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ABSTRACT 
We present Build-by-Number, a technique for quickly designing 
architectural structures that can be rendered photorealistically at 
interactive rates. We combine image-based capturing and 
rendering with procedural modeling techniques to allow the 
creation of novel structures in the style of real-world structures. 
Starting with a simple model recovered from a sparse image set, 
the model is divided into feature regions, such as doorways, 
windows, and brick. These feature regions essentially comprise a 
mapping from model space to image space, and can be 
recombined to texture a novel model. Procedural rules for the 
growth and reorganization of the model are automatically derived 
to allow for very fast editing and design. Further, the redundancies 
marked by the feature labeling can be used to perform automatic 
occlusion replacement and color equalization in the finished 
scene, which is rendered using view-dependent texture mapping 
on standard graphics hardware. Results using four captured scenes 
show that a great variety of novel structures can be created very 
quickly once a captured scene is available, and rendered with a 
degree of realism comparable to the original scene. 

CR Categories and Subject Descriptors: I.3 Computer 
Graphics, I.3.2 Graphics Systems, I.3.5 Computational Geometry 
and Object Modeling, I.3.6 Methodology and Techniques, I.3.7 
Three-Dimensional Graphics and Realism, I.4.8 Scene Analysis. 

1 INTRODUCTION 
Researchers have achieved impressive results in creating  realistic 
3D environments as well as reconstructing real-world 
environments. Computer-aided design (CAD) programs allow 
precise design and high-quality rendering of three dimensional 
virtual scenes. More recently, image-based capturing and 

rendering techniques have made the rendering of real-world 3D 
environments possible in a more automated fashion. In the case of 
architecture, procedural modeling approaches have been 
developed that allow buildings to be quickly generated and 
rendered based on a set of simple design principles. We seek to 
merge these paradigms to allow for the fast design of architectural 
structures that can be rendered realistically at interactive rates. 

Each scene creation paradigm mentioned above offers specific 
advantages, but fails to offer a complete solution to our goal when 
taken alone. Using only a traditional modeling approach lends 
great control and flexibility to the designer but requires a high 
level of expertise and great amount of effort to achieve high-
quality renderings. A real-world capture approach offers 
immediate realism and often requires less expertise on the part of 
the user, but typically does not offer a convenient way to create 
novel scene content. Procedural modeling enables very fast design 
time, but requires the availability of a pre-existing database of 
scene rules and features. We propose a system that offers the 
flexibility of traditional modeling, the immediate realism of real-
world capture, and the automation of procedural modeling without 
requiring a high degree of expertise on the part of the user. Such a 
system can ultimately be employed to quickly generate diverse, 
high quality content for large urban models based on only a few 
captured buildings. The urban visualization can then be used for 
city planning purposes, simulation and training exercises, or 
interactive entertainment. 

Our approach is to use building features taken from real-world 
capture scenes to create novel architectural scenes (Figure 1). A 
model recovered from a sparse set of images is subdivided and 
grouped into feature regions that can be rearranged to texture a 
novel model in the style of the original. The redundancy found in 
architecture is used to derive procedural rules describing the 
organization of the original building, which can then be used to 
automate the subdivision and texturing of a novel building. This 
redundancy can also be used to automatically fill occluded and 
poorly sampled areas of the image set, as well as to equalize the 
color and lighting between images and surfaces of the model. The 
novel scene is rendered using view-dependent texture mapping, 
with a degree of realism comparable to that of the original scene. 
The complete system is implemented using a standard PC and 
digital camera, and requires only a moderate degree of modeling 
knowledge on the part of the user. 

Figure 1. Build-by-Number. A user can reconstruct existing architectural scenes and reuse the acquired data to design and render novel 
scenes. (a) A rendering of a real-world capture building. (b) The building subdivided into features. (c) A novel model subdivided according 
to the scheme in b. (d) A rendering of the novel building based on the image data from a. 

a) b) c) d) 
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The Build-by-Number system offers the following main 
contributions: 
• A method for quickly designing and editing novel 

architectural structures based upon image and model data 
from a captured scene. 

• A method of grammar induction from a captured model 
that can then be used to automatically apply texture to a 
novel model in the style of the original. 

• A method for automatically filling regions of unsampled 
and occluded data in the image set of an architectural 
scene. 

