
 1

Appeared: IEEE Visualization '97, pp. 355-362, Oct 19-24, 1997.

Architectural Walkthroughs Using Portal Textures

Daniel G. Aliaga, Anselmo A. Lastra
Department of Computer Science

University of North Carolina at Chapel Hill
{ aliaga | lastra } @cs.unc.edu

ABSTRACT
This paper outlines a method to dynamically replace
portals with textures in a cell-partitioned model. The
rendering complexity is reduced to the geometry of the
current cell thus increasing interactive performance. A
portal is a generalization of windows and doors. It
connects two adjacent cells (or rooms). Each portal of the
current cell that is some distance away from the
viewpoint is rendered as a texture. The portal texture
(smoothly) returns to geometry when the viewpoint gets
close to the portal. This way all portal sequences (not too
close to the viewpoint) have a depth complexity of one.
The size of each texture and distance at which the
transition occurs is configurable for each portal.
Keywords: visibility culling, cells, portals, textures,
sample points, morphing.

1. Introduction
The visualization of architectural spaces (buildings, ships
or similar structures) requires large complex models with
many geometric primitives. This type of model, however,
has a property that can be exploited in order to reduce the
rendering complexity: the space is typically divided by
walls that occlude everything on the other side. Adjacent
areas are only visible through certain openings (doors,
windows, etc.). Past research has focused on dividing a
model into cells (rooms or predetermined subsections of
the model) and portals (doors, windows and other
openings). Visibility culling algorithms are used to
determine which other cells are visible from a particular

viewpoint and view direction. Rendering is thus reduced
to the geometry of the visible cells. Exact pre-processing
algorithms [Airey90, Teller91] as well as conservative
run-time algorithms [Luebke95] have been developed.
In this paper, we further simplify the rendering by
conditionally replacing the cells visible through a portal
with a texture. Consequently, the system only needs to
render the geometry of the cell containing the viewpoint
and a few textured mapped polygons. Furthermore, this
approach alleviates the sudden decreases in performance
when a complex cluster of cells becomes visible. If the
viewpoint approaches a portal, the portal texture will
(smoothly) return to geometry, allowing the viewpoint to
move into the adjacent cell.
This technique is a specialization of the general use of
impostors introduced by [Maciel95]. Portions of a static
3D model can be automatically or manually replaced
with representations that are faster to render, namely 2D
textures. The textures display imagery that is an
approximate representation of the underlying geometry
but the costs of rendering are independent of the model
complexity. We can control the accuracy of the
representation by regulating the number of textures. This
provides us with a mechanism to control the quality of
the images we are seeing, at the expense of texture
memory and perhaps of swapping to the texture store of
the graphics accelerator. Solving the general problem of
deciding where to place textures in order to improve
rendering performance is difficult [Shade96,
Schaufler96, Aliaga96]. The cells and portals framework
allows us to formulate a set of concrete and efficient
algorithms for replacing geometry with textures.
In the following section (Section 2), we present the
overall problem of dynamically replacing portals with
textures and discuss various strategies. In Section 3, we
describe our algorithm for (smoothly) replacing the cells
visible through a portal with textures. Section 4 briefly
describes our implementation, while Section 5 presents

 2

the results we have obtained. Finally, we end with future
work (Section 6) and some conclusions (Sections 7).

2. Replacing Portals with Textures
In this section, we review the technique of culling to a
portal and describe the notion of portal textures. We
examine the possible ways of selecting the viewpoints for
the portal textures, and the possible strategies for
rendering the textures. Finally, we describe a method for
smoothing the transition from portal texture to geometry
(and vice versa).

2.1 Portal Culling and Portal Texture Culling
Based on the location of walls and other opaque surfaces,
a model can be partitioned into cells [Airey90, Teller91].
Each cell contains a list of portals, each of which defines
an opening through which an adjacent cell may be seen.
Figure 1 shows the top view of a cell-partitioned model.
The viewpoint is inside the view cell. Since the view
frustum only intersects a subset of the portals of the view
cell, the cells attached to each visible portal are
recursively traversed to compute all of the visible cells.

Since the model contains the location of all portals, we
can compute textures to be placed in the location of the
otherwise transparent portal openings. At run-time, we
render the view cell normally. All visible portals of the
view cell are rendered as textures and no adjacent cells
are actually rendered, despite being visible. Figure 2
illustrates the reduced set of cells that need to be
rendered. As the viewpoint approaches a portal, we
switch to rendering the geometry of the cell behind the
portal. Once the viewpoint enters the adjacent cell, it
becomes the view cell and the previous cell will now be
rendered as a portal texture.

