
 1

Urban Dictionaries:

Modeling and Simplifying City Environments

Daniel G. Aliaga Chris Hoffmann

Department of Computer Science at Purdue University

ABSTRACT

Urban environments are challenging to model because they are both very large and very diverse. The size of the environment
makes capturing the details of every structure prohibitive, leaving us with only sparse information. Photogrammetric recon-
struction attempts to build 3D structures but is often not robust and requires manual input, thus making it difficult to scale to
large areas. Procedural modeling of urban environments provides a means for quickly creating architecture, but it does not
address populating the database of urban features and it does not use real-world information to mimic actual urban areas.
In this paper, we use sparse aerial-based information about an urban environment that is readily available in many towns
and cities. From this information, we isolate a small number of canonical urban structures that can be assembled algorithmi-
cally using only a few simple operations. The result is an approximation of the entire urban environment to within a pre-
specified error threshold of the original data. Unlike synthetic approaches that prescribe a grammar, our task is to discover a
small dictionary of words and associated application rules for an actual urban environment. Once the dictionary and rules
are known, an urban environment in the style of the original can be instantiated. The canonical set of words can be used to
prioritize acquisition efforts, to reduce image data, to compress geometry of the model, to find urban patterns, and to visual-
ize properties of the urban environment.

CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling, I.3.7 [Computer Graph-
ics]: Three-dimensional Graphics and Realism, I.6.3 [Simulation and Modeling]: Applications.

1. Introduction

Modeling and visualizing large urban environments is a
great challenge for computer graphics. Cities are a complex
collection of man-made structures arranged in parcels, city
blocks, and neighborhoods. A digital model of such a large-
scale urban environment enables applications such as urban
interactive walkthroughs, web-based navigation (e.g.,
MapQuest, Google Earth), emergency response training and
simulation, urban planning and modeling, and content crea-
tion for the entertainment market.

Acquiring large urban spaces, on the whole, is a signifi-
cant challenge, involving considerable manual effort and
computational tasks. Dense urban environments are particu-
larly challenging to model because they are both very large
and very widespread, spanning from a few square kilome-
ters to hundreds of square kilometers. The size of the envi-
ronment makes obtaining detailed information of every
structure prohibitive, leaving us with only sparse informa-
tion. Satellite and aerial photographs provide overhead
views of large urban areas, but they do not provide accurate
3D structural data. However, cities and counties do main-
tain limited records of parcel boundaries, basic building
information, and other metadata, such as water pipes, sew-
age systems, etc., that is in digital form and can be used as

a starting point. Extracting streets and building contours
fully automatically is an option, albeit a challenging one.

The 3D modeling of large urban environments has a
significant history in graphics. Procedural modeling speci-
fies a set of terminals and rules for synthesizing urban-like
models [Parish01]. While procedural modeling provides a
means for quickly creating architecture, it does not address
populating the database of urban features and does not use
real-world information to mimic actual urban areas. Geo-
metric models have been obtained from photographs using
3D reconstruction and photogrammetric modeling. While it
is a stated goal to recover the model automatically, the most
robust systems require user input and thus do not scale to
entire cities [Debevec96, Debevec98]. In general, the large
size of urban environments and the difficulty in obtaining
detailed information limit the above modeling techniques.

In this paper, we attack this immense problem by pro-
viding an automatic way to focus resources and obtain in-
formation about the most unique and valuable urban struc-
tures. For a given urban area, we discover a compact hier-
archical dictionary of approximate urban structures and
associated application rules that can simulate the entire
urban environment. Once these rules and the dictionary are
known, a model of the urban environment can be instanti-
ated from this small number of urban structures. As input to
this automated discovery, we are provided with aerial pho-

 2

tographs and parcel boundaries, building contours, and
building heights overlaid on the photographs of a real city.
(Figure 1). The hierarchical dictionary so discovered can
then be used to establish the terminals and rules for proce-
dural modeling; or to rank photogrammetric reconstruction
efforts; or to compress aerial photographs and urban ge-
ometry; or to find urban patterns and classifications.

