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ABSTRACT 

Urban environments are challenging to model because they are both very large and very diverse. The size of the environment 
makes capturing the details of every structure prohibitive, leaving us with only sparse information. Photogrammetric recon-
struction attempts to build 3D structures but is often not robust and requires manual input, thus making it difficult to scale to 
large areas. Procedural modeling of urban environments provides a means for quickly creating architecture, but it does not 
address populating the database of urban features and it does not use real-world information to mimic actual urban areas.  
In this paper, we use sparse aerial-based information about an urban environment that is readily available in many towns 
and cities.  From this information, we isolate a small number of canonical urban structures that can be assembled algorithmi-
cally using only a few simple operations.  The result is an approximation of the entire urban environment to within a pre-
specified error threshold of the original data. Unlike synthetic approaches that prescribe a grammar, our task is to discover a 
small dictionary of words and associated application rules for an actual urban environment. Once the dictionary and rules 
are known, an urban environment in the style of the original can be instantiated.  The canonical set of words can be used to 
prioritize acquisition efforts, to reduce image data, to compress geometry of the model, to find urban patterns, and to visual-
ize properties of the urban environment. 

CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling, I.3.7 [Computer Graph-
ics]: Three-dimensional Graphics and Realism, I.6.3 [Simulation and Modeling]: Applications. 

 

1. Introduction 

Modeling and visualizing large urban environments is a 
great challenge for computer graphics. Cities are a complex 
collection of man-made structures arranged in parcels, city 
blocks, and neighborhoods. A digital model of such a large-
scale urban environment enables applications such as urban 
interactive walkthroughs, web-based navigation (e.g., 
MapQuest, Google Earth), emergency response training and 
simulation, urban planning and modeling, and content crea-
tion for the entertainment market.   

Acquiring large urban spaces, on the whole, is a signifi-
cant challenge, involving considerable manual effort and 
computational tasks. Dense urban environments are particu-
larly challenging to model because they are both very large 
and very widespread, spanning from a few square kilome-
ters to hundreds of square kilometers. The size of the envi-
ronment makes obtaining detailed information of every 
structure prohibitive, leaving us with only sparse informa-
tion. Satellite and aerial photographs provide overhead 
views of large urban areas, but they do not provide accurate 
3D structural data. However, cities and counties do main-
tain limited records of parcel boundaries, basic building 
information, and other metadata, such as water pipes, sew-
age systems, etc., that is in digital form and can be used as 

a starting point. Extracting streets and building contours 
fully automatically is an option, albeit a challenging one.  

The 3D modeling of large urban environments has a 
significant history in graphics. Procedural modeling speci-
fies a set of terminals and rules for synthesizing urban-like 
models [Parish01]. While procedural modeling provides a 
means for quickly creating architecture, it does not address 
populating the database of urban features and does not use 
real-world information to mimic actual urban areas. Geo-
metric models have been obtained from photographs using 
3D reconstruction and photogrammetric modeling. While it 
is a stated goal to recover the model automatically, the most 
robust systems require user input and thus do not scale to 
entire cities [Debevec96, Debevec98]. In general, the large 
size of urban environments and the difficulty in obtaining 
detailed information limit the above modeling techniques. 

In this paper, we attack this immense problem by pro-
viding an automatic way to focus resources and obtain in-
formation about the most unique and valuable urban struc-
tures. For a given urban area, we discover a compact hier-
archical dictionary of approximate urban structures and 
associated application rules that can simulate the entire 
urban environment. Once these rules and the dictionary are 
known, a model of the urban environment can be instanti-
ated from this small number of urban structures. As input to 
this automated discovery, we are provided with aerial pho-
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tographs and parcel boundaries, building contours, and 
building heights overlaid on the photographs of a real city.  
(Figure 1). The hierarchical dictionary so discovered can 
then be used to establish the terminals and rules for proce-
dural modeling; or to rank photogrammetric reconstruction 
efforts; or to compress aerial photographs and urban ge-
ometry; or to find urban patterns and classifications. 

