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Abstract  
The main contribution of our work is in closing the loop between 
behavioral and geometrical modeling of cities. Editing of urban 
design variables is performed intuitively and visually using a 
graphical user interface. Any design variable can be constrained or 
changed. The design process uses an iterative dynamical system 
for reaching equilibrium: a state where the demands of behavioral 
modeling match those of geometrical modeling. 3D models are 
generated in a few seconds and conform to plausible urban 
behavior and urban geometry. Our framework includes an 
interactive agent-based behavioral modeling system as well as 
adaptive geometry generation algorithms. We demonstrate 
interactive and incremental design and editing for synthetic urban 
spaces spanning over 200 square kilometers. 
Keywords: interactive, editing, 3D models, urban spaces. 
CR Categories: I.3 [Computer Graphics], I.3.3 [Picture/Image 
Generation], I.3.5 [Computational Geometry and Object 
Modeling], I.3.6 [Methodology and Techniques]. 

1. INTRODUCTION 
We present a framework for intuitive and interactive design of 3D 
geometric models of large, complex, and realistic urban spaces. An 
urban space is a collection of architectural structures arranged into 
buildings, parcels, blocks, and neighborhoods interconnected by 
roads. The key notion behind our approach is to close the loop 
between behavioral modeling and geometrical modeling of urban 
spaces. We model the design and editing process as a dynamical 
system using a set of functions that describe the change the 
variable values. Our system produces models resembling existing 
cities, and is useful for a variety of applications ranging from 
games and movies to urban planning and emergency management. 
Previous research in urban modeling can be divided into the areas 
of geometrical modeling and behavioral modeling: the first is 
purely computer graphics oriented (e.g., [Parish and Muller 2001, 
Wonka et al. 2003, Mueller et al. 2006, Aliaga et al. 2008, Chen et 
al. 2008]), and the second lies outside this research domain (e.g., 
[Alkheder et al. 2008, Waddell 2002]). The results of urban 
behavioral modeling are intended for decision-making regarding 
urban policies in current and future urban areas. In general, 
however, behavioral simulation models use limited and fixed 2D 
geometric features (e.g., grid cells or parcels) and are 
computationally too expensive to run at interactive rates. Some 
research has been performed in feeding the output of a behavioral 
modeling system into a geometrical modeling system producing 
2D layouts or 3D models that change over time (e.g., [Honda et al. 
2004, Vanegas et al. 2009, Weber et al. 2009]). However, the focus 
is not on designing and editing a new urban model, but rather on 
computing changes (e.g., growth) over time to a provided model. 

Figure 1. Urban Model Design. This example city is incrementally generated in a 
two-step process. First, based on designer input, the system creates a low-density 
town in a valley by the coast (a). Then, the designer replaces the office buildings 
(b) with high-rises (c), and constrains the downtown of the existing city and the 
forest area around it (d).  The system increases the population as a result of the 
larger number of jobs and locates the population in accessible land outside the 
valley, creating new roads, parcels, and buildings, while leaving the original 
downtown unchanged (e, f).  
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Geometrical and behavioral modeling, when applied in isolation on 
the same underlying urban space, yields a functional disconnection 
between the two resulting models. This is because behavioral 
modeling is not concerned with generating the geometry of the 
urban space and because geometrical modeling usually does not 
consider behavioral properties of real-world cities. This 
disconnection is particularly disadvantageous during the computer 
graphics design and editing process of 3D geometric urban models. 
Real-world urban spaces exhibit relationships between variables 
such as terrain, road networks, building shapes, distribution of 
population, jobs, and transportation routes. Existing geometrical 
modeling systems can be used to perform the changes to the 3D 
model that are implied by altering these variables, but the designer 
would have to be aware of the subtle interdependencies between 
the variables. The consequences of changing one variable can vary 
from local to global changes. Consider the following examples: 
• a designer increases the height of the buildings in a downtown 

area; as a consequence, the number of jobs and the population 
increase; this should result in more local streets and 
residential buildings appearing in another part of the city that 
is conveniently accessible from the newly altered downtown; 

• a designer inserts a highway into the model; as a consequence, 
the accessibility between different parts of the urban space 
may change, hence the location of jobs, houses, and buildings 
may have to be drastically altered; and 

• a designer modifies a subset of the terrain or increases the 
local population; as a consequence, the geometric 
configuration of the local neighborhood of streets, city blocks, 
parcels, and buildings must be updated to accommodate either 
the modified terrain slopes or the increase in population. 

Ignoring these changes may result in models that do not resemble 
real-world urban spaces such as tall buildings on top of mountains, 
cities with only skyscrapers and no residential areas, or an 
imbalance between road networks and buildings. 

1.1 Key Inspiration 
Our key inspiration is that we can reduce the design and editing 
time of 3D models of urban spaces and produce plausible urban 
models by tightly coupling behavioral modeling and geometrical 
modeling. This is in spirit similar to that performed for large crowd 
modeling (e.g., [Sung et al. 2004, Treuille et al. 2006]) and for 
flocking and animal behavior modeling (e.g., [Reynolds 1987, Tu 
and Terzopoulos 1994]). Using a dynamical system, we 
continually alter the model being interactively designed so as to 
conform to plausible urban behavior and urban geometry, enabling 
the production of large models in just a few seconds (Figure 1). 
Traditional urban behavioral modeling simulates the temporal 
evolution of an urban space. The behaviors are the attempts to 
reach a state of dynamic equilibrium; i.e., a status of internal 
consistency between the demands of the population, job market, 
transportation routes, and building structures. Our goal is a 
computer graphics design process that maintains a state of static 
equilibrium between the variables of an urban space. We exploit 
the understood concepts in urban planning and simulation to create 
a behavior that is internally consistent with the current geometry of 
the urban model and, vice versa, we use adaptive geometric 
algorithms to generate geometry that satisfies behavioral demands.  