The remainder of this paper is divided into five sections. 
Section 2 discusses related work. Section 3 describes the 
modeling specification used by the Build-by-Number system and 
the way in which procedural rules for growth and reorganization 
can be derived. Section 4 discusses the techniques that are used to 
render a finished model, including the removal of occlusions and 
a color equalization method. Section 5 covers implementation 
details of the system. Section 6 discusses results from four 
captured scenes. Finally, section 7 offers conclusions and ideas 
for future work. 

2 RELATED WORK 
The by-number concept originates in the 1950’s with Paint-by-
Number, which allowed unskilled hobbyists to create attractive 
paintings by filling in numbered regions of a pre-made canvas. 
Hertzmann, et. al., extended the concept to digital imaging with 
Texture-by-Number [1], in which a source image and color coding 
were combined with a target color coding to produce a high 
quality image analogous to the source. Build-by-Number extends 
this concept into three dimensions. 

Procedural modeling refers to the specification of a model 
using a set of principles as defined by a grammar. Procedural 
modeling is most useful for creating models of objects or systems 
that have a high degree of redundancy or self-similarity. Most 
notably, L-systems have been successful in the modeling of plants 
[2], and have been used for automatic city and building generation 
[3]. Shape grammars [4], which define rules for the specification 
and transformation of 2D and 3D shapes, have also been used to 
model architecture. Wonka, et. al. [5] employ a variation on the 
shape grammar called a split grammar in order to automatically 
generate architecture from a database of rules and attributes. 
While these methods provide a means for quickly creating 
architecture, they do not address the problem of populating the 
database of building features available for rendering. Parish and 
Muller [3] define procedural rules for creating basic building 
features (e.g., brick patterns), but complex decorative features and 
textures still require manual modeling or painting. While Wonka 
et al. specifically point out that real-world capture techniques are 
inherently limited to reconstruction tasks, we propose that a 
system such as Build-by-Number is well suited for use in 
generating novel buildings, and requires less expertise than 
manual modeling or hand texturing to yield good results. 

Photogrammetric modeling refers to the process of recovering 
the dimensions of a 3D model from a set of photographs. While it 
is a goal in the field of computer vision to recover this information 
automatically, currently the most robust systems require user 
input in the form of correspondence data and proxy models. 
Facade [6] has served as the prototype for several commercial 
packages [7], [8], [9] and is a good starting point for the Build-by-
Number system. In the currently available systems, however, the 
flexibility made available by the modeling approach does not 
translate into flexibility in novel design because there is no 

convenient way to map the image data of a real-world scene to the 
geometry of a novel scene. Build-by-Number adds the concept of 
subdivision and labeling to the modeling approach in order to 
provide such a mapping. This in turn allows a procedural 
approach to be taken when modifying or creating novel buildings.  

Image-based rendering (IBR) is a partner of capture techniques 
like photogrammetric modeling. Using photographs as data for 
coloring the objects in a rendered scene is advantageous because a 
high level of detail and realism is instantly available that would 
otherwise be difficult to reproduce. View-dependent texture 
mapping (VDTM) [6],[10] is particularly well suited for modern 
graphics hardware, but there is a major limitation to this method 
when applied directly to the source images. In many cases, there 
is an object in the scene covering another object in one or more 
images. A solution to this occlusion problem must somehow 
approximate the color data for the occluded object in a visually 
acceptable way. 

Current image-based rendering systems use a variety of 
methods to solve the occlusion problem. For example, occluded 
pixels can simply be discarded and replaced with unoccluded data 
from another view. This will fail, however, if the occluding object 
is close to the surface and therefore occludes it in several views. 
Unsampled pixels could be filled by interpolating between the 
surrounding pixels [11], but this is successful only for small 
regions. Entire faces from one part of the model can be repeated 
or mirrored onto occluded faces [9], but this assumes an 
unreasonable degree of redundancy in the scene. Finally, the 
image can be manually edited to remove occluding objects using 
3D image editing tools [12], but skilled manual editing is clearly 
undesirable. Build-by-Number takes advantage of the subdivision 
scheme from the modeling phase and the redundant structure 
inherent in architecture to provide a method for filling in regions 
of unsampled data. This leads to a much more robust capture and 
visualization system. 