2.2 Texture Selection Strategies
A portal can be viewed from multiple view directions as
well as multiple viewpoints. Since a single texture only
produces a perspectively correct image from one
viewpoint, we need to do some additional work to
improve image quality when using portal textures. There
are two main approaches to this problem: using image
warping, or using multiple textures. The former
corresponds closely to image-based rendering [Chen93]
and plenoptic modeling [McMillan95, Mark97]. This
approach uses depth information at each pixel to warp an
image to a new viewpoint. Algorithms to re-project the
images and resolve changes in the visibility of the pixels
are the subject of current research. This method also does
not take advantage of standard rendering hardware, thus
we chose to sample the geometry behind a portal from
multiple viewpoints. In the models that we have
encountered, we have found the use of multiple portal
textures to produce decent overall image quality. We
sacrifice a controlled amount of image quality for
performance.
There are various possible methods for selecting the
portal texture viewpoints. We have classified these
methods into three categories:

• Model independent viewpoints: define a regularly
spaced set of viewpoints spanning the space on the
front side of a portal (Figure 3a) without regard to
particular model characteristics.

• Model dependent viewpoints: define a subset of
viewpoints that do not necessarily span the entire
front side of a portal. This approach requires some
knowledge about model characteristics, such as the
typical portal viewing directions. For example,
consider a hallway with a portal to a connecting
room. The portal will typically only be viewed from
acute angles. By the time the viewpoint is in front of

Figure 1: Portal Culling - The cell shown in
dark gray is the view cell. Those shown in
lighter gray are potentially visible and must
be rendered.

Figure 2: Portal Texture - only the view cell
needs to be rendered. The portal (shown in
black) is rendered as a single textured
polygon.

 3

the portal, the portal will need to be rendered using
geometry (Figure 3b).

• Single viewpoint: a single viewpoint, usually facing
the portal. This method is economical and works
well when the possible or likely view directions to
the portal are restricted.

In general, model-dependent viewpoints produce better
results than model-independent viewpoints because they
take advantage of the user's domain knowledge of the
model to reduce the number of textures.
At run-time, we choose the portal texture that most
closely represents the view of the geometry behind the
portal from the current viewpoint. As the viewpoint
moves, we continuously switch to the best texture. This
generates a visual effect commonly known as popping.
By increasing the number of textures, we can control the
extent of the popping.
We have experimented with blending portal textures but
have not found the results to be visually pleasing.

2.3 Texture Creation Strategies
We've discussed strategies for selecting portal texture
viewpoints. Another question is when to render the
textures. If we decide to use a small number of portal
textures, it's probably best to render all of them at start
up. However, if we prefer to use many textures in order to
improve image quality, we may not be able to render
them all at start up. The next simplest strategy is to
render portal textures as they are needed, and cache them
for reuse.
Rendering portal textures on demand works quite well
for the common application of architectural
walkthroughs. In practice, users don't fly quickly through
the model. They usually go to a room and examine an

area in detail before proceeding to another portion of the
model. Demand rendering of textures will result in
slower performance when the user first enters a cell.
However, as the user works in an area, that area will
"sweeten" and performance will increase. This is
analogous to the use of a cache to take advantage of
locality.

2.4 Smooth Transition Strategies
The single portal-texture case, when only one texture is
used to represent the portal from all directions, is very
interesting because of its low cost. Unfortunately, this
case may result in a very noticeable transition from
texture to geometry (or vice versa). This is one of the
worst examples of popping. We can eliminate this abrupt
transition by smoothly warping the geometry represented
by the portal texture from its current incorrectly projected
position to its correctly projected position (or vice versa).
This morphing strategy [Aliaga96] is very effective and
may be accomplished at very low cost (the mathematics
of the warp will be explained in Section 3.3). This warp
can be efficiently implemented using the graphics
hardware matrix stack.
We can also use the morphing strategy to ease the
transition to or from geometry even when using multiple
portal textures. Although it is less important in this case,
since the computational cost is minimal, it is worthwhile.

3. Portal Textures
In this section, we describe the algorithms we chose for
the portal textures system. First, we detail our texture
viewpoint selection strategy. Afterwards, we explain our
morphing algorithm more precisely.