1.2 Overview 
Our generalized design framework consists of urban space design 
variables with spatially-varying values defined over an urban area. 
The variables control the distribution of population and jobs, land 
values, road network, parcel shape, and building geometry. Editing 
the variables is performed intuitively and visually using a graphical 

user interface (GUI) combined with a paint-brush style tool. Any 
variable can be globally or locally increased, decreased, or 
constrained. The ability to constrain variables is crucial to support 
incremental design and editing at various scales. Moreover, the 
designer can constrain several distinct parts of an existing model 
and let the system complete the rest of the model. The 
dependencies between variables are articulated via differential 
equations. After an edit operation, the dynamical system attempts 
to bring the urban model back into equilibrium (Figure 2). 
Our behavioral modeling is inspired by the urban simulation 
framework, UrbanSim, of Waddell [2002] in the sense of using an 
agent-based method and letting agents make individual choices. 
We reformulate their methodology with the objective of obtaining 
static equilibrium in the urban space. Their framework is a growth-
oriented forward simulation for offline use that does not refresh its 
use of geometry during the simulation and does not produce 
detailed geometry as output. Our objective is not to capture the 
numerous behavioral nuances and interacting agents, nor to model 
the evolutionary processes that shape cities over time. Rather, we 
aim to develop a system that provides a designer with a very 
efficient and parsimonious means to create plausibly realistic city-
scapes that are internally consistent. For this objective, we take an 
approach of simplifying the behavioral aspects that are well studied 
in urban planning, geography, economics and civil engineering, 
and provide instead a fast implementation that even creates large 
multi-city regions fully detailed in their composition of roads, 
parcels, buildings, jobs and population.  
Our geometrical modeling engine consists of an adaptive road 
network generator, parcel generator, and building generator. 
Parcels are computed inside the blocks defined by a road network. 
Building envelopes are procedurally generated and their size is 
estimated from the population and jobs count that they are to 
contain. We use 3D models of intermediate complexity for 
interactive visual feedback during the design process, but support 
exporting our design variables for interfacing other software 
systems focused on creating photorealistic buildings and façades. 
We demonstrate our system by interactively creating large models 
of urban spaces and modifying the model. Our system has designed 
urban models containing up to 50,000 buildings, 3,000 km of 
roads, and 200 km2 of area. The total interactive design process 
time, including several iterations of variable changes and modeling 
alterations, is just a few minutes on a standard desktop computer. 

1.3 Contributions 
The main contributions of our work include 
• a methodology for interactive urban model design that closes 

the loop between behavioral and geometrical modeling, by 
iteratively solving a dynamical system after any editing 

Figure 2. System Pipeline. The user interactively modifies 
behavioral and/or geometrical variables of the urban space. 
A dynamical system continually recalculates the model to 
conform to plausible urban behavior and geometry.  



 

operation to bring the design back to equilibrium (i.e., to 
internal consistency and to plausibility), 

• an interactive agent-based behavioral modeling system which 
simulates population and job changes, lets agents make 
choices, and uses continually changing geometric data, and 

• a road generation algorithm that adapts to the underlying 
population, jobs, terrain, and local transportation demand. 

2. RELATED WORK 
Our work relates to research within the areas of urban modeling 
and urban planning and simulation. One of the first systems to 
generate entire virtual cities was presented by Parish and 
Mueller [2001]. The user provides several types of input layers for 
describing an underlying environment (e.g., a fixed population and 
terrain map) and a set of custom-written grammars based on 
environmentally-sensitive L-systems [Měch et al. 1996] are used 
for generating street layouts and simple buildings. Their work does 
not include behavioral modeling, but indicates as desirable future 
work the inclusion of behavioral schemes in the road creation 
mechanism. Further, a single direction of communication is 
provided between input layers and generated results (i.e., the 
generated 3D model does not alter the input layers) and there is no 
inter-dependency between the input layers. Although layers can be 
manually changed for simple inter-dependencies, it must be known 
to the designer and does not scale well to large models. 
Subsequent research has focused on improving particular aspects 
of city generation. For example, the process of generating a road 
network through the interactive manipulation of tensor fields was 
recently addressed by Chen et al. [2008]. In our previous 
work [Aliaga et al. 2008], we used an example-based approach to 
produce a layout of roads and to complete it with imagery 
synthesized from aerial photographs. While these methods can 
produce a variety of road configurations, the ad hoc design 
processes do not consider both the distribution of population and 
jobs and the accessibility between different parts of the model. 
Such consideration requires manual editing (for [Chen at al. 2008]) 
or many well-chosen example inputs (for [Aliaga et al. 2008]).  
Various authors have focused on detailed modeling of either 
individual buildings or their parts (e.g., [Lipp et al. 2008, Merrell 
and Manocha 2008, Mueller et al. 2006, Mueller et al. 2007, 
Wonka et al. 2003]). CityEngine [Procedural 2009] implements 
some of the previous algorithms in a commercial software system.  
Urban planning and simulation focuses on behavioral modeling 
(e.g., [Alkheder et al. 2008, Leonard et al. 1998, Portugali 2000, 
Waddell 2002]). As opposed to shorter term simulations of traffic 
flow and crowds in 3D environments, our use of the term 
behavioral simulation refers to modeling long term behaviors of an 
urban space based on socio-economic factors. The dominant 
methods for urban simulations are cellular automata [Leonard et al. 
1998], agent-based models [Portugali 2000], and aggregate 
equilibrium models [Putman 2000]. In addition, micro-simulation 
models attempt to simulate decision-theoretic individual agents 
responding to both localized and broader environments [Waddell 
2002] and leverage the Random Utility Maximization framework 
to provide the behavioral and statistical theory consistent with 
decision-theoretic agents [McFadden 1973, Train 2003]. In 
general, these simulation systems model an urban environment as a 
set of interconnected processes and are computationally expensive. 
Micro-simulation discrete choice models, such as UrbanSim 
[Waddell 2002], contain agents that make decisions to locate and 
move within the urban environment. This method works with very 
small cells or parcels, but it differs from others by integrating 
discrete choice models, an explicit representation of real estate 
markets, and statistical methods to estimate model parameters and 