Finally, several commercial packages [13],[14],[15] are 
currently in use that semi-automatically generate 3D city models 
using aerial photographs, available geographical information 
systems (GIS) data, generic texture libraries, and 
photogrammetrically captured buildings. Since it is too costly to 
perform a detailed capture for every building in a given area, the 
majority of buildings must be generated automatically. This leads 
to a noticeable visual difference between fully captured and 
generically textured buildings. Our approach offers a sophisticated 
way to quickly generate novel buildings based on the styles of the 
surrounding buildings, thus yielding richer visualization. 

3 BUILD-BY-NUMBER MODELING 
The Build-by-Number modeling system provides a graphical user 
interface to guide the user through the one-time task of capturing 

Figure 2. Model Specification. A Build-by-Number model is 
composed of a collection of geometric solids. (a) One image 
from a captured image set. (b) A model approximating the 
geometry of the pictured building. 

a) b) 



a new building and then providing the tools to allow very fast 
creation and editing of novel buildings in the style of the original. 
Similarly to other photogrammetric modeling packages, the user 
must take photographs of the desired building, create a coarse 
geometric model, mark edge correspondences between the model 
and photos, and mark occluded faces in each image. In addition to 
these standard tasks, the user must also subdivide the model and 
place similar features into groups. The system will then 
automatically recover the model dimensions and camera poses, 
fill regions of unsampled and occluded data, equalize color and 
shading between images, derive rules describing building 
structure, and apply the design of one model onto newly created 
models. 

This section describes the underlying framework of the Build-
by-Number modeling system and how it is used to achieve the 
goals of automation. First, the modeling specification is discussed, 
including the primitives used and operations that can be applied. 
This is followed by a description of the automatic grammar 
induction system and how it is applied to texture the surface of a 
novel model. 

3.1 Model Specification 
A Build-by-Number model is a collection of three dimensional 
geometric solids called building blocks (Figure 2). The blocks are 
organized into a scene graph describing the spatial relationships 
between them. Each node of the graph contains a block, and each 
edge of the graph represents a transform specifying the position 
and orientation of a block relative to its parent or child. Each 
block is composed of a small set of vertices and a simple 
geometrical structure (e.g., box, cylinder, pyramid, etc.). 

Each property of the scene graph, i.e. the block dimensions and 
transforms, is composed of algebraic expressions. These 
expressions can be simple constants or can combine several free 
parameters. For example, if the user knows that the building being 
captured is twice as wide as it is deep, the user can specify the 
width and depth using only a single free parameter instead of two. 
This helps to ensure the robustness of the model recovery as well 
as ensure its accuracy. The model will be recovered by 
minimizing an error function over the free parameters of the scene 
(see Implementation Details). 

A Build-by-Number model supports two types of operations. 
An attachment operation between two blocks constrains their 
relative positions such that a specified face from each remains 
coplanar with the other. Attachment provides the system with 
block and surface connectivity information that would otherwise 
be difficult to determine. In addition to attachments, the system 
supports subdivision operations. A block subdivision is the 
decomposition of a block by a set of planes, resulting in a new 
collection of smaller blocks called sub-blocks. A surface 
subdivision is the decomposition of a block face by a set of edges 
into rows and columns, resulting in a grid of smaller faces called 
subfaces. 

Figure 3 shows a subdivision and labeling scheme for an 
example building. Block subdivision is performed to divide the 
building into floors. Surface subdivision is used to divide the 
building facade into labeled feature groups representing brick, 
trim, windows, and entries. In addition, it is necessary to indicate 
whether each feature group is of a fixed size. For example, 
windows, door, and trim are of fixed sized, while brick regions are 
not fixed in size. This tells the system that the brick should be 
tiled or cropped on a novel face, while the windows and doors 
should remain the same size. 

3.2 Design Schemas 
A properly subdivided model provides information that can be 
used to automatically detect patterns in the structure of the 
captured building. Build-by-Number detects these structural 
features on several levels of abstraction - the face, the floor, and 
the entire model - in order to replicate the style of the captured 
building onto a novel model. Each schema comprises a set of 
symbolic rules describing the basic ways in which an element can 
grow or be replicated, along with geometric rules of application. 

3.2.1 Face Schema 
A face schema is a procedural description of a face F, including 
its symbolic growth rule and its geometric properties. A novel 
face F' of arbitrary size can be textured with the image data from 
F by applying this schema. The symbolic rule determines the 
manner in which features will be replicated, while the geometric 
information is used to determine precisely how many repetitions 
of each feature to add to the novel face. 

