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Abstract  
We present an interactive system for synthesizing urban layouts by 
example. Our method simultaneously performs both a structure-
based synthesis and an image-based synthesis to generate a 
complete urban layout with a plausible street network and with 
aerial-view imagery. Our approach uses the structure and image 
data of real-world urban areas and a synthesis algorithm to provide 
several high-level operations to easily and interactively generate 
complex layouts by example. The user can create new urban 
layouts by a sequence of operations such as join, expand, and blend 
without being concerned about low-level structural details. Further, 
the ability to blend example urban layout fragments provides a 
powerful way to generate new synthetic content. We demonstrate 
our system by creating urban layouts using example fragments 
from several real-world cities, each ranging from hundreds to 
thousands of city blocks and parcels.  
Keywords: example-based, texture and image synthesis, 
procedural modeling, content-aware image editing. 
CR Categories: I.3 [Computer Graphics], I.3.3 [Picture/Image 
Generation], I.3.5 [Computational Geometry and Object 
Modeling], I.3.6 [Methodology and Techniques]. 

1. INTRODUCTION 
We investigate the problem of synthesizing urban layouts by 
example. An urban layout refers to aerial-view images of urban 
areas combined with vector-based data describing the street and 
parcel network. Such an objective is pursued by numerous 
applications including the creation of new urban spaces in a similar 
style to an existing location [Mumford 1961], the design and 
extension of an urban area according to expected urban growth and 
development [Waddell et al. 2007], and the search for urban 
designs to accommodate evacuation routes, resources, and policing 
[Palma et al. 2007]. This paper describes an example-based 
framework (e.g., [Funkhouser et al. 2004, Hertzmann et al. 2001, 
Kwatra et al. 2005]) for intuitive interactive synthesis of urban 
layouts, using concepts from computer graphics, texture and image 
synthesis, and content-aware image editing.  
In contrast with traditional image synthesis, an urban layout is a 
structured image which contains both vector and image data. 
While the imposed structure might facilitate some tasks (e.g., 
finding a route from one location to another), it makes other tasks 
more challenging. In particular, easy and intuitive modification and 
creation of new urban layouts are difficult because both image and 
vector data must be altered in a coordinated fashion. On the one 
hand, if we consider an urban layout to be an image without any 
structure, then we could use standard image operations to create 
new layouts by manipulating image fragments, defined as parts of 
an aerial image of an urban area with no structural information. 
The image fragments can be copied and pasted together using a 
mild amount of overlap and image blending (e.g., 
[Hertzmann2001]). However, this process provides no guarantees 
that the resulting street and parcel network is structurally sound. 
On the other hand, we could use the structure implied by the street 
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Figure 1. Urban Layout Synthesis. First, our method extracts the street network and per-parcel aerial-view images from real-world 
urban layouts. Then, using an example-based approach new layouts are interactively created by synthesizing streets and images based on 
data from the example layout fragments. 
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and parcel network to partition an existing urban layout into rigid 
structure fragments. The creation task becomes either adding 
structure fragments to an existing configuration or creating a new 
tiling of structure fragments (e.g., [Cohen et al. 2003]). 
Unfortunately, geometrically tiling a plane is restricted to a small 
set of polygonal shapes. Moreover, we have the further challenge 
of making the streets of adjacent structure fragments form a 
plausible connected street network. While the tiling of non-
perfectly fitting image fragments has been studied (e.g., [Kim02]), 
these methods require deforming and blending the boundaries 
which does not address making the streets of adjacent structure 
fragments connected. None of these approaches ensure a sensible 
urban layout is maintained or provide an intuitive and interactive 
mechanism to quickly synthesize an urban layout that is similar to, 
or explicitly different from, input examples.  
Our key observation is that we can generate urban layouts by 
simultaneously synthesizing vector and image data from example 
data. In the context of urban layouts, synthesizing vector data is 
accomplished by capturing the properties of an existing 
arrangement of streets and producing similar ones. Synthesizing 
image data consists of generating new images similar to the 
original but able to populate the new street structure. Our strategy 
couples vector-based and image-based synthesis and uses a by-
example methodology to enable intuitive high-level operations for 
easy urban layout modification and creation. While the objective of 
this paper is urban layout creation, our methodology can be applied 
to other types of structured images as well. 
Our approach interactively synthesizes a new urban layout by 
creating and/or joining fragments of urban layouts based on a set of 
pre-existing examples. Each urban layout fragment consists of 
both structure and image data for a connected subset of the layout 
and can range from a small neighborhood to an entire city. The 
structure component of an urban layout fragment is represented by 
a hierarchical organization of the streets. The hierarchy follows a 
Gravelius ordering, traditionally used for plant modeling [Holton 
1994], where the longest and most important streets (branches) are 
labeled level zero and the streets of each successive branching 
level are labeled as of the next level. With the added ability of 
supporting loops, this representation fits naturally with many street 
patterns. The image component of an urban layout fragment is 
represented by a collection of aerial-view images, which are 
registered with the street data. To perform synthesis, we use the 
aforementioned organization of structure and image data to enable 
easily (i) creating new urban layout fragments based on 
information from one or more examples, (ii) constraining the 
synthesis of a new urban layout to a pre-existing structure or to 
user-specified constraints such as a sketch of a city, and 
(iii) joining multiple urban layout fragments together to form a 
larger urban layout without the user having to be concerned about 
structure and image details. Altogether, our approach is able to 
succinctly represent a wide variety of urban layouts fragments and 
to intuitively and quickly create and/or modify complex structured 
images of urban layouts. We have used our approach to create and 
modify large layouts based on fragments from several real-world 
locations extracted from a Geographical Information System 
(GIS)-style database (Figure 1). 
The main contributions of our work are 
• a structure synthesis algorithm to create the streets and 