Our key observation is that large urban environments 
exhibit a significant amount of local and global redundancy 
despite the individuality in detail. General geometry simpli-
fication exploits local redundancy by collapsing adjacent 
elements of geometry [Luebke01]. However, urban models 
exhibit both local redundancy (e.g., adjacent houses can be 
very similar) and global redundancy (e.g., a house in one 
part of a city can be very similar to a house in another dis-
tant part). As we consider even larger urban areas, we could 
find even more redundancy. Similar to image quantization 
methods and epitomes [Jojic03], we seek to efficiently 
exploit this redundancy in order to find a compact hierar-
chy of urban structures for modeling the entire urban envi-
ronment. 

 

Our contributions in this paper include:  

• developing a flexible framework to automatically ap-
proximate real cities and generate new ones “in the 
style of” other cities; 

• articulating new, but natural, operations for identifying 
and simplifying structures that are measurably similar;  

• proposing a novel metric by which to quantify the 
similarity of an approximating city model and to quan-
tify the data reduction accomplished by the algorithm. 

2. Related work 

The modeling and rendering of large urban of environments 
has been addressed in several ways in computer graphics. 
Procedural modeling focuses on building synthetic models 
of urban-like environments from a set of principles defined 
by a grammar. This approach is most useful for creating 
models of objects or systems that have a high degree of 
redundancy or self-similarity. Most notably, L-systems 
have been successful in the modeling of plants [Prus-
inkiewicz91], and have been used for automatic city and 
building generation [Parish01]. Shape grammars [Stiny75], 

Figure 1. Urban Dictionary. (a) Contains initial aerial data (photographs, contours, parcels, etc.). (b) Identifies compact 
clusters of urban structures that best represent all parcels with buildings. (c) Discovered dictionary and its instantiations 
are used to replace/reconstruct all parcels with building contours. (d) Illustrates the most unique building/parcel pairs, 
the words of the dictionary. This dictionary of words can also be used to seed procedural modeling, ease detailed acquisi-
tion efforts, and compress data. 

a) b) c) 

d) Unique set of 
images/structures 

Urban Dictionary 

Aerial Data Reconstruction 
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which define rules for the specification and transformation 
of 2D and 3D shapes, have also been used to model archi-
tecture. Wonka et al. [Wonka03] employ a split grammar to 
automatically generate architecture from a database of rules 
and attributes. The split grammar divides a geometric ob-
ject into feature regions, which are then provided with de-
tailed geometry and material from a database to produce a 
final rendering. The user can specify parameters that guide 
the choices made by the generation program, allowing for 
very fast creation of many variations of a particular build-
ing shape, type, and style. While procedural modeling pro-
vides a means for quickly creating architecture from a small 
number of terminals and rules, the data and procedures are 
not based on an actual real-world city and do not attempt to 
mimic a real world environment. 

Photogrammetric reconstruction and image-based mod-
eling and rendering (IBMR) focus on building a representa-
tion of a real model from photographs. Photogrammetric 
reconstruction recovers the dimensions of a 3D geometric 
model and can map the image data to it [Pollefeys00]. Fa-
cade [Debevec96, Debevec98] has served as the prototype 
for several commercial packages [MetaCreations02, Eos05, 
RealViz05] that combine photogrammetric reconstruction 
with user-assistance. Image-based modeling and rendering 
[Max95, McMillan95] is a partner of capture techniques 
like photogrammetric modeling, but unlike photogrammet-
ric modeling, an IBMR system directly re-samples photo-
graphs of a static scene to create novel views of the ac-
quired object or small environment [Aliaga03, Buehler01, 
Gortler96, Levoy96, Shum99]. Some 3D reconstruction 
efforts have focused on large urban environments [Co-
org98]. For instance, Teller et al. [Teller01] use global po-
sitioning satellites in conjunction with an image-based cali-
bration approach tuned to typical building shapes to capture 
images spanning a campus-size environment. Unfortu-
nately, these techniques are difficult to extend and scale up 
to large environments and the hardware platforms used by 
some make their deployment cumbersome in large urban 
environments. Their usability would be significantly im-
proved if we could direct our reconstruction efforts to a 
suggested subset of the entire urban environment.  
In our work, we identify and address a common shortcom-
ing of these two extremes to urban modeling. By discover-
ing an estimate of the local and global redundancy of an 
urban environment, we can create a compact hierarchy of 
canonical urban structures. These structures can serve to 
provide terminals and rules for procedural modeling efforts, 

to guide photogrammetric reconstruction efforts, and to 
assist in compressing the urban model data.  