Our key observation is that large urban environments
exhibit a significant amount of local and global redundancy
despite the individuality in detail. General geometry simpli-
fication exploits local redundancy by collapsing adjacent
elements of geometry [Luebke01]. However, urban models
exhibit both local redundancy (e.g., adjacent houses can be
very similar) and global redundancy (e.g., a house in one
part of a city can be very similar to a house in another dis-
tant part). As we consider even larger urban areas, we could
find even more redundancy. Similar to image quantization
methods and epitomes [Jojic03], we seek to efficiently
exploit this redundancy in order to find a compact hierar-
chy of urban structures for modeling the entire urban envi-
ronment.

Our contributions in this paper include:

• developing a flexible framework to automatically ap-
proximate real cities and generate new ones “in the
style of” other cities;

• articulating new, but natural, operations for identifying
and simplifying structures that are measurably similar;

• proposing a novel metric by which to quantify the
similarity of an approximating city model and to quan-
tify the data reduction accomplished by the algorithm.

2. Related work

The modeling and rendering of large urban of environments
has been addressed in several ways in computer graphics.
Procedural modeling focuses on building synthetic models
of urban-like environments from a set of principles defined
by a grammar. This approach is most useful for creating
models of objects or systems that have a high degree of
redundancy or self-similarity. Most notably, L-systems
have been successful in the modeling of plants [Prus-
inkiewicz91], and have been used for automatic city and
building generation [Parish01]. Shape grammars [Stiny75],

Figure 1. Urban Dictionary. (a) Contains initial aerial data (photographs, contours, parcels, etc.). (b) Identifies compact
clusters of urban structures that best represent all parcels with buildings. (c) Discovered dictionary and its instantiations
are used to replace/reconstruct all parcels with building contours. (d) Illustrates the most unique building/parcel pairs,
the words of the dictionary. This dictionary of words can also be used to seed procedural modeling, ease detailed acquisi-
tion efforts, and compress data.

a) b) c)

d) Unique set of
images/structures

Urban Dictionary

Aerial Data Reconstruction

 3

which define rules for the specification and transformation
of 2D and 3D shapes, have also been used to model archi-
tecture. Wonka et al. [Wonka03] employ a split grammar to
automatically generate architecture from a database of rules
and attributes. The split grammar divides a geometric ob-
ject into feature regions, which are then provided with de-
tailed geometry and material from a database to produce a
final rendering. The user can specify parameters that guide
the choices made by the generation program, allowing for
very fast creation of many variations of a particular build-
ing shape, type, and style. While procedural modeling pro-
vides a means for quickly creating architecture from a small
number of terminals and rules, the data and procedures are
not based on an actual real-world city and do not attempt to
mimic a real world environment.

Photogrammetric reconstruction and image-based mod-
eling and rendering (IBMR) focus on building a representa-
tion of a real model from photographs. Photogrammetric
reconstruction recovers the dimensions of a 3D geometric
model and can map the image data to it [Pollefeys00]. Fa-
cade [Debevec96, Debevec98] has served as the prototype
for several commercial packages [MetaCreations02, Eos05,
RealViz05] that combine photogrammetric reconstruction
with user-assistance. Image-based modeling and rendering
[Max95, McMillan95] is a partner of capture techniques
like photogrammetric modeling, but unlike photogrammet-
ric modeling, an IBMR system directly re-samples photo-
graphs of a static scene to create novel views of the ac-
quired object or small environment [Aliaga03, Buehler01,
Gortler96, Levoy96, Shum99]. Some 3D reconstruction
efforts have focused on large urban environments [Co-
org98]. For instance, Teller et al. [Teller01] use global po-
sitioning satellites in conjunction with an image-based cali-
bration approach tuned to typical building shapes to capture
images spanning a campus-size environment. Unfortu-
nately, these techniques are difficult to extend and scale up
to large environments and the hardware platforms used by
some make their deployment cumbersome in large urban
environments. Their usability would be significantly im-
proved if we could direct our reconstruction efforts to a
suggested subset of the entire urban environment.
In our work, we identify and address a common shortcom-
ing of these two extremes to urban modeling. By discover-
ing an estimate of the local and global redundancy of an
urban environment, we can create a compact hierarchy of
canonical urban structures. These structures can serve to
provide terminals and rules for procedural modeling efforts,

to guide photogrammetric reconstruction efforts, and to
assist in compressing the urban model data.