parcels of a new layout fragment based on input examples, 
• an image synthesis method to generate aerial-view imagery 

for populating new layout fragments by reusing and warping 
image data from a set of input examples, and 

• a layout synthesis system providing a set of interactive tools 
for assembling a new layout by seamlessly joining example 
layout fragments and for creating a new layout by blending 
between the styles of one or more example layout fragments. 

System Overview 
The system takes as input fragments from one or more existing 
urban layouts and interactively builds up a new layout. It also uses 
a parameterized method to synthesize a new fragment based on one 
or more examples and supports combining multiple new fragments 
in order to create a larger layout. Each example fragment is 
automatically computed from GIS vector data describing the street 
network and parcels and from registered aerial images. 
Fragment synthesis consists of two parts: structure synthesis 
(Section 3.1) and image synthesis (Section 3.2). In structure 
synthesis, our street generation algorithm connects street 
intersections and generates a new street network that exhibits the 
attributes encoded in the intersection points. Parcels are then 
automatically created inside the city blocks defined by the new 
streets. In image synthesis, new parcels are filled with aerial 
imagery, warped from similar parcels of example layout fragments.  
To generate a new layout, the user interactively copies and places 
groups of attributed intersection points in the region where a new 
layout is to be synthesized (Section 4). Three different high-level 
synthesis operations are defined between example layout 
fragments: join, expand and blend. To assist with the synthesis 
operations, the attributed street intersection points of each layout 
fragment are placed into an adaptive spatial partitioning data 
structure. Each leaf node of this data structure corresponds to a 
portion of a layout fragment that has similar spatial attributes and 
is considered an atomic unit.  
The example layout fragments are automatically computed from 
GIS vector data and from aerial imagery (Section 5). For each 
example fragment, the system calculates the intersection points 
between the streets, and encodes a characterization of the geometry 
of the streets and parcels as attributes of the intersection points. 

2. RELATED WORK 
Our approach builds on concepts from example-based techniques 
and relates to methods in procedural modeling and image-based 
modeling. In the following sections, our work is described and 
compared to activities in these major areas. 