Figure 3: (a) Model-independent and (b) model-dependent viewpoints for portal P. In this case, since we
expect to represent the portal as geometry by the time we arrive at location A, it is advantageous to only
render portal textures from the most likely view locations in area B and C.

P P

AB C

(a) (b)

 4

3.1 Overall Algorithm
Our system replaces geometry behind portals with portal
textures sampled from a constrained set of model
dependent viewpoints. We smoothly change from
rendering the portal texture to geometry (and vice versa)
by warping the geometry from its projected position (on
the portal texture) to the correct projection for the current
viewpoint. The geometric warping is particularly useful if
we wish to reduce overall texture memory use by using
only a single texture per portal.

3.2 Constrained Model Dependent Sampling
When visualizing architectural models, we typically walk
at about the same height (although we perhaps change
“floors”). Without loss of generality, we assume that our
head movement is typically left/right and
forward/backward. We may also gaze up or down at any
time. This reduces the number of necessary textures. For
each portal, we allow the modeler to define a set of
viewpoints constrained to lie on a semicircle of some
radius on the front-side of the portal. We assume that
portals are typically perpendicular to the “floor” of the
model and thus fix the semicircle to lie at some typical
viewing height for each portal (Figure 4).
For each portal of the model, we need to define (or
assume reasonable default) values for the following
parameters:
(a) Viewing Height: the typical viewing height of the
portal.
(b) Sampling Distance: the radius of the constraining
semicircle from the portal.

(c) Transition Distance: the distance from the portal at
which to perform a portal texture to geometry transition
(or vice versa).
(d) Viewing Angles: the set of points on the semicircle to
use as texture viewpoints. We have found the use of
multiple disjoint angular spans of equally spaced
viewpoints to yield good results.

3.3 Morphing
In order to perform a smooth portal texture to geometry
transition (or vice versa), we need to smoothly re-project
the geometry behind the portal from its projected position
on the texture to its correct position [Aliaga96]. This
warp corresponds to an inferred perspective warp
[Wolberg90]. In addition, the transformation must be set
up so that z-buffering works properly.
Setup
A portal texture corresponds to an image of the model
seen through a portal, defined by four vertices v0-v3 and a
sample point pa. We denote this viewing frustum
projection by [v0-v3, pa]. In general, when we wish to
return the cells behind the portal to geometry, our current
viewpoint will be at some point pb. We need to smoothly
re-project the geometry over the next several (e.g., five)
frames, from the projection [v0-v3, pa] to the projection
[v0-v3, pb]. This implies that, despite having our eye at
point pb, we need to project the geometry onto the portal
plane as if we were at some position between pa and pb.
Thus, we re-project the geometry using the interpolated
view frustum [v0-v3, pi] where pi is a point along the line
segment pa-pb. Then, we use an inferred perspective
transformation to warp the projection plane, defined by
frustum [v0-v3, pi], to appear as if it were seen from the
current viewpoint pb.
The current frustum, [v0-v3, pb], can be expressed using a
model-space transformation Mb and a projection Pb.
Similarly, the interpolated frustum can be defined by a
model-space transformation Mi. and a projection Pi. The
final (warped) frustum is defined by Mw = PiMi. and Pw
= Wib, where Wib is the perspective warp from pi to pb.
This sequence of transformations is illustrated in Figure
5.
To construct the warp matrix Wib, we employ a four-
corner mapping (assuming planar quadrilaterals). We
project the vertices v0-v3 using PiMi and PbMb and use
their projected positions to construct the four corner
mapping.
Proper Occlusion
In order to resolve occlusion properly, we must set up the
matrix Wib so that the final transformation matrix will
produce z-values that correspond to the projection onto
[v0-v3, pi]. In essence, we wish to transform the x and y

Figure 4: Constrained portal texture
viewpoints lying on a semicircle in front of
the portal at eye height.

 5

coordinates and pass the original projected z-value
through the warp unaffected (at least until the
homogeneous divide). We can accomplish this by placing
the nine coefficients of the warp matrix as follows:



















ihg

fed
cba

0
0100

0
0

4. Implementation
We implemented the portal-textures system on a Silicon
Graphics Onyx (250 MHz R4400, 2GB main memory)
with Infinite Reality graphics (containing 64MB of
texture memory) and on an Indigo2 (250 MHz R4400,
128MB memory) with Max Impact graphics (and 4MB of
texture memory). The system is coded in C++, uses the
OpenGL graphics library, and employs a user-
configurable amount of host memory and texture
memory.
At run-time, the system renders the portal textures to
host memory, and loads the textures into the texture
memory of the graphics accelerator as needed (using the
texture binding and copy commands of OpenGL). For
simplicity, all textures are 256x256 pixels in size and 8
bits per color component. If there is no free space in the
texture memory, we replace older portal textures that are
no longer in view. To decide which textures in
accelerator memory to replace, we use a simple working-
set algorithm. Portal textures are usually computed on