The inspiration for our work comes from several quanti-
zation and compression methods. In particular, we draw 
from the concept of epitomes of images [Jojic03]. The epit-
ome of an image contains the essence of the textural and 
shape properties of the image. The size of the epitome is 
considerably smaller than the size of the image it repre-
sents. However, it still contains most of the constitutive 
elements needed to reconstruct the image and supports 
tasks such as image segmentation, motion estimation, and 
image editing. 

3. Urban Dictionaries 

We devise an iterative algorithm that efficiently navigates 
through the solution space in order to find a hierarchy of 
representative urban structures (e.g., parcels, buildings, 
neighborhoods, etc.) from which to approximate a large 
urban environment. Starting with initial data given by aerial 
photographs and digital information outlining parcels and 
basic building shapes, our method establishes a set of 
equivalence classes and spatial clusters of representative 
structures. By simultaneously merging equivalence classes 
and clustering nearby structures, we arrive at a small num-
ber of equivalence classes and at a few clusters that are 
compact in size, staying within a user-specified error toler-
ance. A small set of equivalence classes reduces the number 
of typical structures necessary to represent and reconstruct 
the environment. Spatially-compact clusters of representa-
tive structures facilitate 3D reconstruction efforts and com-
pression methods. The resulting compact hierarchical dic-
tionary can be used to reconstruct the urban model by in-
stantiating copies of these words, yielding a representation 
that is more efficient to capture, render, compress and ana-
lyze. 

Figure 2. Processing Pipeline. We use an iterative 
method that applies instancing and clustering operations, 
guided by cost-benefit metrics, to create the dictionary. 

Input 
Data 

Estimate 
Similarity 

Select  
Neighbors 

Dictionary 

New 
Model 

Instance 

  cost-benefit metric 

Cluster 

Figure 3. Instancing and Similarity. Global redun-
dancy is exploited by growing bottom-up a hierarchy of 
equivalence classes and subsequently instancing from 
the tree. In this example, houses (a) and (b) as well as 
(c) and (d) are considered very similar to each other 
according to our similarity metric. These similarities 
are used to form a tree, where (e) is chosen as the best 
the overall representative. 

a) b) 

c) d) 

e) 
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Figure 2 shows our processing pipeline. First, the initial 
model is input to the simplification algorithm. Then, cost-
benefit metrics guide class-merging and clustering opera-
tions to converge to a hierarchical representation. This 
process also uses metrics that define similarities between 
structural elements and methods that establish the 
neighborhood of each structural element. Finally, a diction-
ary of words is output as well as a reconstruction of the 
urban environment. 

3.1 Instancing and Equivalence Classes 

We establish equivalence classes of buildings and of group-
ings of buildings.  Intuitively, buildings and houses in one 
area of a city might be very similar to structures in another, 
possibly distant, part. So, each equivalence class combines 
similar structures and allows representing the elements in 
the class with a single representative structure. In the tree, 
the similarity between members of a class increases as you 
travel from the root to the leaves, because of compounding 
similarity errors. Thus, we can choose a small coarse set of 
representative structures near the root or a larger detailed 
set of structures near the leaves to approximate the urban 
environment. 

We construct the equivalence class tree bottom-up by 
merging classes. Initially, each equivalence class is a sin-
gleton, becoming a leaf node in the tree., Each merging 
operation joins two similar equivalence classes and de-
creases the total number of classes. Given N initial classes, 
there are at most O(N2) possible mergers in each iteration. 
To choose a near-optimal set of equivalence classes, we 
take a greedy approach that maintains a priority queue of 
operations and merges the next most similar equivalence 
classes subject to a constraint described later.  

Figure 3 shows example equivalences. Using our simi-
larity metric, we obtain a scalar value that measures the 
similarity of all pairs. Tree construction merges the most 
similar classes first (e.g., (a) and (b), and (c) and (d)) and 
eventually approximates all structures using a single repre-
sentative (e). More details on our similarity metric are pro-
vided in Section 3.3. 

3.2 Spatial Clustering 

The objective of clustering is to combine dissimilar struc-
tures that frequently occur with minor changes elsewhere 
(Figure 4). The hierarchy of spatial clusters is also built 
bottom-up with each parcel or building initially placed in a 
cluster of its own. Given an average neighborhood size of 
k1 << N structures, clustering chooses from an overall 
O(k1N) possible pairings of neighbors during each iteration. 
In an urban environment, we generally group two types of 
neighbors: adjacent (e.g., abutting parcels) and nearby (e.g., 
city blocks and houses separated by roads or empty space). 
Clustering first joins all immediate neighbors and then pro-
ceeds to group nearby neighbors. Eventually, either all city 
blocks are joined or the algorithm terminates when the error 
threshold has been exceeded. 