to calibrate uncertainty in the model system. Our work leverages 
off UrbanSim (Section 3.2). 
Some recent works model the change of an urban space over time. 
In Vanegas et al. [2009], we used the output of an offline 
behavioral simulation to make changes to current aerial imagery 
and produce tentative 2D aerial views of the urban space in the 
future – no feedback to the urban simulation is performed. Lechner 
et al. [2007] describe an offline agent-based temporal simulation to 
generate realistic 2D land-use maps based on a user-sketched 
global behavior, but their system does not provide tools for editing 
and designing 3D geometric models of urban spaces. Weber et al. 
[2009] presented a geometric simulation of a city over time (e.g., 
25 years). Their interactive simulator focused on urban growth. 
However, their simulation is a forward computation without 
feedback. For instance, the alteration of building heights by the 
user does not modify the distribution of population and jobs, large 
changes to the road network based on designer input for altering 
agent behavior are not shown, and completion of urban models 
from a set of constrained design variables is not implemented. 
Furthermore, their typical total design and simulation time is 
between one hour and one day. In contrast, our system focuses on 
providing tools to design urban models from scratch and to yield 
complete models within minutes.  

3. URBAN SPACE DESIGN 
3.1 Design as a Dynamical System 
Our system consists of ܰ urban space variables defined over a 2D 
spatial domain. Each variable is sampled over a 2D spatial grid ܩ 
of size ܹ ൈܪ. We use ݒ to denote the values of the ݇-th state 
variable throughout the entire spatial grid, and ݒሺ݅, ݆ሻ to denote 
the value of the ݇-th state variable at grid cell ሺ݅, ݆ሻ , for ݇ א ሾ1, ܰሿ, 
݅ א ሾ1,ܹሿ, and ݆ א ሾ1,  ሿ. We represent the change of eachܪ
variable by the differential equation ݒሶሺ݅, ݆ሻ ൌ ݂ሺݒଵ, ,ଶݒ …  .ேሻݒ
Since each variable is potentially dependent on the values of every 
other variable at all grid cells, each differential equation is 
generally a function of all state variables. While the derivatives of 
other variables could also be used as independent variables in each 
differential equation, in practice our current formulation is accurate 
enough for our interactive design purposes. 
If a variable ݒ, for some value ܿ א ሾ1,ܰሿ, is changed by the user, 
the system iteratively updates the other variables in order to return 
to a state of equilibrium. We say an urban model is in equilibrium 
when for a small convergence threshold ߝ we have 

,ሶሺ݅ݒ| ݆ሻ|   (1)                                       .ߝ
for all ݇, and where the variables are assumed to be normalized. 
The corresponding iterative system can be written as  

,ାଵሺ݅ݒ ݆ሻ ൌ ,ሺ݅ݒ ݆ሻ  ,ሶሺ݅ݒ ݆ሻ                       (2) 
where ݊  0 is the iteration count, ݇ ് ܿ, and ݒ are the initial 
values of the system assumed to already be at equilibrium.. 
Equations of the form of (2) can be solved using Euler’s method, 
or other techniques for ordinary differential equations. But, in our 
problem domain ݒ and ݒሶ are difficult to express symbolically, 
thus computing ݒାଵ in symbolic form is hard. Furthermore, the 
total number of variables is very large; e.g., an urban area of only 
10 ൈ 10  kilometers typically consists of 100 ൈ 100 cells, each of 
100 ൈ 100  meters, and amounts to 10000ܰ variables with very 
intricate and wide spread dependencies. 
Instead, our work proposes algorithms (or symbolic equations 
when possible) for efficiently computing ݒ’s and ݒሶ’s (Sections 4 
and 5), thus enabling an iterative solution for the above dynamical 
system. Our framework can be extended to include any number of 



 

variables as long as the equivalent of a differential equation is 
provided. The stochastic nature of some of our algorithms prevents 
the system from returning to the exact same equilibrium state. In 
our experiments, our approach shows stability in the sense of 
converging to a similar equilibrium state from nearby states with 
perturbed variable values (Figure 6). Oscillations, which are often 
present in high-dimensional dynamical systems, are not generated 
in practice because we ensure all state variables stay within their 
respective range of reasonable values and because the step size for 
all variables is small from iteration to iteration. 

3.2  Behavioral Modeling 
Waddell and Ulfarsson [2004] define as major components of an 
urban simulation a set of algorithms which are applied to a 
spatially distributed set of variables representing population and 
jobs. These components (algorithms) are i) transition: adds or 
removes population/jobs from the urban system based on interfaces 
with an exogenous macroeconomic model or an endogenous 
model, ii) mobility: predicts that a subset of the population/jobs 
will move from their current location due to a change in living 
conditions (e.g., marriage, new child, job change, etc.), iii) location 
choice: predicts the places to where population/jobs, that have 
chosen to move, will move, and iv) real-estate developments: 
imitates developers who change land use due to economic 
investments or changes in governmental regulations.  
Based on Waddell and Ulfarsson [2004], we select a minimal set of 
design variables (i.e., specific instances of the ݒሺ݅, ݆ሻ’s):  

• population count ሺ݅, ݆ሻ, corresponding to the number of 
people who live in the grid cell, and 

• job count ܾሺ݅, ݆ሻ, referring to the number of jobs (total 
employment) in the grid cell. 

In addition, we also use per grid cell values for accessibility ܽሺ݅, ݆ሻ 
and land value ݈ሺ݅, ݆ሻ. While these values could be user-specified 
parameters, we found them less intuitive and thus only provide 
algorithms to compute them automatically (Section 4.2). 
The components of Waddell and Ulfarsson [2004] are mapped to 
our dynamical system and implemented as new algorithms with 
interactive update rates. Transitions and real-estate development 
are performed by the designer. Mobility and location choice are the 
primary way that our dynamical system alters its state in order to 
reach equilibrium. Consider a designer who directly changes the 
population and/or jobs count of one or more grid cells. The change 
will alter accessibility and land-value which then changes the 
desired spatial distribution of population and jobs and, 
consequently, the geometric model. If the change is sufficiently 
large, it will cause the difference in equation (1) to exceed ߝ. Then, 
the mobility and location choice algorithms will be executed by the 
dynamical system, and the population and jobs will be 
redistributed until again reaching a state of equilibrium. The 
condition in equation (1) terminates the iterations once the only 
change is due to random mobility changes which no longer 
significantly alter the spatial distribution of the variables. These 
two algorithms define the differential equations for either 
population or jobs (Section 4.1).  