demand, although they could instead be computed at start
up.
The contents of each cell are maintained as a collection
of geometric primitives organized in a spatial
partitioning tree (an octree). When a cell is flagged as
visible, its contents are culled to the current frustum and
rendered. Portals are culled to the current frustum using
their screen-space bounding rectangle.
The overall visibility-determination algorithm is
summarized by the following pseudo-code (the top-level
function is assumed to be initially called with the view
cell and the view frustum):

Visibility(cell, frustum) {
Mark cell visible
Cull cell to frustum
Foreach portal {

Cull portal to frustum
if (portal is visible) {

if (portal in transition)
Initialize transition

else if (portal is texture)
Choose best texture sample

else if (portal is geometry)
Visibility(portal’s adjacent cell,

culled frustum)
}

if (portal in transition) {
Next transition step
if (portal->texture finished)

Choose best texture sample
if (texture->portal finished)

Visibility(portal’s adjacent cell,
culled frustum)

}
}

}

5. Results

5.1 Performance
We tested our system using two architectural models. The
first model, named Brooks House (Color plates 1-5), is
that of a large one-story house modeled using 528,000
polygons. The second model, the Haunted House (Color
plates 6-7), is of a two-story house and consists of
214,000 polygons. Both of these models have been
divided into cells and portals. The more complex Brooks
House has 19 cells and 52 portals, while the Haunted
House has 7 cells and 12 portals.
We traversed a path through each model and recorded
the number of primitives rendered per frame as well as
the overall frame time (Figures 6 through 9) using (a)
view-frustum culling [Clark76], (b) portal culling, and
(c) portal-texture culling. For these experiments, we
created portal textures for every degree, over viewing
directions ranging from 30 to 120 degrees in front of the

Figure 5: Sequence of transformations for
morphing geometry. We first project along di

onto the plane of the portal (PiMi). We then
re-project from pi to pb (Wib).

pa
pb

pi

di

pa
pb

pi

db

v0

v1

v2
v3

v0
v1

v2

v3

PiMi

Wib

PbMb

 6

portals, and pre-computed the textures (the next section
has some observations about the cost of portal texture
rendering).
The Brooks House model was rendered on an Onyx with
Infinite Reality graphics hardware. Figures 6 and 7 show
the number of polygons rendered and frame time,
respectively. We achieved an overall speedup of 3.3 with
portal textures vs. portal culling and of 4.6 vs. view-
frustum culling. The Haunted House model was rendered
on an Indigo2 with Max Impact graphics hardware. The
results are plotted in Figures 8 and 9. Speedups were 2.6
for portal textures over portal culling and 4.3 for portal
textures over view-frustum culling. Typically, one to
three portal textures are rendered in each frame.
Notice how the large variations in rendering performance
have been significantly reduced. This is due primarily to
the fact that a texture can be rendered in time

independent of the complexity of the geometry it
represents. However, computing textures on demand may
also introduce some longer frame times.
5.2 Portal Texture Creation
What if we decide to compute portal textures on demand?
Figure 10 shows frame rate with textures always
computed on demand (a "cold cache") and sampling
ranges of one and ten degrees per portal texture. We used
the Brooks House model and the same path used for the
results described in the previous section. Here the overall
speedups are 1.8 for the finely sampled case and 2.8 for
the coarsely sampled rendering.
Although the performance was still quite good, we have
lost the very steady frame rate that we achieved with the
pre-computed portal textures. In fact, we sometimes
peaked above the portal-culling case because some scenes
in the model forced us to render textures for several

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 50 100 150 200 250 300 350 400
Frame

R
en

de
rin

g
Ti

m
e

(s
ec

.)

View Frustum Culling

Portal Culling

Portal Textures

Figure 9: Frame times of the Haunted House
model on an Indigo2 with Max Impact
graphics accelerator.

Figure 8: Number of polygons rendered for the
Haunted House model using view-frustum
culling, portal culling, and the portal textures
system.