The inspiration for our work comes from several quanti-
zation and compression methods. In particular, we draw
from the concept of epitomes of images [Jojic03]. The epit-
ome of an image contains the essence of the textural and
shape properties of the image. The size of the epitome is
considerably smaller than the size of the image it repre-
sents. However, it still contains most of the constitutive
elements needed to reconstruct the image and supports
tasks such as image segmentation, motion estimation, and
image editing.

3. Urban Dictionaries

We devise an iterative algorithm that efficiently navigates
through the solution space in order to find a hierarchy of
representative urban structures (e.g., parcels, buildings,
neighborhoods, etc.) from which to approximate a large
urban environment. Starting with initial data given by aerial
photographs and digital information outlining parcels and
basic building shapes, our method establishes a set of
equivalence classes and spatial clusters of representative
structures. By simultaneously merging equivalence classes
and clustering nearby structures, we arrive at a small num-
ber of equivalence classes and at a few clusters that are
compact in size, staying within a user-specified error toler-
ance. A small set of equivalence classes reduces the number
of typical structures necessary to represent and reconstruct
the environment. Spatially-compact clusters of representa-
tive structures facilitate 3D reconstruction efforts and com-
pression methods. The resulting compact hierarchical dic-
tionary can be used to reconstruct the urban model by in-
stantiating copies of these words, yielding a representation
that is more efficient to capture, render, compress and ana-
lyze.

Figure 2. Processing Pipeline. We use an iterative
method that applies instancing and clustering operations,
guided by cost-benefit metrics, to create the dictionary.

Input
Data

Estimate
Similarity

Select
Neighbors

Dictionary

New
Model

Instance

 cost-benefit metric

Cluster

Figure 3. Instancing and Similarity. Global redun-
dancy is exploited by growing bottom-up a hierarchy of
equivalence classes and subsequently instancing from
the tree. In this example, houses (a) and (b) as well as
(c) and (d) are considered very similar to each other
according to our similarity metric. These similarities
are used to form a tree, where (e) is chosen as the best
the overall representative.

a) b)

c) d)

e)

 4

Figure 2 shows our processing pipeline. First, the initial
model is input to the simplification algorithm. Then, cost-
benefit metrics guide class-merging and clustering opera-
tions to converge to a hierarchical representation. This
process also uses metrics that define similarities between
structural elements and methods that establish the
neighborhood of each structural element. Finally, a diction-
ary of words is output as well as a reconstruction of the
urban environment.

3.1 Instancing and Equivalence Classes

We establish equivalence classes of buildings and of group-
ings of buildings. Intuitively, buildings and houses in one
area of a city might be very similar to structures in another,
possibly distant, part. So, each equivalence class combines
similar structures and allows representing the elements in
the class with a single representative structure. In the tree,
the similarity between members of a class increases as you
travel from the root to the leaves, because of compounding
similarity errors. Thus, we can choose a small coarse set of
representative structures near the root or a larger detailed
set of structures near the leaves to approximate the urban
environment.

We construct the equivalence class tree bottom-up by
merging classes. Initially, each equivalence class is a sin-
gleton, becoming a leaf node in the tree., Each merging
operation joins two similar equivalence classes and de-
creases the total number of classes. Given N initial classes,
there are at most O(N2) possible mergers in each iteration.
To choose a near-optimal set of equivalence classes, we
take a greedy approach that maintains a priority queue of
operations and merges the next most similar equivalence
classes subject to a constraint described later.

Figure 3 shows example equivalences. Using our simi-
larity metric, we obtain a scalar value that measures the
similarity of all pairs. Tree construction merges the most
similar classes first (e.g., (a) and (b), and (c) and (d)) and
eventually approximates all structures using a single repre-
sentative (e). More details on our similarity metric are pro-
vided in Section 3.3.

3.2 Spatial Clustering

The objective of clustering is to combine dissimilar struc-
tures that frequently occur with minor changes elsewhere
(Figure 4). The hierarchy of spatial clusters is also built
bottom-up with each parcel or building initially placed in a
cluster of its own. Given an average neighborhood size of
k1 << N structures, clustering chooses from an overall
O(k1N) possible pairings of neighbors during each iteration.
In an urban environment, we generally group two types of
neighbors: adjacent (e.g., abutting parcels) and nearby (e.g.,
city blocks and houses separated by roads or empty space).
Clustering first joins all immediate neighbors and then pro-
ceeds to group nearby neighbors. Eventually, either all city
blocks are joined or the algorithm terminates when the error
threshold has been exceeded.