3.3 Geometrical Modeling 
We define a set of geometric variables for which relations with 
behavioral variables can be established. Although variables are 
stored in grid cells, geometric structures are freely positioned and 
can cross cell boundaries. For a grid cell ሺ݅, ݆ሻ we define 

• roads length ݎሺ݅, ݆ሻ, the total length of the roads inside 
the grid cell, 

• average tortuosity ߬ሺ݅, ݆ሻ, the mean ratio between the 

road segment length and the distance between the road 
segment endpoints for the roads inside the grid cell, 

• building volume ݉ሺ݅, ݆ሻ, the total volume of interior 
space within the building structures of the grid cell, and  

• terrain elevation ݄ሺ݅, ݆ሻ, the average elevation of the 
terrain inside to the grid cell – in our current work, this 
variable is only under user control. 

Furthermore, parcel size and land use are other design variables but 
are computed algorithmically (see Sections 5.3 and 5.4). 
The differential equations for geometric variables can be succinctly 
expressed as symbolic expressions and such is given in Section 5. 
However, unlike behavioral modeling, calculating the value of the 
geometric variables requires generating the exact geometric model. 
In Sections 5.2-5.4, we describe our demand-based generating 
functions for geometrical modeling. 

3.4 Variable Specification 
The designer guides the editing process by interactively specifying 
variable values. Analogous to image painting, a brush tool enables 
increasing, decreasing, constraining, or setting the values of 
spatially-varying variables using mouse-driven strokes. Highways 
are sketched by the designer rather than produced by our 
dynamical system because their configuration is often subject to a 
very high-level decision process. 

4. BEHAVIORAL MODELING 
4.1 Differential Equations 
The grid cell values for the behavioral differential equations are 
updated using an agent-based framework augmented with a 
discrete choice modeling approach. In our system, population or 
jobs are either changed directly by the designer or changed 
indirectly (e.g., road density is reduced, which then should cause a 
decrease in population). A directly modified variable will cause the 
accessibility and land values to change which in turn will alter the 
spatial probability distribution of the other behavioral variables; in 
contrast an indirectly changed variable will demand a new spatial 
distribution for population and for jobs. In both cases, our agent-
based mobility and location choice algorithms will re-distribute the 
population and jobs according to the new desired probabilities. 

4.1.1 Mobility Algorithm 
Our mobility algorithm moves a subset of the agents from their 
current grid cell. The subset is of size ܵ ൌ ߙ where ܧߙ א ሾ0,1ሿ is a 
small fraction, ܧ ൌ ∑ ∑ ݁ሺ݅, ݆ሻ , and ݁ሺ݅, ݆ሻ is either ሺ݅, ݆ሻ 
or ܾሺ݅, ݆ሻ. The subset of agents is chosen at random and is placed in 
a pool ܳ of unlocated agents. If the designer wishes to increase the 
total number of agents, the count is simply added to ܳ. If instead 
the designer wishes to decrease the total number of agents, they are 
selected at random and discarded prior to the mobility algorithm.  

4.1.2 Location Choice Algorithm 
The agents in ܳ are placed in the grid by a location choice 
algorithm. The selection of the location depends on the current 
accessibility and land values. In Waddell [2002], multinomial logit 
models are used to implement discrete location choice. For our 
objective of interactive urban design, we found it sufficient, as well 
as efficient, to use a weighted attractiveness measure which is then 
translated to a probability by normalizing it with the sum of the 
attractiveness measure across all locations in a Monte Carlo 
sampled set. This approximates the discrete choice models by 
substituting in a simpler approximation of the utility function. In 
particular, for each agent ݁௦ א ܳ, where ݏ א ሾ1, ܵሿ, we choose a 
small random subset of size ܶ ൌ  is the ߙ grid cells (where ܪܹߙ
same small fraction used by the mobility algorithm), namely 



 

{ሺ݅௧, ݆௧ሻሽ where ݐ א ሾ1, ܶሿ. The probability ݍ௦௧ that ݁௦ will be 
located at a cell ሺ݅௧, ݆௧ሻ is given by 
௦௧ݍ  ൌ ሺݓܽ௧  /݈௧ሻݓ ௦ܶ (3) 
where ݓ and ݓ represent relative importance weights for the 
accessibility ܽ௧ א ሾ0,1ሿ and land value ݈௧ א ሾ0,1ሿ of cell ሺ݅௧, ݆௧ሻ, 
and ௦ܶ ൌ ∑ ௦௧௧ݍ  is the sum of the ݍ௦௧’s for the current agent. 
A random number generator with uniform distribution is used to 
determine the grid cell ሺ݅௧, ݆௧ሻ to which ݁௦ will be located. 

4.2 Estimating Accessibility and Land Value 
The accessibility ܽሺ݅, ݆ሻ and land value ݈ሺ݅, ݆ሻ of grid cell ሺ݅, ݆ሻ is 
calculated using a logistic function. Accessibility ܽሺ݅, ݆ሻ is a 
measure of the access that grid cell ሺ݅, ݆ሻ has to jobs and to the rest 
of the population. An intuitive behavior for accessibility is that it 
decreases with the slope of the terrain and increases with improved 
connectivity to roads, population and jobs, water fronts and river 
banks [Ortúzar and Willumsen 2001]. Good connectivity can be 
implied by geometric closeness or good access via the 
transportation network (e.g., highway).  
To represent accessibility, we use the logistic function  
 ܽሺ݅, ݆ሻ ൌ