To perform clustering, an adjacency graph is used to 
first join immediate neighbors and then a spatial data struc-
ture (e.g., quadtree) is used to group city blocks. Eventu-
ally, the entire area is contained within a single cluster. 
Unlike equivalencing, where spatially distant, but similar 
structures are joined, clustering requires the combined 
structures to be spatially adjacent.  Instances of cluster 
may, of course, be distant. 

3.3 Similarity Metric 

We define a similarity metric between two urban structures. 
The metric should be invariant to both translation and rota-
tion. Thus, a parcel or house observed from above as facing 
north in one area of a city should be considered identical to 
the same house in another part of the city facing east.  
To estimate the similarity between buildings, parcels, or 
parcels containing buildings, we use a weighted combina-
tion of geometry-based and image-based similarity. For 
geometry, our solution is to compare a polar-coordinate 
representation of the two structures. For images, we use a 
normalized image-difference metric [Hartley04]. First, the 
centroids of the structures are aligned, so determining a 
translational offset between the structures. Second, a dense 
sampling of points along the boundaries of the parcels and 
buildings are transformed to a regular sampling in polar 
coordinates. Third, the best correlation between the two 
arrays of radial distances and the two image regions is 
found yielding the rotational offset between the structures. 
The correlation value is an indication of dissimilarity. We 
use the negative of the correlation value as similarity meas-
ure.  Thus, zero indicates equality and a large negative 
number indicates a significant difference. 
Given two equivalence classes of the same configuration 
(e.g., parcel-to-parcel, building-to-building, or parcel-with-

Figure 4. Hierarchical Clustering. For large urban 
areas (see inset), we seek compact sets of urban repre-
sentatives. By combining spatial clustering with instan-
tiation, our method finds spatial clusters, such as A, 
containing a set of dissimilar structures but of frequent 
use elsewhere (e.g., in the area surrounding B). In 
addition, the same algorithm must find clusters such as 
A, which contain unique structures, but are needed to 
maintain the same error measure. 

Cluster A 

Cluster B 

0. Initialize equivalence tree and spatial 
   tree with one node per structural element 
1. Find neighbors and sort structures by size 
2. Enqueue class mergers and collapses above 
   quality threshold 
3. While queue not empty 
4.   Execute next best operation 
5.   If collapse, inherit neighbors 
6.   If class merger, collapse empty clusters 
7.   Remove affected nodes and operations 
8.   Enqueue new operations 
9. End 
 

Figure 5. Pseudo-code summary of simplification 
algorithm. 
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building pairs), similarity is estimated by comparing repre-
sentatives from each class. The representative of a class is 
chosen to be the member most similar to other members 
(i.e., the one with the largest sum of similarity values). The 
representative is recomputed only when members are added 
or removed from the class. 

4. Simplification Algorithm 

Our algorithm traverses the solution space by using a simi-
larity metric and simultaneously performing a combination 
of equivalence class merging and spatial clustering. Candi-
dates for both types of operations are placed into a single 
priority queue and the next best candidate at the top of the 
queue is iteratively executed. Figure 5 provides a pseudo-
code summary of the simplification algorithm. 

The order of the operations affects the compactness of 
the final dictionary.  Thus, we employ cost-benefit consid-
erations to steer our algorithm. For equivalence class merg-
ing, the horizontal axis in Figure 6a indicates benefit of the 
current solution as the inverse of the number of equivalence 
classes. The vertical axis represents cost as the current 
similarity threshold (e.g., larger error means less similar-
ity). For clustering, the horizontal axis in Figure 6b shows 
the benefit as the average number of elements that can be 
instantiated using the members of a cluster and the vertical 
axis depicts cost as the average size of the clusters (e.g., 
radius, number of members, etc.). Initially, we have one 
equivalence class and one cluster per structural element 
(point A in Figure 6a and point A’ in Figure 6b). Ideally, we 
seek a solution at the same height (i.e., same cost) and all 
the way to the right in both graphs (i.e., maximum benefit). 