A rewrite rule R for a face F is a grammar production 
containing symbols that represent individual column subdivisions 
of F. Identical columns can be combined and marked as 
repeatable elements with the Kleene star. For example, the face in 
Figure 4a-b is subdivided into nine columns and can be 
represented by the string F = C1C2...C9, where Cj is the jth colum. 
The string can then be inspected for identical columns based on its 
feature labeling. As indicated by color, the pictured face has only 
three unique types of columns and can be written F = 
ABCBCBCBA. A possible rewrite rule for this face is R → 
A(BC)*BA. 

In order to detect identical columns within a face, we define an 
equality relation between two columns based on the feature labels 
of their respective subfaces. Let Lij represent the label for the 
subface Fij at row i and column j of F. If Fij is a terminal face (one 
with no further subdivisions), then Lij is the user-marked feature 
label. If Fij is further subdivided, then Lij represents the rewrite 
rule for Fij. Two rewrite rules are considered equivalent if their 
respective strings are equivalent. We therefore take two columns 
Ca = L1aL2a...Lma and Cb = L1bL2b...Lmb to be identical if Lia = Lib 
for all i, 1 ≤ i ≤ m. 

The column equality relation can be used to derive a rewrite 
rule for any face. Although there are several ways to combine 
repeating elements, our method is based on the observation that 
repetitions of the form AB are typically more visually interesting 
than those of the form AA. We have also found that combining 
more than two symbols into a repeating element imposes 
unnecessary restrictions on the structure of the face. Based on 
these observations, we devise the following recursive algorithm to 
determine the rewrite rule for face F: 

Figure 3. Model Subdivision. The model is subdivided into 
features. (a) 3D subdivision into floors. (b) 2D subdivision into 
doors, windows, trim, and brick. 

a) b) 



 

Some typical derivations are listed below: 

 

The first example represents a very common and 
straightforward situation. In derivation 2, the repeated pattern AA 
is not merged based on our observation. Otherwise this would 
have resulted in the rule (AA)*B(AA)*B(AA)*, which is likely to 
be much less visually interesting when stretched. While it is 
certainly possible to detect higher-level patterns in derivations 1 
and 2, we have found this to be counterproductive to correctly 
texturing a novel face. Suppose we derived the rule 
(ABA)*B(ABA)* for the first example. This actually goes against 
the alternating AB pattern and would also make the rule less 
flexible by requiring elements of greater width to be squeezed into 
a face of arbitrary size. Also, consider facades of two floors where 
pattern 3 is directly below pattern 1 (C might represent a door, 
while B represents a window). Using a higher-level rule for 
pattern 1 would ruin the vertical coherence between the two floors 
by adding extra instances of column A to the associated floor of a 
novel building. Higher-level structure should therefore be 
imposed by the user through multiple levels of face subdivision. 

We now consider applying a growth rule R of F = C1C2...Cm to 
a novel face F' of arbitrary size. We must determine the number of 
repetitions k1, k2, ..., km of each column, as well as a scale factor s 
for those columns of variable width. We desire the scale factor to 
be as close to one as possible. For each non-repeating column Ci, 
we have ki = 1. We then determine a common multiplier k for all 
repeating columns such that the remaining width is filled as much 
as possible without overflowing. By using this common 
multiplier, we preserve the symmetry and balance of the face 
structure as much as possible. The remaining width of F' is filled 
by adding at most one more repetition of each repeating column. 

The inclusion or exclusion of each column is determined by 
searching through the combinations of repeating columns. The 
combination that yields the scale factor closest to one is chosen. 

Once the column multipliers and scale factor are chosen, the 
texture from F can be tiled onto F'  to render the novel face. Note 
that for subfaces of multiple depth, the texture will be applied 
recursively to each face. Figure 4c shows the results of the 
application of a face schema onto a novel face. It can be seen that 
the novel face rendering remains true to the original and is free of 
artifacts. This is true in most cases as long as there are no severe 
shading gradients, cast shadows, or irregular material such as ivy 
on the surface being replicated. See Section 4 on rendering for 
more details on how the rendering of novel faces is accomplished. 