1
1  ݁ି௭ሺ,ሻ

   (4) 

where ݖሺ݅, ݆ሻ ൌ ߚ  ,ଵሺ݅ݑଵߚ ݆ሻ  ,ଶሺ݅ݑଶߚ ݆ሻ  ,ଷሺ݅ݑଷߚ ݆ሻ. The 
variable ݑଵ is an estimate of proximity of grid cell ሺ݅, ݆ሻ to local 
roads weighted by their relative importance and distance, 
,ଵሺ݅ݑ  ݆ሻ ൌ ሺܴுሻݐݏ݀݅ݓ  ሺܴሻݐݏ݀݅ݓ   ሺܴௌሻ (5)ݐݏ௦݀݅ݓ
where ݓ, ݓ, and ݓ௦ are the weights of relative importance of the 
normalized distance measures, ݀݅ݐݏሺߕሻ returns distance from the 
grid cell center to the closest segment of ߕ, where ߕ can be one of 
highways ܴு, avenues ܴ, or streets ܴௌ, ݑଶ represents the local 
slope of the terrain, and 
,ଷሺ݅ݑ  ݆ሻ ൌ ∑ ೝೕೝ

ௗೕ,ೝೕೝ
       (6) 

is a distance normalized measure of the activity level at ሺ݅, ݆ሻ based 
on a sampling of ܴ neighboring grid cells ሼሺ݅, ݆ሻሽ where ݎ א
ሾ1, ܴሿ. The value ݀,ೝೝ is the distance from grid cell ሺ݅, ݆ሻ to grid 
cell ሺ݅, ݆). ܦೝೝ is a measure of the activity level at grid cell 
ሺ݅, ݆ሻ and is computed as the sum of ሺ݅, ݆ሻ  ܾሺ݅, ݆ሻ. The 
empirically determined constants ߚ, ,ଵߚ  ଷ provide theߚ ଶ, andߚ
relative importance of the factors that affect accessibility. Land 
value ݈ሺ݅, ݆ሻ is calculated using a logistic function similar to (5).  
Figure 3 shows how by quickly changing job distribution, the 
system automatically creates a new population center including its 
roads, parcels, and buildings connected to the original town. 

5. GEOMETRICAL MODELING 
5.1 Differential Equations 
Our system reacts to per grid cell changes of geometric variables 
by using adaptive algorithms to generate geometry. The differential 
equations for determining per grid cell geometric variable changes 
are easy to write symbolically. However, obtaining the actual 
variables values for a just-changed set of geometric variables is 
challenging. Simply reusing the variable value computed in a 
previous iteration of the dynamical system is not appropriate 
because it does not necessarily represent the variable value of the 
current geometry - it may differ because the geometric model 
consists of discrete structures and its generation may be subjected 
to constraints imposed by the designer. 
The differential equations in (1) can generically be written as 

ሶݒ ାଵሺ݅, ݆ሻ ൌ ,ାଵሺ݅ݒ ݆ሻ െ ,ሺ݅ݒ ݆ሻ                      (7) 
where  א ሼݎ, ߬,݉ሽ . For the (݊  1ሻ-th step, the target variable 
values ݒାଵ and the current variable values ݒ are used. 
The target variable values for ݎ, ߬,݉ are computed as follows: the 
target total length of the roads inside a grid cell ሺ݅, ݆ሻ needed to 
accommodate its population ሺ݅, ݆ሻ and jobs ݆ሺ݅, ݆ሻ is 

,ାଵሺ݅ݎ ݆ሻ ൌ min ൫ݓሺ݅, ݆ሻ  ,ܾሺ݅ݓ ݆ሻ,  ௫൯            (8)ݎ
where ݓ,   represent the mean road length that one householdݓ
and one job require for transportation, respectively, and ݎ௫ is the 
maximum road length inside a grid cell. The target total building 
volume in a grid cell ሺ݅, ݆ሻ is 

݉ାଵሺ݅, ݆ሻ ൌ ,ሺ݅ݓ ݆ሻ  ,ܾሺ݅ݓ ݆ሻ                   (9) 
where ݓ represents the mean building volume necessary to 
shelter one household, and ݓ is the mean building volume to 
allocate one job. The target tortuosity inside a grid cell ሺ݅, ݆ሻ is 

߬ାଵሺ݅, ݆ሻ ൌ 1  ݇ ቀ1 െ ሺ,ሻାሺ,ሻ
ೌೣାೌೣ

ቁ                     (10)  

where ݇ is a user-controlled parameter that scales the global 
tortuosity, and ௫ and ܾ௫ are respectively the maximum 
number of people and jobs per grid cell. 

5.2 Generating Arterials and Streets 
To generate the roads that correspond to per grid cell road length 
values ݎሺ݅, ݆ሻ, we create a network of roads that connect and span 
the main population clusters in the urban space. Adapting 
from [AASHTO 2004], we classify roads into three types based on 
their size: (i) highways, which are the highest capacity roads with 
limited access and carry inter-city traffic and, in large cities, intra-
city traffic; (ii) arterials, which are lower capacity than highways, 
carry intra-city traffic and connect to local streets and to highways; 
and (iii) streets, which are local roads that route traffic from 
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Figure 3. Example Behavioral Modeling. Changing jobs distribution can be used to produce new plausible geometries. An initial city 
is located on the left side of a river (c) and has the job distribution shown in (a) and the population distribution shown in (b). A new 
employment area is sketched on the right side of the river (d). The system then increases and relocates population to meet the new job 
offer (e), and a second city is built on the right side of the river (f). 



 

arterial roads to individual parcels. First, in order to connect the 
main population clusters, a set of seeds are generated considering 
the population and jobs distribution and the location of designer-
sketched highways. Each seed is converted to an intersection of the 
arterial roads network and is used to generate arterial road 
segments. Second, street seeds are generated along arterial road 
segments and used to create streets. The expansion of both streets 
and arterials is guided by the terrain, the spatial distribution of 
population and jobs, and user-specified style parameters. 
Figure 4 shows how sketching a highway can produce a more 
widespread city. The designer draws a new highway and keeps the 
total population and jobs constant. The system determines that the 
new highway increases accessibility from the rural area to the 
downtown. Then, population moves to now accessible lower land-
value areas and new roads and buildings are adaptively generated. 