2.1 Example-based Synthesis 
Example-based approaches have a long history in graphics for they 
provide a fast way to generate complex results by borrowing from 
existing data. Texture synthesis exploits the regularity of patterns 
that appear in example texture fragments to create more texture 
(e.g., [Kwatra et al. 2005]) or terrain (e.g. [Zhou et al. 2007]) of a 
similar, potentially very complex, appearance. Wei et al. [2008] 
proposed inverse texture synthesis as a way to synthesize a 
compact representative texture from which a non-regular texture 
can be synthesized. Further, several content-aware image editing 
techniques propose algorithms to change existing textures or 
images. Avidan and Shamir [2007] describe approaches to resize 
and retarget images whereby the visually important information is 
maintained. Fang and Hart [2007] propose a technique to re-
synthesize image texture when reshaping a textured portion of an 
image and to reduce unwanted deformations. Kim and 
Pellacini [2002] introduce an image mosaic algorithm whereby 
images of objects are composed together to form the final picture 
of an arbitrary shape. Structured data has also been generated by 
example. For instance, Funkhouser et al. [2004] and Sloan et al. 
[2001] developed systems to generate 3D models by using multiple 



 

example objects. Nevertheless, none of these methods are 
concerned with synthesizing both structure and image data. 
Also relevant to our work are some systems that have edited 
images of urban layouts. In particular, Hertzmann et al. [2001] 
describe a framework for processing images by example. While 
they modify aerial photographs of cities they do not maintain or 
produce any underlying street and parcel information.  Previously, 
we have described a constraint-based system for modifying urban 
layouts [Aliaga et al. 2008]. Parcels and streets are interconnected 
such that moving the street changes the parcel and vice versa. 
While this prior method is aware of the structure of an urban 
layout, it provides no tools to synthesize the structure (e.g., streets) 
of new layouts, no methods to synthesize the imagery for new 
layouts, and no mechanism to expand an existing layout.  
This paper extends example-based methods to consider both 
structure and image data. Similarly to Ijiri et al. [2008], we enable 
growing a layout by pieces, but our approach deals with large 
geometrical structures and not only with an immediate 
neighborhood. We also generate content tuned to urban layouts and 
its associated imagery producing not only high quality visual 
imagery, but also a feasible network of streets and parcels. 

2.2 Procedural Modeling 
One of the first procedural techniques describing 3D city 
generation was introduced in [Parish and Mueller 2001]. It is based 
on both L-systems [Prusinkiewicz and Lindenmayer 1996] and 
Open L-systems [Měch and Prusinkiewicz 1996]. A similar 
approach for the template-based street network generation is that of 
[Sun et al. 2002] which also uses a rule-based rewriting system. 
Procedural methods have also been extended to the synthetic 
generation of buildings [Mueller et al. 2006, Wonka et al. 2003] 
and to the creation of buildings and façades imitating real-world 
structures [Mueller et al. 2007]. Nevertheless, these approaches 
require the explicit specification of a set of rewriting rules and/or 
the model is generated at once which limits editing. 
Recently, Chen et al. [2008] proposed using tensor fields to guide 
the generation of street graphs. While the user controls editing via 
high-level parameters, it is challenging to steer the tensor fields to 
connect to and extend existing urban spaces and to blend between 
different existing street network styles. Further, no parcels or 
aerial-view images are produced. In contrast, our goal is to produce 
closed street networks, parcels, image content, and to provide 
higher-level example-based editing. 

2.3 Image-based Modeling and Computer Vision 
The efforts of image-based modeling and computer vision are 
focused primarily on the creation of geometric models, typically 
from photographs and/or laser-data, and combining the geometry 
with the images. Numerous reconstruction methods have been 
proposed using aerial imagery (e.g., [Vestri and Devernay 2001; 
Ribarsky et al. 2002]), ground-level imagery, or combinations of 
both (e.g., [Frueh and Zakhor 2003]). In addition to extracting the 
global urban structure, it is difficult for these methods to segment 
the data into all of streets, parcels, and building structures. 
Regardless, the approaches do not typically address the efficient 
modification of the captured geometry and of the urban 
configuration. In contrast, our focus is precisely on enabling the 
intuitive design of urban spaces and layouts in the style of provided 
exemplary real (or imaginary) urban spaces. 