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400
Frame

Po
ly

go
ns

 R
en

de
re

d
(x

 1
00

0)

View Frustum Culling
Portal Culling
Portal Texture

Figure 6: Number of polygons rendered for
the Brooks House model using traditional
view-frustum culling, portal culling, and the
portal textures system.

0

50

100

150

200

250

300

350

400

0 50 100 150 200
Frame

Po
ly

go
ns

 R
en

de
re

d
(x

 1
00

0)
View Frustum Culling
Portal Culling
Portal Textures

Figure 7: Frame times of the same path on the
Brooks House model using view-frustum
culling, portal culling, and the portal textures
system.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 50 100 150 200
Frame

R
en

de
rin

g
Ti

m
e

(s
ec

.)

View Frustum Culling
Portal Culling
Portal Textures

 7

rooms in one frame (a room visible in a doorway that was
visible in another doorway, etc). However, in general we
expect that our performance will be bounded by the
geometry rendered using only portal culling, plus some
extra overhead.
Computing portal textures on demand is a good strategy
if the typical use of the walkthrough program is to
examine areas of the model in detail. Although the frame
rate may be low when we first enter a room, it will get
better as we stay in that room.

5.3 The Single Portal-Texture Case
The use of a single portal texture per portal gives us the
best and steadiest performance, albeit with lowest image
fidelity. However, we have observed that with morphing
at transitions, the user feels very comfortable interacting
with the model. Since it is trivial to pre-compute all of
the portal textures when loading a model, variations in
frame rate are small. This is the best choice for a tight
rendering budget.

5.4 Image Quality
Increased performance is achieved at the expense of some
image quality. In general, a greater number of textures,
together with properly configured portal parameters and
the use of morphing, will improve the image quality. In
our video, we show the image quality produced by
varying the number of textures. One texture per degree
gives excellent quality but may be too expensive for some
applications.
The amount of texture memory on the graphics
accelerator has not proven to be a problem since we only
needed one to three textures per frame, and the cost of

texture replacement is quite low. We have timed the
texture-paging rate of our SGIs. On our Onyx/IR, we can
page a 256x256 texture from host to texture memory in
~1.8 milliseconds. Our Indigo2/Max Impact pages the
same size texture in ~2.2 milliseconds. Thus our texture
memory and texture paging requirements are well within
reason.

6. Future Work
The extensions of most immediate benefit to this system
are those that might automatically compute the best
portal viewpoints and view directions to use for creating
the textures. Perhaps through the use of exact cell and
portal visibility calculations [Airey90, Teller91], we
could locate areas of the model from which each portal is
visible and sample only from those areas.
Once we gather more experience with portal textures, we
may decide to reduce the constraint that texture
viewpoints must lie on a single semicircle. Perhaps
modelers will wish to have more freedom to place texture
viewpoint locations. An interactive portal-texture
placement program would be useful.
At the moment, we are not taking advantage of idle time
to render portal textures that may be needed in the future.
We could enhance the system to perform incremental
rendering in one of several ways. The easiest would be to
pre-render the portal textures nearest to our current
viewpoint whenever the graphics system is idle (e.g.,
when the user is not moving). An approach that would
give better performance even when moving, is to assign a
portion of each frame time to the rendering of future
portal textures. We could perhaps use a simple prediction
of the next several viewpoints in order to determine the
best set of textures to pre-render.
The portal-textures approach is best suited to diffuse
environments. This has not been a problem in practice
because models for architectural walkthroughs are
typically pre-illuminated using radiosity methods.
However, if we wish to add specular effects, we may be
able to store additional parameters, such as surface
normals, at each texel and defer shading [Lastra95].
Finally, we could look to plenoptic warping
[McMillan95] in an effort to eliminate popping while
also reducing texture memory usage. To make this
practical would require specialized hardware.

7. Conclusions
We have demonstrated the benefits of using portal
textures. This approach allows us to reduce the rendering
complexity principally to that of the cell containing the
viewpoint. The adjacent cells, visible through the portals,
are represented by textures. For models where the use of

Figure 10: Cold-cache frame times for the
Brooks House model using one portal texture
sample for every 10 degrees vs. one portal
texture per degree.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 20 40 60 80 100 120 140 160 180 200

Frame

R
en

de
rin

g
Ti

m
e

(s
ec

.)