Each cost-benefit graph determines an ordering for each 
type of operation. However, the next best operation of one 
type might adversely affect the benefit of the other type. 
For instance, consider an environment with significant ho-
mogeneity amongst the structural elements (e.g., an urban 
area of tract houses). A significant number of class mergers 
can be performed at low cost (point B in Figure 6a).  How-
ever, if we do not consider spatial clustering, our solution 
might appear near point B’ in Figure 6b. 

To prevent this situation, our algorithm chooses the next 
best operation (either merge or cluster) that enhances the 
solution in both graphs and yields an overall improved 
solution (such as point C and C’ in Figures 6a and 6b, re-
spectively). That is, we can (1) enforce a maximum cost for 

merging, (2) enforce a maximum cost for clustering, or (3) 
use a weighted combination of both metrics. The third op-
tion is useful if the user can provide information about the 
environment. Roughly speaking, urban environments ex-
hibiting homogeneity benefit, on average, from more in-
stancing while environments with large variations profit 
more from clustering structures. 

5. Implementation Details 

Our software is implemented in C++ on a Pentium IV PC 
using standard OpenGL, GLUI, and GLUT libraries. To 
accelerate rendering, we cache the similarity values and the 
translational and rotational offsets between the representa-
tives of each equivalence class and its members. 
Our urban data was extracted from an ArcGIS database in 
active use by <removed-for-anonymous-submission> city. 
It was exported to a DXF file format and converted to a 
custom file format. We assigned building contours to par-
cels that contained them and joined parcels contained 
within the same building. A data filter was also included to 
remove incomplete parcels and building specifications. 
To accelerate comparisons for equivalence class merging, 
we reduce the total number of pairs to O(k2N) and the num-
ber of operations to update to O(k2) for some constant k2 << 
N. To obtain only O(k2N) operations, we sort representa-
tives from each equivalence class based on their physical 
size (e.g., radius) and only pair them with equivalence 
classes within a distance k2 in this sorted array. After each 
operation is performed, we only need to update O(k2) op-
erations. We remove the k2 operations involving the just-
merged equivalence classes and compute k2 operations for 
the newly formed class. 

6. Results 

We have applied our algorithm to the discovery of urban 
dictionaries using information from a large real-world area. 
Our dataset consists of publicly-available high-resolution 
images and metadata of the central portion of a city with a 
population of over 250,000 people (<website-removed>). 
Aerial photographs were taken at a resolution of approxi-
mately 15 centimeters per pixel and spanning over 32 
square kilometers. Metadata includes a network of roads, 
parcel boundaries, building contours, and partial building 
height information. Both images and contours are geo-
registered. Other information, such as water systems and 
sewage is also available, although we do not use it.  
With our algorithm, we can obtain a variety of solutions for 
the same area. The solution sets in this paper can be com-
puted in 1 to 15 minutes, approximately. The solutions vary 
in the size, number, and distribution of representative struc-
tures. Figure 7 reports various solutions. From left to right, 
each row demonstrates three solution sets representing a 
high-quality, medium quality, and low-quality solution. 
The top row uses only instancing and equivalence class 
merging (Figures 7a-c). The set of representative buildings, 
in this case, are generally distributed through the urban 
area. On the other hand, the bottom row demonstrates a 
solution using both instancing and clustering (Figures 7d-f). 
The cost-benefit metric helps steer the algorithm towards 
these apparently conflicting goals. It arrives at solutions 
that are spatially more compact, yet of similar instantiation 

Figure 6. Cost-Benefit Metrics. We use cost-benefit 
metrics to steer our simplification algorithm. In this 
didactic example, the initial solutions starts at A/A’ 
and naïve instancing leads to B/B’. By simultaneously 
considering both instancing and clustering benefits and 
costs, we are able to reach a better overall answer 
C/C’. 