3.2.2 Floor Schema 
 A floor schema is a description of all of the faces in a single floor 
wrapping around an entire model from block to block (Figure 5). 
This continuous floor surface can be extracted from a model based 
on the attachment relations between blocks. Each floor of a model 
is represented as an undirected cyclic graph containing faces as 
nodes, with each node having a left side and right side edge 
connecting it to its adjacent faces. The angle between adjacent 
faces is recorded at the edge connecting them to provide context 
for the schema application. 

Suppose we have a floor schema comprising the face schemas S 
= {F1, F2, ..., Fm}. We would like to apply this schema to a floor 
of a novel model comprising the faces S' = {F'1, F'2, ..., F'n}. To 
do this, the system must select a schema Fi for each novel face F'j, 
then apply the selected schema to the face as described in the 
previous section. 

The system uses three criteria when determining the fitness of a 
candidate schema for a given novel face. First, the orientation of 
the face and schema in relation to its adjacent faces is considered. 
It is frequently the case that the style of a given face is determined 
by this relationship. For example, an outer corner is likely to have 
trim or decoration, while an inner corner is less likely to. There 
are three types of adjacency – inner corner, outer corner, and flat 
or continuous. Since each face has two adjacencies, this results in 
nine categories of faces. The best candidate schema will match the 
novel face in this respect. Second, the difference between the size 
of a face and the candidate schema are considered. The schema 
that is closer in size is more likely to be appropriate. Third, if two 
or more schemas are appropriate in terms of orientation and size, 
the schema with the least amount of occluded subfaces in the 
source image set is selected. This will minimize the number of 
visual artifacts when the schema is applied to the novel face. 

1. For each subface Fij of F, compute Lij ← rewrite-rule(Fij). 
2. Apply labels to each column Cj = L1jL2j…Lmj of F based on 

the equality relation. 
3. Scan the string and mark each reoccuring pair of the form 

AB (but not AA). 
4. Replace adjacent repeated instances of a marked pair 

with a single instance. 
5. Add the Kleene star to all marked pairs. 

1. ABABABA ⇒  (AB)(AB)(AB)A ⇒  (AB)*A 
2. AABAABAA ⇒  A(AB)A(AB)AA ⇒  A(AB)*A(AB)*AA 
3. ACABABA ⇒  AC(AB)(AB)A ⇒  AC(AB)*A 

Figure 4. Face Schema. Patterns detected in a face’s 
subdivision scheme can be used to texture a novel face of 
different size. (a) A face from a captured building. (b) A 
subdivision scheme for a. (c) The face schema of the original 
face applied to a larger face. 

a) b) 

c) 

Figure 5. Floor Schemas. A model is composed of several 
floor surfaces that wrap around the building exterior. (a) The 
original model. (b) The four floor surfaces of the model. Each 
floor is composed of horizontally connected faces. 

a) b) 



In our sample models, these three criteria were enough to 
correctly apply texture to each face of a novel floor (see Section 
6). 

3.2.3 Model Schema 
A model schema is a complete description of all the floors in a 
model and the connectivity between them. A model schema can 
be employed to texture an entire model in the style of a captured 
model in a single cut-and-paste operation. A directed graph 
contains nodes representing each floor in a model, and edges 
representing the connectivity between floors. In special cases such 
as a breezeway or towers, multiple edges can flow into or out of a 
given floor. Proper floors are separated from base and roof trim by 
determining the elements of roughly equivalent height that occupy 
the middle nodes of the graph. The base, bottom floor, top floor, 
and roof trim are not considered repeating elements, while the 
middle floors are. Figure 5 shows a model with one base floor and 
three proper floors connected vertically. 

To apply a model schema to a collection of connected blocks, 
the blocks are first sorted in order of height. The tallest block will 
be used as the basis block for determining the number of floor 
repetitions. This is computed by determining the multipliers for 
each repeating floor that result in the closest match to the basis 
block height. The block and all its connected blocks are then 
resized and subdivided according to the portions of the model 
schema that matches their vertical positions most closely. After 
subdivision, the floor surface connectivity is updated, and the 
appropriate floor schemas are applied to each floor of the novel 
model. All blocks that are attached to the basis block are marked, 
and the algorithm continues with the remaining blocks, if any. 

Figure 6 shows an immediate application of the model and 
floors schemas. A captured model can be stretched in arbitrary 
directions (compare with Figure 2). In the pictured model, only 
the middle floor is taken as a repeating element. 