3. FRAGMENT SYNTHESIS  
Fragment synthesis creates both the structure and image content of 
individual fragments which will later be combined to form new 
and larger layouts. Our approach to synthesizing individual 

fragments is inspired by the following observations: (i) a compact 
approximation of the geometrical structure of a layout can be 
represented by a spatial distribution of attributed street intersection 
points where the attributes include a characterization of the street 
geometry and parcel sizes in the vicinity of each intersection point 
(Figure 2), and (ii) the aerial-view images of an existing urban area 
are naturally partitioned by the street and parcels into small image 
fragments which can be warped and re-used as imagery of newly 
synthesized layout fragments. Based on these observations, we 
describe a parameterized synthesis algorithm to generate new 
geometrical structure from a spatial distribution of attributed 
intersection points and a method to generate new layout imagery 
from a set of aerial-view images of existing urban areas (Figure 3).  
Layout fragment synthesis will create and populate several data 
structures that collectively define a new layout fragment ܮ ൌ
ሺܵ, ,ܤ  is the set of city blocks ܤ ,ሻ, where ܵ is the street networkܫ
and parcels, and ܫ is the set of aerial images. Structure synthesis 
uses a set of 2D street intersection points ܸௌ ൌ ሼݒ଴, ,ଵݒ … ,  ,௏ೄ|ሽ|ݒ
each with associated attributes, to generate two undirected 
attributed graphs: ܵ ൌ ሺܸௌ,  ௌሻ storing the synthesized streetܧ
network, and ܤ ൌ ሺܸ஻,  ஻ሻ, storing the corresponding city blockܧ
and parcel information. Image synthesis uses image fragments 
from a set of input aerial-view images to generate a new set of 
image fragments ܫ for use by the new layout fragment. Our system, 
does not explicitly cut out image fragments from the original 
images, but rather stores the original images and uses texture 
coordinates to index the image data. 

3.1 Structure-based Synthesis  
Synthesizing the structure of a new urban layout fragment proceeds 
in two steps: First, the street graph ܵ ൌ ሺܸௌ,  ௌሻ  is completed byܧ
joining the intersection points ܸௌ with edges ܧௌ created by a 
random walk based algorithm. Second, the city-block graph 
ܤ ൌ ሺܸ஻,  and (ܵ is the dual graph of ܤ) ܵ ஻ሻ is derived fromܧ
captures the structure and adjacency of the city blocks. The city-
block graph is then used to generate individual parcels (and later 
aerial-view images) within each city-block. 

3.1.1 Street Generation 
The street generation algorithm synthesizes a network of streets 
that attempts to follow the layout style implied by the attributed 
intersection points ܸௌ (Figure 4). We define a street intersection 
point ݒ௜ א ܸௌ to be between two crossing streets – crossings of 
more than two streets would have to be modeled by a collection of 
street intersection points. The algorithm performs directed random 
walks through the points in ܸௌ. The initial steps connect 
intersection points so as to form streets of hierarchy h0 (e.g., 
highways and avenues). In subsequent steps, the connectivity of 
the less important streets of levels ݄ଵ, ݄ଶ, … , ݄௠ is produced. While 
there is no guarantee the hierarchy levels correspond one-to-one 

Figure 2. Streets and Intersection Points. Left: Set of streets 
(yellow) and street intersection points (blue) which form part of 
an example fragment. Right: The characteristics of the street 
network can be encoded as attributes of the intersection points. 