5.2.1 Observations and Assumptions 
Our road generation method is based on the following observations 
about real-world roads. (a) Road networks are designed and built to 
meet a transportation demand by the population [Montes de Oca 
and Levinson 2006]. The capacity of a road, reflected by its width 
and the mean distance between its consecutive intersections, 
responds to such a demand. (b) Road networks exhibit a variety of 
styles which are difficult to be solely inferred from behavioral and 
geometrical parameters. While highways are usually designed to 
minimize travel distances, arterials and streets are more affected by 
historical and aesthetic factors.  
We select a set of design parameters sufficiently expressive to 
represent a wide range of observed patterns (e.g., Figures 5 and 8). 
Our road generation algorithm uses the following key assumptions: 
• the predominant patterns of arterials and streets are grid style 

and radial style with spurious occurrences of dead-ends, 
• in the grid style, up to four nearly-perpendicular segments 

depart from each intersection point,  
• in the radial style, three or more road segments depart from 

some intersection points at equally spaced angles, and  
• the road pattern and its tortuosity is affected by the nearby 

population and jobs. 

5.2.2 Seed Generation Algorithm 
To obtain a set of ߢ seeds for generating arterial roads, we group 
grid cells using a weighted ݇-means clustering algorithm. The 
value of ߢ is a user-specified constant set by default to 
∑ඥߛ ሺሺ݅, ݆ሻ  ܾሺ݅, ݆ሻሻ , where ߛ  1 is a small constant. We 
let ݏ௨, for ݑ א ሾ1,  ௨ to beܭ ሿ, be the center point of a clusterߢ
determined. The clustering algorithm uses ݓ௨ ൌ ,ሺ݅௨ ݆௨ሻ 

ܾሺ݅௨, ݆௨ሻ as grid cell weights in order to pull the cluster centers 
towards areas of larger population and jobs, though they will still 
be connected with sparsely populated clusters. Further, we denote 
the center of a grid cell ሺ݅, ݆ሻ by ݔ. Thus, the algorithm searches 
for a set ܵ ൌ ሼݏଵ, ,ଶݏ … ,  ሽ that minimizes the expressionݏ
 

  ݔ௨൫ฮݓ െ ௨ฮ൯ݏ
ଶ

ሺ,ሻאೠ



௨ୀଵ

 (11) 

The set ܵ is augmented with seeds that are created on previously 
existing roads. When generating arterials, the seeds are created on 
highways (if they exist). In this manner, arterial roads are also 
connected to the highway network. After the arterial roads are 
generated, we create seeds along them for the street expansion. In 
both cases, the distance between two consecutive seeds along the 
highway/arterial is inversely proportional to the amount of 
population and jobs in nearby grid cells. 

5.2.3 Expansion Algorithm 
Starting at the previously computed seeds ܵ, we generate road 
segments using a breadth-first expansion method. All pre-
computed seeds are placed into a pool ܲ. The first seed ݏ௨ is 
removed from ܲ and an attempt is made to create road segments in 
several directions around the seed. A new seed ݏ௩ is created at the 
end of a newly created piecewise linear road segment ܥ௨௩ provided 
no previously existing seed is nearby. The new seeds are added to 
ܲ and the process repeats until the pool is empty. The set of 
resulting ܥ௨௩ collectively form the road network ܴ. 
A seed ݏ௨ has ݉ departing directions Θ௨ ൌ ሼߠ, ,ଵߠ … ,  ିଵሽ alongߠ
which new road segments can be generated. The value of ߠ, 
for ݇  0, is given by ߠ ൌ ߠ 

ଶగ


 ߳, where ߳ is a random 
variable with distribution ߳~ܰሺ0,  ,is a small constant ߪ ,ଶሻߪ
and ߠ is a reference angle. The reference angle is equal to the 
orientation of the road segment to which the seed is attached.  
For an urban area, the user chooses either a grid style or a radial 
style road pattern. The choice affects the number of departing 
directions for the seeds: for grid style, ݉ ൌ 4 and for radial style, 
݉  3 for the initial seeds and ݉ ൌ 4 for all later seeds. 
The road expansion for a seed ݏ௨, in direction ߠ, consists of 
evaluating a piecewise linear curve integral from ݏ௨ to a point ݏ௩, 
using numeric integration of a function ሺݔሻ. The function ሺݔሻ 
measures the population and jobs in the grid cells located within a 
small distance of ݔ. The integral is given by 
  ݔሻ݀ݔሺ ൌ ೠೡߩ

. (12) 

Figure 4. Example Geometrical Modeling. The designer wishes to produce a more widespread city. The population is tightly gathered 
around a downtown (a). The user draws a new highway and, as a result, the population redistributes along the highway, the downtown 
density decreases, and new roads, parcels, and buildings are automatically created (b).
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The integration stops when the total value of the integral is 
ߩ ൌ ,ሺ݅ݎߙ ݆ሻ, where ߙ is the desired population/job density to road 
density ratio. The location where the integral stops is denoted ݏ௩.  
The effect of this integration is to expand the road from ݏ௨, with an 
initial direction ߠ, until the road has covered a sufficiently large 
amount of population and jobs. This implies that in an area of high 
population and/or jobs, the integration will terminate and generate 
an intersection (i.e., seed) at a shorter distance leading to a denser 
road network. Therefore, the road network is adaptively generated 
based on population and jobs. 