4 BUILD-BY-NUMBER RENDERING 
The Build-by-Number system uses view-dependent projective 
texture mapping to render both captured and novel structures. This 
section first discusses the general concept of view-dependent 
texture mapping. We then discuss how Build-by-Number uses the 
concept to texture a novel structure from a captured image set, and 
how this same technique can be used to replace occluded regions 
of the surface in a captured structure. Finally, we discuss some 
simple but effective color processing techniques to remove 
shading from the images before they are used for texture. 

4.1 Rendering Novel Models 
View-dependent texture mapping (VDTM) [10] can be used to 
render a novel model based on the image data and geometry of a 
captured model. Standard VDTM can be implemented efficiently 
by creating a view-map data structure for each polygon P of a 
model. Each source view position is transformed into a coordinate 
space local to P and projected onto the unit sphere or cylinder in 
this space. A lookup function determines the three source views 
closest to the current view during each frame of rendering. These 
views are weighted according to their proximity to the current 
view and can then be blended according to this weighting in order 
to give smooth transitions during animations. 

A polygon P’ in a novel model can be rendered using data from 
polygon P. Suppose P’ receives its texture from P (as set by a 
design schema or the user). P' can be rendered from the current 
view C by using model data from P' and texture data from P 
(Figure 7). In practice, all of the polygons for a single texture will 
be rendered before binding a new texture. 

4.2 Occlusion-Free Rendering 
The view-map of each polygon can be augmented in order to 
accomodate occlusion-free rendering. Instead of containing only a 
view position, each entry in the view-map of polygon P will 
contain a pair (Vi, Pj), where Pj is a polygon belonging to the 
feature group G of P that is visible in view Vi. This way, all of the 
texture data in a group can be considered for inclusion in the 
view-map of any member of the group. Of course it is unwise to 
add every texture to every view-map in the group. We therefore 
define a fitness function view-fitness(P, (Vi, Pj)) to determine the 
similarity between P and its possible replacements. The criteria of 
the function, in order of importance, are as follows: 
• Equality - If P equals Pj, there is a perfect match. 
• Model size - P and Pj should be as close in size as possible 

(as determined by their areas of intersection). 
• Orientation - P and Pj should have the same surface 

orientation (inner corner, outer corner, coninuous). 

Figure 7. Novel Polygon Rendering Algorithm. A novel 
polygon P’ is rendered using image data from polygon P. 

1. Transform C into local view space of P’ as C’ 
2. Lookup views and weights {(w1, V1), (w2, V2), (w3, V3)} 

appropriate to C’ in view-map of P 
3. Set the model transform based on C 
4. For each source view Vi 

a. Set texture transform based on Vi 
b. Bind texture image from Vi 
c. Set blending weight wi 
d. Render texture coordinates from P 
e. Render model coordinates from P’ 

Figure 6. Model Schema. An immediate application of the 
floor and model schemas is to stretch a captured model 
arbitrarily in any direction (compare with Figure 2). 

Figure 8. View-Map Creation Algorithm. The view-map of 
polygon P can be constructed by considering each member of 
the feature group. 

1. Let r be the desired sampling density of the view-map 
2. Create a list LP of pairs (Vi, Pj), where Pj ∈  G, and Pj is 

visible in Vi 
3. Sort LP according to fitness for replacement of P 
4. While LP is not empty 

a. insert the first (best) pair (Vi, Pj) in LP to MP 
b. remove all pairs within a radius r of Vi from LP, except 

those containing P 



• Image size - A larger image footprint of Pj in Vi is 
preferred to eliminate resampling artifacts. 

• Normal - P and Pj ideally share the same normal in order 
to match lighting conditions (lighting problems will be 
mitigated through color equalization). 

Based on this fitness function, the view-map MP of polygon P 
can be constructed by considering each member of the group in 
order of fitness. The best available pair is added to the view-map 
until an adequate sampling is reached. Ideally, adding only those 
pairs that actually contain P will provide adequate coverage 
(Figure 8). 

Even if no single member of the group is sampled from all 
desired angles, it is often possible to obtain a complete rendering 
when the whole group is considered. The quality of the final 
rendering will depend on the similarity between the faces of the 
group. 

4.3 Color and Shading Equalization 
It is far more likely that all faces in a group will be similar if some 
form of color and lighting equalization is performed between 
them. Given a subdivided model, image equalization is possible 
by comparing the color data from faces of the same group in 
different locations on the model. During subdivision, the user 
marks subfaces that are considered diffuse (usually the surface 
material of the building, such as brick). The user also marks one 
or more of the images as color keys that serve as the target for the 
other images to match. Given this information, the system can 
perform color equalization between different images, as well as 
between different surfaces within each image. 

We have found that a very simple equalization based on color 
channel shifting is effective for our image sets. Since we have a 
subdivided model that is registered with each image, we know the 
feature group membership and surface normal of each pixel in 
each image. Using this information, we first determine the 
average color of each diffuse group from the color key images. 
For each image, the average color of each diffuse group for each 
surface normal is then computed. By averaging the colors for 
different surface normals, we can equalize shading between 
surfaces as well as colors between images. The shift amount for 
each surface in each image is computed as the difference in the 
surface average color and the key average color. 

Figure 9a shows a rendering of a captured building without 
occlusion correction. The trees and bushes obstructing the 
building are textured onto the model surface along with the valid 
data. In Figure 9b, the occluding objects have been removed from 
the surface by using image data from other faces. It is possible to 
see where faces have been taken from surfaces of various shading 

intensity. Figure 9c shows the same rendering with colors and 
shading equalized. It is now more difficult to tell which faces have 
been replaced. 

5 IMPLEMENTATION DETAILS 
Our Build-by-Number system is implemented in C++ on a 3.0 
GHz Dell PC equipped with 1GB memory. The user interface is 
implemented in Windows Forms using Managed C++. All 
graphics functionality is implemented in OpenGL. We use an 
NVidia GeForce FX 5200 graphics card with 128 MB of texture 
memory. High-resolution images from the digital camera are 
typically resampled into 1024x1024x24-bit textures and mip-
mapped to yield high quality rendering from variable distance. 
The user can select alternate texture sizes based on the 
application. Each view also requires a 256x256x16-bit depth map 
for use in projective texture/shadow mapping. We have had no 
problem rendering scenes with up to 20 source images using this 
system. 

Model recovery is performed by minimizing an error function 
between the edges of the model and user-marked edges as in [6]. 
This method has proven very robust and we have implemented it 
exactly as described in the original paper. We perform the 
minimization using an implementation of a nonlinear least squares 
method obtained from the Numerical Recipes in C library [16]. 
While the literature makes note of singularities present when 
performing minimizations involving 3D rotations [17], we found 
no such problems in practice and therefore do not modify the 
minimization algorithm. 

View-dependent texture mapping is implemented using 
OpenGL's projective texture mapping functionality. Alpha 
blending is used to weight each texture's contribution 
appropriately. We use shadow mapping to prevent the image from 
being projected onto back-facing and occluded polygons. Modern 
graphics cards implement this feature very efficiently, though 
extra texture memory is needed to hold the shadow depth map. By 
using shadow mapping, there is a risk of leaving certain areas of 
the model untextured. To prevent this, we precompute face 
visibility and render a third pass using faces we know to be fully 
visible. This pass will not be very expensive as only partially 
occluded faces need be rendered. We ensure only untextured 
fragments are updated by basing the blend function on the 
destination alpha value. 

6 RESULTS 
We have used the Build-by-Number system to create novel 
buildings based on image data from four real-world buildings. 
Statistics regarding the image sets and model composition for 
each building are listed in Table 1. Each capture takes on the 

Figure 9. Occlusion-Free Rendering. The redundancies marked during the subdivision phase can be used to automatically fill areas of 
unsampled and occluded data. (a) An initial rendering of a captured building, occluded by trees, shrubs, and other objects. (b) The same 
building with occlusions removed. (c) Now rendered with color and shading equalization. 

a) b) c)



order of one to three hours to create the model, mark edge 
correspondences, subdivide the model, and mark occluded faces. 
It should be noted that model recovery is still the largest 
bottleneck in the capture process – the addition of a subdivision 
scheme does not add a significant time penalty. Also, it might be 
possible to significantly improve the capture task, but we consider 
this to be a separate problem from our method of novel building 
creation. Once a captured building is available, a novel model can 
in many cases be created in minutes and textured instantly with 
the cut-and-paste operation via the model schema. In other cases, 
the user may want to post-edit the textured model manually. In the 
case of a pre-existing urban model, Build-by-Number could be 
used to completely automate the texturing of each building in the 
model. 