To perform clustering, an adjacency graph is used to
first join immediate neighbors and then a spatial data struc-
ture (e.g., quadtree) is used to group city blocks. Eventu-
ally, the entire area is contained within a single cluster.
Unlike equivalencing, where spatially distant, but similar
structures are joined, clustering requires the combined
structures to be spatially adjacent. Instances of cluster
may, of course, be distant.

3.3 Similarity Metric

We define a similarity metric between two urban structures.
The metric should be invariant to both translation and rota-
tion. Thus, a parcel or house observed from above as facing
north in one area of a city should be considered identical to
the same house in another part of the city facing east.
To estimate the similarity between buildings, parcels, or
parcels containing buildings, we use a weighted combina-
tion of geometry-based and image-based similarity. For
geometry, our solution is to compare a polar-coordinate
representation of the two structures. For images, we use a
normalized image-difference metric [Hartley04]. First, the
centroids of the structures are aligned, so determining a
translational offset between the structures. Second, a dense
sampling of points along the boundaries of the parcels and
buildings are transformed to a regular sampling in polar
coordinates. Third, the best correlation between the two
arrays of radial distances and the two image regions is
found yielding the rotational offset between the structures.
The correlation value is an indication of dissimilarity. We
use the negative of the correlation value as similarity meas-
ure. Thus, zero indicates equality and a large negative
number indicates a significant difference.
Given two equivalence classes of the same configuration
(e.g., parcel-to-parcel, building-to-building, or parcel-with-

Figure 4. Hierarchical Clustering. For large urban
areas (see inset), we seek compact sets of urban repre-
sentatives. By combining spatial clustering with instan-
tiation, our method finds spatial clusters, such as A,
containing a set of dissimilar structures but of frequent
use elsewhere (e.g., in the area surrounding B). In
addition, the same algorithm must find clusters such as
A, which contain unique structures, but are needed to
maintain the same error measure.

Cluster A

Cluster B

0. Initialize equivalence tree and spatial
 tree with one node per structural element
1. Find neighbors and sort structures by size
2. Enqueue class mergers and collapses above
 quality threshold
3. While queue not empty
4. Execute next best operation
5. If collapse, inherit neighbors
6. If class merger, collapse empty clusters
7. Remove affected nodes and operations
8. Enqueue new operations
9. End

Figure 5. Pseudo-code summary of simplification
algorithm.

 5

building pairs), similarity is estimated by comparing repre-
sentatives from each class. The representative of a class is
chosen to be the member most similar to other members
(i.e., the one with the largest sum of similarity values). The
representative is recomputed only when members are added
or removed from the class.

4. Simplification Algorithm

Our algorithm traverses the solution space by using a simi-
larity metric and simultaneously performing a combination
of equivalence class merging and spatial clustering. Candi-
dates for both types of operations are placed into a single
priority queue and the next best candidate at the top of the
queue is iteratively executed. Figure 5 provides a pseudo-
code summary of the simplification algorithm.

The order of the operations affects the compactness of
the final dictionary. Thus, we employ cost-benefit consid-
erations to steer our algorithm. For equivalence class merg-
ing, the horizontal axis in Figure 6a indicates benefit of the
current solution as the inverse of the number of equivalence
classes. The vertical axis represents cost as the current
similarity threshold (e.g., larger error means less similar-
ity). For clustering, the horizontal axis in Figure 6b shows
the benefit as the average number of elements that can be
instantiated using the members of a cluster and the vertical
axis depicts cost as the average size of the clusters (e.g.,
radius, number of members, etc.). Initially, we have one
equivalence class and one cluster per structural element
(point A in Figure 6a and point A’ in Figure 6b). Ideally, we
seek a solution at the same height (i.e., same cost) and all
the way to the right in both graphs (i.e., maximum benefit).