5.2.4 Road Geometry Creation Algorithm 
To determine the road geometry of ܥ௨௩, we choose the amount of 
smoothly varying curvature in ܥ௨௩ by using the tortuosity 
parameter ߬, perform adaptations based on the terrain, and produce 
several types of intersections. For a point ݏ௨ that is initially being 
expanded in direction ߠ, the next point along ܥ௨௩ is calculated by 
advancing a step Δݐ in direction ߠ. The process is repeated until 
the integration completes. To introduce smoothly varying 
curvature, the direction ߠ is updated by ߠ ൌ ߠ  Δߠ, where 
Δߠ ൌ ߣ ڄ Δߠ   is a random sample from a uniform distribution ߤ .ߤ
ሾെ1,1ሿ and ߣ is a small fraction. 
The expansion of the road geometry adapts to the terrain elevation 
and the presence of water bodies. When the vertical slope of a next 
step in the road integration process exceeds a threshold, the 
algorithm attempts to find a new direction of lesser slope. If such a 
direction does not exist, the road becomes a dead-end. Roads 
entering a water body are processed depending on the road type. 
Arterials may lie on the water, mimicking bridges. If the road 
segment corresponds to a street, it becomes a dead-end.  
The tortuosity of the road patterns is determined by the underlying 
terrain or by style decisions related to land use (e.g., grid-style 
roads in dense commercial areas and organic/curvy roads in low-
density residential areas). To attempt to imitate real-world 

tortuosity, our system automatically changes tortuosity based on 
the aforementioned criteria. Further, since real-world road 
networks exhibit less regular geometric features (e.g., sporadic 
dead-ends, “T” and “L” intersections), our algorithm introduces 
such features randomly by ignoring some expansion directions. 
As an example, Figure 5 shows an initial city with radial-style 
roads (Figure 5a) being progressively transformed by large terrain 
changes. After each edit, our system automatically redistributes the 
population, based on changes in accessibility, and infers a new 
road network density and tortuosity to accommodate the 
population and jobs (Figures 5b-c). In particular, note the variation 
in tortuosity and road density as per the aforementioned guidelines. 
The figure also shows that upon specifying too many constraints 
(e.g., a terrain unable to house a given population), the system 
makes a good attempt to find a suitable urban configuration. Such 
a configuration is not always possible (Figure 5d) and, in this 
example, a subset of the population cannot be located in the city. 

5.3 Generating Parcels 
City blocks are defined as closed simple paths of the road network 
inside of which are parcels of land. The number of parcels inside 
each block is a function of the longest axis of the oriented 
bounding box of the block and the total count of population and 
jobs contained within the grid cells intersected by the block. For 
low-density areas the number of parcels increases approximately 
linearly with density; for higher-density areas, once a minimum 
parcel area has been reached, building height starts to increase. 
Given the desired number of parcels and the block contour, our 
method geometrically partitions the city block (e.g., as in Parish 
and Mueller [2001] or Aliaga et al. [2008]) into parcels. 

5.4 Generating Building Envelopes 
We procedurally generate building envelopes that correspond to 
per grid cell building volumes ݉ሺ݅, ݆ሻ. To create a building in 
parcel ݇, we calculate its footprint ܨ and its height ݄,. While the 
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Figure 5. Terrain and Road Editing. The road network of a city is changed by 
progressively altering the terrain. The population is kept constant and its 
distribution at each step is shown in the smaller boxes. Initially, the city is 
located on a flat terrain (a). A bay is inserted causing the population to 
automatically relocate to the surrounding areas and the road network to be 
recomputed (b). Mountains are drawn around the lake, leaving a narrow strip of 
developable land. The population becomes denser in the strip and/or relocates 
(c). If the user draws more mountains (d), then the area of developable land 
becomes insufficient to allocate the provided population. As a result, for this last 
step (d) the desired combination of values for behavioral and geometric variables 
is unfeasible and the system fails to locate 34% of the provided population. In 
practice, such over-constrained situations do not occur often. 



 

latter step is done by our own interactive procedural method, the 
building type, the geometry of its footprint, and the building height 
can also be exported to an external application for offline 
photorealistic rendering (e.g., CityEngine, Mental Ray, etc). 
The building type, which implicitly reflects land use, is determined 
by inspecting the ratio of number of jobs to the population size and 
a building type is chosen from a small database of procedural 
building styles. In particular, (i) a commercial building is assigned 
to a parcel with high job count and low population, (ii) a residential 
building is allocated to a parcel with nearly zero jobs and high 
population, (iii) an industrial building is placed on a parcel with a 
medium-level job count and nearly zero population, and (iv) a 
parcel with only a low population is assigned a house.  
To calculate building footprint and height, the building volume ߭ 
must accommodate a given amount of population and jobs. The 
volume ߭ is proportional to the sum of the population and the jobs 
in each of the grid cells that are intersected by parcel ݇, multiplied 
by the fraction of area of each grid cell that the parcel occupies. To 
obtain a volume ߭, we first scale the building horizontally and 
then vertically. The horizontal expansion specifies the building 
footprint ܨ; the vertical expansion yields the building height ݄. 
To compute ܨ, we assume a footprint is usually rectangular and is 
an approximate inset of the parcel that contains it. We first scale 
the footprint so its bounding box matches that of the maximum-

contained box (MCB) of parcel ݇. Next, we let ݄ ൌ 1 be the 
initial height (in floors) of the building and ܣ be the area of the 
MCB. If ܣ݄ ൏ ߭ then we let ݄ ൌ ݒڿ ⁄ܣ ݄ܣ If .ۀ   , thenݒ
we compute the inset of MCB such that ܣ݄ ൎ  . In the firstݒ
case, a one-story building is not large enough to hold the required 
population and/or jobs, and thus more floors are necessary. In the 
second case, a one-story building occupying the area of the MCB 
is too large compared to the covered population and jobs. Thus, its 
footprint is scaled down. In some cases, our system randomly sets 
݄ ൌ 0 so as to create an empty parcel that mimics a park.  