 

with actual street importance, our process of using hierarchy levels 
has proved to be suitable for layout synthesis.  
The attributes associated with each point include:  
(i) the intersection hierarchy level ݄௔ሺݒ௜ሻ and ݄௕ሺݒ௜) of the two 

streets that could be created through ݒ௜ (used for generating 
street connectivity),  

(ii) the average tortuosity (e.g., ratio between the length of the 
curve segment and the distance between its endpoints) ݐ௔ሺݒ௜ሻ 
and ݐ௕ሺݒ௜ሻ of each of the streets incident to ݒ௜ (used for 
generating the geometry of a street segment),  

(iii) the average area ܽሺݒ௜ሻ of the parcels in the vicinity of ݒ௜ 
(used for generating city-blocks), and  

(iv) the statistical characterization of the two streets that could 
pass though through ݒ௜ (used for generating street 
connectivity). This characterization consists of four values per 
street: the mean ߤௗ and variance ߪௗଶ of the distance between 
two consecutive intersection points, and the mean ߤఈ and 
variance ߪఈଶ of the angle between two consecutive street 
segments. 

A step in the random walk for street generation consists in moving 
from a base point ݒ௜ to one of the target points ݒ௝, and connecting 
the points with a new street segment. The target point is randomly 
selected by using the transition probabilities ݌൫ݒ௜,  ௝൯ calculatedݒ
from a bi-variate Gaussian distribution defined by the mean ሺߤௗ, 
 .௜ (Figure 5a)ݒ ఈଶሻ stored in the base pointߪ ,ௗଶߪఈሻ and variance ሺߤ
Intuitively, this stochastic process prefers a target point ݒ௝ with the 
following two properties: the distance from ݒ௝ to ݒ௜ is closest to the 
mean distance ߤௗ between intersection points and the angle formed 
between the proposed segment ሺݒ௜,  ௝ሻ and the last existingݒ
segment of the street is most similar to the mean angle ߤఈ between 
consecutive segments. A user-defined threshold is used to ignore 
segments of very low transition probability. 
Performing a step to an intersection point is subject to constraints 
imposed by the hierarchy levels stored in the points, by the number 
of times an intersection point has been connected, and by 
previously generated street segments. A step of the random walk 
on a street of hierarchy level ݄௞ can move to a point ݒ௝ if and only 
if ݄௞ ൌ ݄௔൫ݒ௝൯ or ݄௞ ൌ ݄௕ሺݒ௝ሻ. We assume that only two streets 
pass through an intersection point. Furthermore, we do not allow 
generation of new intersection points in the street generation phase. 
Consequently, a newly generated street segment cannot cross an 
existing street in an arbitrary position, but only in an intersection 
point. In all three constraint cases, we set to zero the transition 
probability from ݒ௜ to an invalid point ݒ௝, i.e., ݌൫ݒ௜, ௝൯ݒ ൌ 0. 
A random walk on a hierarchy level ݄௞ and through ݒ௜ ends when 
for all ݒ௝ we have ݌൫ݒ௜, ௝൯ݒ ൌ 0. In this case, a new random walk is 
started from an available connection slot in a point ݒ௜ with 
݄௔ሺݒ௜ሻ ൌ ݄௞ or ݄௕ሺݒ௜ሻ ൌ ݄௞. The process ends when no new 
random walks can be started. 
Since the street segments between intersection points in the 
example layout fragments are not necessarily straight lines, we use 
the tortousity attributes of the points defining the segment ݁ to 
generate a poly-line representing the geometry of the segment 
(Figure 5c). The poly-line mimics the style of the example streets 
and is stored as an attribute ݃ሺ݁ሻ in the corresponding edge. 

3.1.2 City-Block Generation 
Once the street generation is completed, we compute the blocks 
and parcels enclosed by the new streets yielding the city-block 
graph ܤ ൌ ሺܸ஻, ݒ ஻ሻ. Each pointܧ א ܸ஻ corresponds to a city 
block and forms a closed face of ܵ (i.e., a closed cycle). Two city 
blocks ܾ௔, ