. 
Thus, there is a common global coordinate system and a local 
coordinate system centered at and aligned with its real-world ob-
ject. At any time the user can adjust the position of their satellite 
and view the newly calculated motion.  

The Interactive Origami application allows the teacher to 
enhance the view of the real object (origami paper) with virtual 
objects (illustration) to conduct a more effective remote teaching 

Table 1. Application features. 
The framework is fully custom-
izable to allow a variety of 
application configurations.  

Application Hand Tracking Object Tracking Networked Video 

Tic-tac-toe Yes No None 
Interactive Classroom Yes Yes One way streaming multicast 
Interactive Physics Yes Yes Two way snapshots 
Interactive Origami Yes No Two way streaming 

Figure 5. Tracking. (a) The system approximates the center and polygonal border of each object. (b-c) The pixel skeletons of 
hand pointer regions are used to classify them as open or closed. 

a) b) c) 



  
 
 

session (Fig. 6c). Each table is split vertically into a local work-
space and video window displaying the remote tabletop. This 
allows the teacher and the student to examine each other’s origami 
fold as if they are sitting next to each other. The application pro-
vides virtual drawing tools that allow the teacher to draw various 
lines and symbols corresponding to specific origami folds.  

6. DISCUSSION AND FUTURE WORK 
Our MRT framework uses a synchronization-based method to 
compose real and virtual objects. This allows us to simultaneously 
display output and accept input from the same location at the ex-
pense of a perceivable flickering effect. As future work, we would 
like to investigate several methods to ameliorate this flickering 
effect. Possibilities include using higher frame rate cameras and 
projectors and displaying an alternate color during the "projector-
off" frame. In addition, we look at imperceptible structured light 
research as a viable way of addressing this problem [17]. For 
improved hand-tracking, we are looking to real-time implementa-
tions of more accurate batch processing methods [18, 19]. We 
would also like to extend our API to include collaborative tools 
such as object synchronization and locking. 

Another avenue of future work is to liberate users from static 
tables and to provide them with mobile augmented-reality percep-
tion and interaction. Using Tablet PCs [20] as portable windows 
into a mixed-reality environment or IBM Everywhere Displays 
technology are both possibilities.  

7. CONCLUSION 
We have presented a low-cost framework to create mixed-reality 
applications in educational scenarios. Our approach, the Mixed-
Reality Tabletop, allows networked immersive interactive learn-
ing that combines virtual and real imagery. The developer is given 
the essential functionality common to mixed-reality environments 
and is able to focus immediately on the application itself without 
having to worry about low-level details.  

We look forward to deploying our lightweight system and 
framework to local schools and campuses. The quick installation 
and rapid prototyping made possible by our system make it ideal 
for non-graphics experts to develop applications and setup the 
system in classrooms or labs. 
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