1/eq-classes 

error 

A 

C 

B 

instances in cluster 

size 

A’ C’ 

B’ 

a) Instancing b) Clustering 
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quality as the corresponding solution from the top row. We 
believe this control and behavior will help to focus and 
localize detailed 3D acquisition efforts. For example, visit-
ing only these sparse set of locations, will significantly 
simplify the immense acquisition task for an entire city. 
To better visualize the performance of the cost-benefit met-
ric, we show in Figure 8 a graph of the quality and cost 
values during a typical computation as well as some exam-
ple images. The graphs show that during simplification, 
cost slowly increases, with most of the penalty being at the 
end, and quality (or, benefit over cost) progressively de-
creases. In this graph, both clustering and instancing values 
have been normalized. During execution, estimated weights 
are used to be able to compare them. In this particular solu-
tion set, clustering did not produce significant benefit at the 
being and thus initially decreased rapidly. Figure 8 also 
contains close-ups of several building contours drawn on 
top of the original aerial images. As the simplification pro-
ceeds, the original contours are progressively replaced with 
similar structures from other parts of the city. 
Figure 9 demonstrates dictionaries for a large and diverse 
urban area. Figure 9a shows the original aerial view and 
Figure 9b demonstrates the parcel and building information 
available. Using this, our algorithm selected the highlighted 
areas (yellow) in Figure 9c as being most similar to the 
surrounding areas for a given error threshold, based on a 
combination of image similarity, parcel similarity, and 

building contour similarity. Many of the large (yellow) 
areas correspond to parks and unique structures and thus 
cannot be replaced by other structures. Figure 9d contains a 
reconstructed view in the style of the original environment 
but using the subset of parcels and buildings from Figure 
9c.  
The representative structures can also be fed into a proce-
dural modeling program. Figures 9e and 9f demonstrate an 
overview and close-up view of a synthetic rendering of the 
urban area generated by a simple in-house procedural mod-
eling system. While it is not our focus, we look forward to 
more sophisticated procedural modeling systems to gener-
ate detailed cities in the style of the captured environments 
(e.g., Instant Architecture [Wonka03], Build-by-Numbers 
[Bekins05], etc). 
In our current implementation, we do not explicitly handle 
roads or enforce a functionally correct urban area. More-
over, we rely on the similarity metric to yield plausible 
reconstructions and thus currently our simplification 
scheme does not handle very coarse reconstructions, in-
cluding causing highly repetitive instantiations (see bottom 
right of Figure 9d). 

7. Conclusions 

We have presented an automated algorithm that uses sparse 
urban information obtained from aerial views and city re-

Figure 7. Urban Dictionary Comparisons. From left to right, both rows show a progression of solution sets (high, me-
dium, and low quality) during the simplification process. The top row (a-c) uses only equivalence class merging and in-
stantiation yielding solutions that typically have a widespread distribution of the found representative structures. On the 
other hand, the bottom row (d-f) demonstrates how simultaneously considering clustering and instancing can help steer 
the solution to produce a more spatially compact dictionary of representative structures.  

a) b) c) 

d) e) f) 
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cords to discover a compact dictionary of representative 
structures of the urban environment. Using a real-world 
city, we demonstrated how representative structures can be 
efficiently identified. Our approach implements a solution 
that exploits global redundancy as well as curtails to the 
benefits of locality. These structures can then be used to 
establish the terminals and rules for procedural modeling, 
to rank photogrammetric reconstruction efforts, to com-
press aerial photographs and urban geometry, and to find 
urban patterns and classifications. 
As future work, we are interested in several areas of im-
provement. First, we would like to extend our algorithm 
with a recursive look-ahead – this would enable us to trav-
erse the search space better and to converge on more effi-
cient solutions. Second, we would like to enforce the solu-
tion set to account for functionality. This implies that we 
must ensure the road network, parcel layout, and building 
placement is feasible. Third, akin to image epitomes and 
vector quantization, we are investigating the compression 
aspects of a dictionary of image regions. 
At this time, the field is far from capturing explicit details 
of every structure in every major city. However, by com-
bining aerial views with metadata and other information 
available for cities, we can discover significantly more 
information than before and make large strides towards 
capturing, representing and reasoning about detailed mod-
els of large urban spaces. 
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Figure 9. Representing Urban Spaces. (a) Demonstrates original aerial views of a large and diverse urban space. (b) 
Contains a rendering of the parcel boundaries and building contours used by our algorithm. (c) A computed dictionary 
of representative structures. The large yellow areas correspond mostly to uniquely structured parks. (d) An image 
where parcels with buildings have been replaced with instantiations from the computed dictionary. (e, f) An overview 
and close-up of a synthetic model created using a simple in-house procedural modeling program and the terminals we 
computed. 
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d) e) f) 
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