Each cost-benefit graph determines an ordering for each
type of operation. However, the next best operation of one
type might adversely affect the benefit of the other type.
For instance, consider an environment with significant ho-
mogeneity amongst the structural elements (e.g., an urban
area of tract houses). A significant number of class mergers
can be performed at low cost (point B in Figure 6a). How-
ever, if we do not consider spatial clustering, our solution
might appear near point B’ in Figure 6b.

To prevent this situation, our algorithm chooses the next
best operation (either merge or cluster) that enhances the
solution in both graphs and yields an overall improved
solution (such as point C and C’ in Figures 6a and 6b, re-
spectively). That is, we can (1) enforce a maximum cost for

merging, (2) enforce a maximum cost for clustering, or (3)
use a weighted combination of both metrics. The third op-
tion is useful if the user can provide information about the
environment. Roughly speaking, urban environments ex-
hibiting homogeneity benefit, on average, from more in-
stancing while environments with large variations profit
more from clustering structures.

5. Implementation Details

Our software is implemented in C++ on a Pentium IV PC
using standard OpenGL, GLUI, and GLUT libraries. To
accelerate rendering, we cache the similarity values and the
translational and rotational offsets between the representa-
tives of each equivalence class and its members.
Our urban data was extracted from an ArcGIS database in
active use by <removed-for-anonymous-submission> city.
It was exported to a DXF file format and converted to a
custom file format. We assigned building contours to par-
cels that contained them and joined parcels contained
within the same building. A data filter was also included to
remove incomplete parcels and building specifications.
To accelerate comparisons for equivalence class merging,
we reduce the total number of pairs to O(k2N) and the num-
ber of operations to update to O(k2) for some constant k2 <<
N. To obtain only O(k2N) operations, we sort representa-
tives from each equivalence class based on their physical
size (e.g., radius) and only pair them with equivalence
classes within a distance k2 in this sorted array. After each
operation is performed, we only need to update O(k2) op-
erations. We remove the k2 operations involving the just-
merged equivalence classes and compute k2 operations for
the newly formed class.

6. Results

We have applied our algorithm to the discovery of urban
dictionaries using information from a large real-world area.
Our dataset consists of publicly-available high-resolution
images and metadata of the central portion of a city with a
population of over 250,000 people (<website-removed>).
Aerial photographs were taken at a resolution of approxi-
mately 15 centimeters per pixel and spanning over 32
square kilometers. Metadata includes a network of roads,
parcel boundaries, building contours, and partial building
height information. Both images and contours are geo-
registered. Other information, such as water systems and
sewage is also available, although we do not use it.
With our algorithm, we can obtain a variety of solutions for
the same area. The solution sets in this paper can be com-
puted in 1 to 15 minutes, approximately. The solutions vary
in the size, number, and distribution of representative struc-
tures. Figure 7 reports various solutions. From left to right,
each row demonstrates three solution sets representing a
high-quality, medium quality, and low-quality solution.
The top row uses only instancing and equivalence class
merging (Figures 7a-c). The set of representative buildings,
in this case, are generally distributed through the urban
area. On the other hand, the bottom row demonstrates a
solution using both instancing and clustering (Figures 7d-f).
The cost-benefit metric helps steer the algorithm towards
these apparently conflicting goals. It arrives at solutions
that are spatially more compact, yet of similar instantiation

Figure 6. Cost-Benefit Metrics. We use cost-benefit
metrics to steer our simplification algorithm. In this
didactic example, the initial solutions starts at A/A’
and naïve instancing leads to B/B’. By simultaneously
considering both instancing and clustering benefits and
costs, we are able to reach a better overall answer
C/C’.

1/eq-classes

error

A

C

B

instances in cluster

size

A’ C’