1 Degrees

10 Degree

 8

portals is advantageous, portal textures increase
performance by a constant factor, based on the number of
frames a texture can be reused. Improvement is especially
good when long sequences of portals are present.
We have shown two cases, one where a number of portal
textures are stored (in host or texture memory) for each
portal and another where only a single portal texture is
stored. Morphing can be used to eliminate the visual
popping effect at portal texture to geometry transitions.
Using multiple portal textures can trade off quality for
speed. The single portal-texture case is especially
interesting because (using trivial pre-computation) it
dampens the fluctuations in frame time that occur when
several rooms become suddenly visible through
doorways.

8. Acknowledgments
We are greatly indebted to Dave Luebke for many fruitful
discussions about the portals system. We would also like
to thank the Ultra64/Nintendo64 SGI Team for the
opportunity to try out portal textures on their hardware.
Furthermore, we would like to thank Leonard McMillan
for his insights regarding re-projections. In addition, we
are also grateful to the many late night inhabitants of the
graphics lab.
The Brooks House model is courtesy of many generations
of students and members of the UNC Walkthrough team.
The Haunted House model was created by Dave Luebke
and Mike Goslin.
This research was supported in part by the Defense
Advanced Research Projects Agency, ISTO Order No.
A410 and DABT63-93-C-0048 ("Enabling Technologies
and Application Demonstrations for Synthetic
Environments"), the National Science Foundation, Grant
No. MIP-9306208, and a University of North Carolina
Dissertation Fellowship.

References
[Airey90] John Airey, John Rohlf and Frederick Brooks.
“Towards Image Realism with Interactive Update Rates
in Complex Virtual Building Environments”, Symp. on
Interactive 3D Graphics, 41-50, 1990.
[Aliaga96] Daniel G. Aliaga. "Visualization of Complex
Models Using Dynamic Texture-Based Simplification",
IEEE Visualization ‘96, 101-106, 1996.
[Chen93] Shenchang Eric Chen and Lance Williams,
"View Interpolation for Image Synthesis", SIGGRAPH
93, 279-288, 1993.
[Clark76] James Clark, "Hierarchical Geometric Models
for Visible Surface Algorithms", CACM, 19 (10), 547 -
554, October 1976.

[Lastra95] Anselmo Lastra, Steven Molnar, Marc Olano
and Yulan Wang, "Real-Time Programmable Shading",
Proc. Symp. on Interactive 3D Graphics, 59-66, 1995.
[Luebke95] David Luebke and Chris Georges, "Portals
and Mirrors: Simple, Fast Evaluation of Potentially
Visible Sets", Proc. Symp. on Interactive 3D Graphics,
105-106, 1995.
[Maciel95] Paulo Maciel and Peter Shirley, “Visual
Navigation of Large Environments Using Textured
Clusters”, Symp. on Interactive 3D Graphics, pp. 95-102,
1995.
[McMillan95] Leonard McMillan and Gary Bishop,
"Plenoptic Modeling: An Image-Based Rendering
System", SIGGRAPH 95, 39-46, 1995.
[Mark97] William R. Mark, Leonard McMillan and Gary
Bishop, "Post-Rendering 3D Warping", Symp. on
Interactive 3D Graphics, 7-16, 1997.
[Schaufler96] Gernot Schaufler and Wolfgang
Sturtzlinger, "A Three Dimensional Image Cache for
Virtual Reality", Eurographics '96, 227-235, 1996.
[Shade96] Jonathan Shade, Dani Lischinski, David H.
Salesin, Tony DeRose and John Snyder, "Hierarchical
Image Caching for Accelerated Walkthroughs of
Complex Environments", SIGGRAPH 96, 75-82, 1996.
[Teller91] Seth Teller and Carlo H. Séquin, “Visibility
Preprocessing For Interactive Walkthroughs”,
SIGGRAPH 91, 61-69, 1991.
[Wolberg90] George Wolberg, Digital Image Warping,
IEEE Computer Society Press, Los Alamitos, California,
1990.

 9

Color Figure 2: Wireframe of Brooks House.
The three portal textures are outlined in white.

Color Figure 3: View-frustum
culling. Blue boxes represent
rendered octtree nodes.

Color Figure 4: Portal culling. Each
cell's rendered octtree nodes are
shown in a different color.

Color Figure 5: Portal Textures.
Only the cell containing the
viewpoint needs to be rendered.

Color Figure 6: View of Haunted House. Two
portals have been replaced with textures.

Color Figure 7: Wireframe view of Haunted House.
Two portal textures are clearly visible (right portal
is a dark stairway).

Color Figure 1: View of Brooks House. The
three portals have been replaced with textures.