6. RESULTS AND DISCUSSION 
We have used our approach to interactively create and modify 
several synthetic urban spaces. Our system is implemented in C++ 
using OpenGL, a dual core 3.0Ghz PC, and a NVIDIA Quadro FX 
1700 graphics card. The system is self-contained and no external 
software is required to reproduce our results. Behavioral modeling, 
parcel generation, and building generation use multiple CPU cores 
to perform computations in parallel. Grid sizes are determined by 
the designer. The processing time for the grid cells is very uniform 
thus no load balancing is performed. The update time during 
editing varies from a fraction of a second (for small grids) to a few 
seconds (for large grids, e.g., 15 ൈ 15 kms). Given a terrain, the 
total design process for any of our examples takes five minutes or 
less. Most of the shown examples are also in our paper’s video. 
To test the stability of our urban design system, we alter a subset of 
the design variables and compare the states to which the system 
converges after each perturbation. In Figure 6a, we provide an 
initial population distribution and a simple sketched highway. 
Figure 6b shows the model at equilibrium as obtained by our 
system. In Figure 6c, we change the population distribution to a 
constant per-grid cell value and leave the road network unchanged. 
In Figure 6d, the system brings the model to an equilibrium point 
that is very similar to the one shown in Figure 6a. Since from two 
different perturbed states (Figure 6a-c) the system arrives at similar 
equilibrium points (Figure 6b-d), our system shows stability. The 
stochastic nature of our algorithms prevents the two equilibrium 
states from being identical yet their visual similarity is clear. 
Our system completes an urban model from only a partial 
specification by the designer. This facilitates faster creation 
because the designer can focus solely on desired subsets of the 
model. In particular, Figures 7a-c show designer-specified 
landmarks consisting of the location of the downtown (specified by 
a single click of dropping a distribution of jobs) and sketched 
terrain, highways, and parks. Then, the system automatically 
computes a suitable distribution of the population (Figure 7d) and 
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Figure 6. Stability. Starting from a specified population 
distribution (a), our system computes a model at equilibrium 
(b). Population is perturbed to a constant distribution (c) and 
then the system computes a similar equilibrium point (d) based 
on the roads and the terrain (e). Despite the perturbations, a 
similar equilibrium point is reached. 

Figure 7. Completion. Taking as input a set of user-specified landmarks (downtown location (a), terrain and highways (b), and parks 
(c)), our system automatically completes the rest of the city. The process consists of first computing the behavioral variables (population 
(d) and jobs (e)) and then the geometric variables (blocks, parcels (f) and buildings (g)) while respecting the landmarks. A view of the 
resulting 3D model of the city is shown in (h). 
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jobs (Figure 7e) and generates a road network. The road network is 
filled-in with parcels (Figure 7f) and with buildings (Figure 7g) 
producing a final 3D model (Figure 7h). Once given the terrain, the 
entire design process took less than five minutes. 
In Figure 8, we build upon the previous example and validate the 
result via a comparison to a real-world city. Figure 8c is a picture 
of a real city: Pacific Grove, California (USA). Figure 8f is the 
output from our system, showing that with a small amount of user 
input we are able to produce a plausible approximation of the 
actual city. The designer provided the same information as in the 
example of Figure 7 (i.e., sketched terrain, highways, parks, and 
downtown location), but also provided a similar total population 
and jobs count as in the real city. Clearly, the synthetic model will 
not match perfectly in all details, as shown in the insets for two 
small areas from approximately equal locations between the actual 
(Figure 8a-b) and the synthetic (Figure 8d-e) city. However, the 
overall patterns are quite similar visually and in terms of 
substantive attributes. We believe this to be a novel application of 
procedural generation of an entire urban area to approximate a real 
one, with very little input detail. 
Our method also supports the use of constraints to generate 
complex urban models. Figure 1 shows an example two-step 
design sequence. The user specifies a terrain and low-density job 
distribution in the middle of a valley by a coast which results in an 
initial urban model (Figure 1a). As a design choice, the user wishes 
to create a larger city occupying the same terrain. More 
specifically, the designer wishes the downtown to have high-rise 
buildings and for the other developments of the larger city to be 
located outside the valley. Thus, the designer replaces the buildings 
with taller ones (Figure 1b-c) and constrains the downtown grid 
cells (Figure 1d). The system automatically increases the job count 
which in turn attracts more population. While new population 
would usually be located near the job center, the constraints force 
the additional developments to be elsewhere. Based on 
accessibility and land value, our system places the developments 
near the major roads connected to downtown and outside the valley 
(Figure 1e-f). The use of constraints enables closely controlling the 
modeling process and still benefitting from the automatic 
completion and assurance of producing plausible urban models. 
Figure 9 shows an example of large multi-city urban space 
designed by our system and spanning over 200 km2. The synthesis 
specifications can also be provided to existing tools to create more 

detailed buildings, highways, and photorealistic renderings (e.g., 
CityEngine [Procedural 2009], Mental Ray). For instance, Figures 
9f-g were created by using a small set of parameterized building 
grammars and computing the parameters with our system. 

7. CONCLUSIONS AND FUTURE WORK 
We have presented an interactive system to design and edit 3D 
urban models. Our key inspiration is to close the loop between 
behavioral modeling and geometrical modeling producing a single 
dynamical system that assists a designer in creating urban models. 
After a user-specified change, the dynamical system attempts to 
bring the 3D urban model back into equilibrium, thus matching the 
demands of behavioral modeling with those of geometrical 
modeling. This ability enables the designer to only partially specify 
the design variables and have the system complete the rest. In 
addition, the designer can incrementally build the model and can 
explicitly constrain one or more design variables thus having both 
global and local editing control. Large and complex models can be 
produced in a few minutes or less. 
Our framework has the following limitations: i) it includes a 
stochastic component which implies the exhibited behaviors and 
geometries are not exactly repeatable from session to session; 
ii) our dynamical system is subject to oscillations, though we 
ameliorate this by constraining parameter values and not straying 
far from equilibrium; and iii) over-constraining the system can lead 
to an unfeasible urban model (e.g., Figure 5d). 
We are pursuing two items for future work. First, we are interested 
in including additional elements of behavioral modeling, such as a 
more sophisticated accessibility model. Second, we are seeking 
methods to generate more complex geometric structures using 
socioeconomic data such as generating additional building details. 
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Figure 9. Design Example. A designer draws a large terrain with mountains and water bodies, paints three main jobs clusters, draws 
two highways traversing the terrain, and specifies a population. Our dynamical system (a) moves the population to areas of high 
accessibility and forms three different cities. Our system (b) generates an adaptive road network. We show three different views of the 
road network, blocks, parcels, building footprints, and geometry (c, d, e). The 3D model is exported to CityEngine and rendered in 
Mental Ray for more detailed facades (f, g). 
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