The models in Figures 10-13 demonstrate the Build-by-Number 
process from start to finish. Each figure displays part of an 
original image set, the reconstructed model with occlusions 
removed and colors equalized, and an example novel model. All 
finished models can be viewed in real-time and navigated through 
interactively. In Figures 10 and 11, the novel models were created 
in about 5 to 10 minutes each and textured automatically with a 
single cut-and-paste operation. These models can be further 
stretched or modified by interactively resizing the blocks, with the 
texture being automatically updated in a fraction of a second. 

Figure 11 demonstrates the use of close-up images to fill in 
texture data that can not be obtained from wide angle images. This 
is made possible by the extra edge correspondences made 
available by the subdivision edges on each block face. The camera 
pose for close-up images can be quickly obtained with only a few 
edge correspondences, and take up very little texture memory. 
Adding many close-ups is therefore not very expensive and can 
greatly improve the rendering quality of the final model. 

The novel model in Figure 12 contained floor configurations 
that were not present in the original model (such as a double inner 
corner). The user can still operate quickly and at a suitably high 
level of abstraction by applying face schemas instead of 
individually subdividing and applying labels to each face. 

7 CONCLUSIONS AND FUTURE WORK 
We have presented Build-by-Number, a technique for quickly 

designing and visualizing realistic architectural structures based 
on real-world image data. Our results using four captured models 
show that novel structures can be designed very quickly and are 
rendered with realism comparable to the original images. It was 
also demonstrated that procedural growth rules can in many cases 
be used to automatically texture each novel building in a fraction 
of a second. Further, our occlusion removal and color equalization 
algorithms make it possible to capture even highly occluded 
buildings in varying lighting conditions. All of these are possible 

without a high degree of modeling knowledge or an understanding 
of the underlying mechanisms of the system. These results suggest 
that the Build-by-Number system is a powerful environment 
visualization tool for both non-expert and advanced users. 

The results also make apparent a few limitations to the system. 
First, the texture tiling mechanism may lead to noticeable seams 
on the model when viewed closely. Related to this is a limitation 
on texture memory when very high resolution images are used. 
We therefore conclude that Build-by-Number is probably not 
appropriate for producing a single high-resolution structure. 
Instead, it is more suited for quickly populating a large urban area 
with buildings that are meant to be viewed from a medium 
distance during a fly-through or walk-through. This is in line with 
the intended application of urban visualization, and the realism of 
the models in this context is very high in our sample captures. 

We are already exploring the possible uses of Build-by-Number 
within a larger GIS-based urban visualization system. We are also 
interested in applications of the by-number paradigm to the 
generation and visualization of other types of data such as terrain 
and city features. These could be used to automatically fill 
unavailable regions of real-world GIS data, or to create virtual 
scene data in the style of some existing dataset. As urban datasets 
increase in detail and availability, the demand for complex and 
rich visualizations of this data will also increase. We feel that 
Build-by-Number is a significant contribution toward satisfying 
this demand. 
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 Image Set Model 
Building Wide Close-up Blocks Subfaces 

University 12 4 51 1531 
Engineering 7 8 19 1038 
Music 4 14 15 1006 
Admin 6 4 50 2477 

Table 1. Captured Model Statistics. Each model is made of 
several blocks divided into subfaces. The model is recovered 
using wide angle images, while unsampled data can be filled by 
close-up images. 



 

Figure 10. Music Building. The proximity of the trees and other occluding objects to the pictured 
building makes a straightforward capture impossible. The visible features must be rendered in 
place of the occluded ones. (a-b) Two images from the original image set. (c) An occlusion-free, 
color equalized rendering of the captured model. (d) A novel model textured automatically using 
design schemas. 

Figure 11. Engineering Building. This building required close-up images to circumvent the trees 
occluding the first floor. The extra edge correspondence data due to the subdivision scheme 
makes this possible. (a) Reconstructed model. (b) Automatically textured novel model. (c) Wide 
angle image. (d) Close-up image. 

Figure 12. Administration Building. (a-b) Original images. (c) Occlusion-free, color equalized 
rendering of the captured building. (d) Full rendering of a novel building based on the image 
data. 
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a) 

a) 

b) 

a) 

b) 

c) 
d)

d) 

c) 

Figure 13. Novel Buildings. 
(a-b) Novel buildings created 
based on University building. 
(c) Full rendering based on the 
Engineering building. 
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d) 
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