B’

a) Instancing b) Clustering

 6

quality as the corresponding solution from the top row. We
believe this control and behavior will help to focus and
localize detailed 3D acquisition efforts. For example, visit-
ing only these sparse set of locations, will significantly
simplify the immense acquisition task for an entire city.
To better visualize the performance of the cost-benefit met-
ric, we show in Figure 8 a graph of the quality and cost
values during a typical computation as well as some exam-
ple images. The graphs show that during simplification,
cost slowly increases, with most of the penalty being at the
end, and quality (or, benefit over cost) progressively de-
creases. In this graph, both clustering and instancing values
have been normalized. During execution, estimated weights
are used to be able to compare them. In this particular solu-
tion set, clustering did not produce significant benefit at the
being and thus initially decreased rapidly. Figure 8 also
contains close-ups of several building contours drawn on
top of the original aerial images. As the simplification pro-
ceeds, the original contours are progressively replaced with
similar structures from other parts of the city.
Figure 9 demonstrates dictionaries for a large and diverse
urban area. Figure 9a shows the original aerial view and
Figure 9b demonstrates the parcel and building information
available. Using this, our algorithm selected the highlighted
areas (yellow) in Figure 9c as being most similar to the
surrounding areas for a given error threshold, based on a
combination of image similarity, parcel similarity, and

building contour similarity. Many of the large (yellow)
areas correspond to parks and unique structures and thus
cannot be replaced by other structures. Figure 9d contains a
reconstructed view in the style of the original environment
but using the subset of parcels and buildings from Figure
9c.
The representative structures can also be fed into a proce-
dural modeling program. Figures 9e and 9f demonstrate an
overview and close-up view of a synthetic rendering of the
urban area generated by a simple in-house procedural mod-
eling system. While it is not our focus, we look forward to
more sophisticated procedural modeling systems to gener-
ate detailed cities in the style of the captured environments
(e.g., Instant Architecture [Wonka03], Build-by-Numbers
[Bekins05], etc).
In our current implementation, we do not explicitly handle
roads or enforce a functionally correct urban area. More-
over, we rely on the similarity metric to yield plausible
reconstructions and thus currently our simplification
scheme does not handle very coarse reconstructions, in-
cluding causing highly repetitive instantiations (see bottom
right of Figure 9d).

7. Conclusions

We have presented an automated algorithm that uses sparse
urban information obtained from aerial views and city re-

Figure 7. Urban Dictionary Comparisons. From left to right, both rows show a progression of solution sets (high, me-
dium, and low quality) during the simplification process. The top row (a-c) uses only equivalence class merging and in-
stantiation yielding solutions that typically have a widespread distribution of the found representative structures. On the
other hand, the bottom row (d-f) demonstrates how simultaneously considering clustering and instancing can help steer
the solution to produce a more spatially compact dictionary of representative structures.

a) b) c)

d) e) f)

 7

cords to discover a compact dictionary of representative
structures of the urban environment. Using a real-world
city, we demonstrated how representative structures can be
efficiently identified. Our approach implements a solution
that exploits global redundancy as well as curtails to the
benefits of locality. These structures can then be used to
establish the terminals and rules for procedural modeling,
to rank photogrammetric reconstruction efforts, to com-
press aerial photographs and urban geometry, and to find
urban patterns and classifications.
As future work, we are interested in several areas of im-
provement. First, we would like to extend our algorithm
with a recursive look-ahead – this would enable us to trav-
erse the search space better and to converge on more effi-
cient solutions. Second, we would like to enforce the solu-
tion set to account for functionality. This implies that we
must ensure the road network, parcel layout, and building
placement is feasible. Third, akin to image epitomes and
vector quantization, we are investigating the compression
aspects of a dictionary of image regions.
At this time, the field is far from capturing explicit details
of every structure in every major city. However, by com-
bining aerial views with metadata and other information
available for cities, we can discover significantly more
information than before and make large strides towards
capturing, representing and reasoning about detailed mod-
els of large urban spaces.

References

[Aliaga03] Aliaga D., Funkhouser T., Yanovsky D., Carl-
bom I., “Sea of Images: A Dense Sampling Approach to
Capturing Large Indoor Environments”, Computer
Graphics & Applications, pp. 22-30, Nov/Dec, 2003.

[Bekins05] Bekins D., Aliaga D., “Build-by-Numbers:
Rearranging the Real World to Visualize Novel Architec-
tural Spaces”, IEEE Visualization, 2005.

[Buehler01] Buehler C., Boose M., McMillan L., Gortler
S., Cohen M., “Unstructured Lumigraph Rendering”,
ACM SIGGRAPH 2001, pp. 425-432, 2001.

[Coorg98] Coorg S., "Pose Imagery and Automated Three-
Dimensional Modeling of Urban Environments.", Ph.D.
Thesis, Massachusetts Institute of Technology, 1998.

[Debevec96] Paul E. Debevec, Camillo J. Taylor, and Ji-
tendra Malik. “Modeling and Rendering Architecture
from Photographs.” ACM SIGGRAPH, pp. 11-20, Au-
gust, 1996.

[Debevec98] Debevec P., Borshukov G., Yu Y., “Efficient
View-Dependent Image-Based Rendering with Projective
Texture Mapping”, 9th Eurographics Rendering Work-
shop, June, 1998.

[Eos05] Eos Systems, Inc. PhotoModeler.
www.photomodeler.com, 2005.

Figure 8. Steering the Simplification Algorithm. We show the quality values (a) and cost values (b) for both operation
types during the simplification of an example urban area. Figures (c-e) show close-ups of a small neighborhood and how
building contours are gradually replaced with representatives from elsewhere in the environment. The leftmost image
contains the original information and the remaining two images are from a midpoint and the endpoint of the curves in the
graph. The simplification stopped when a maximum error threshold was reached.

c)

a)

e) d)

b)

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800

C
os

t

Clustering
Class Merging

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800

Q
ua

lit
y

 8

[Hartley04] Hartley R., and Zisserman A., Multiple view
geometry in computer vision, Cambridge University
Press, 2004.

[Jojic03] Jojic N., Frey B., Kannan A., “Epitomic Analysis
of Appearance and Shape”, IEEE International Confer-
ence on Computer Vision (ICCV), 2003.

[Luebke01] Luebke D., “A Developer’s Survey of Polygo-
nal Simplification Algorithms”, IEEE Computer Graph-
ics & Applications, 2001.

[Max95] Max N. and Ohsaki K., “Rendering Trees from
Precomputed Z-Buffer Views”, Rendering Techniques
'95: Proceedings of the 6th Eurographics Workshop on
Rendering, pp. 45-54, 1995.

[McMillan95] McMillan L. and Bishop G., “Plenoptic
Modeling: An Image-Based Rendering System”, ACM
SIGGRAPH 95, pp. 39-46, 1995.

[MetaCreations02] MetaCreations Corporation, Canoma,
www.canoma.com, 2002.

[Parish01] Parish, Y. I. H., and Muller, P. “Procedural
modeling of cities.” ACM SIGGRAPH 2001, ACM Press,
E. Fiume, Ed., 301.308, 2001.

[Pollefeys00] Pollefeys M., Koch R., Vergauwen M., Van
Gool L., “Automated reconstruction of 3D scenes from

sequences of images”, ISPRS Journal Of Photogram-
metry And Remote Sensing (55)4, 251-267, 2000.

[Prusinkiewicz91] Prusinkiewicz, P., and Lindenmayer, A.
“The Algorithmic Beauty of Plants.” Springer-Verlag,
1991.

[RealViz05] RealViz, S.A. ImageModeler.
www.realviz.com, 2005.

[Shum99] Shum H., He L., “Concentric Mosaics”, ACM
SIGGRAPH 99, pp. 299-306, 1999.

[Stiny75] Stiny, G. “Pictorial and Formal Aspects of Shape
and Shape Grammars.” Birkhauser Verlag, Basel, 1975.

[Teller01] Teller S., Antone M., Bodnar Z., Bosse M., Co-
org S., Jethwa M., Master N., “Calibrated, Registered
Images of an Extended Urban Area", IEEE Computer Vi-
sion and Pattern Recognition (CVPR), 2001.

[Wonka03] Wonka P., Wimmer M., Sillion F., Ribarsky B.,
“Instant Architecture”, ACM SIGGRAPH, 2003, 669-
677.

Figure 9. Representing Urban Spaces. (a) Demonstrates original aerial views of a large and diverse urban space. (b)
Contains a rendering of the parcel boundaries and building contours used by our algorithm. (c) A computed dictionary
of representative structures. The large yellow areas correspond mostly to uniquely structured parks. (d) An image
where parcels with buildings have been replaced with instantiations from the computed dictionary. (e, f) An overview
and close-up of a synthetic model created using a simple in-house procedural modeling program and the terminals we
computed.

a) b) c)

d) e) f)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

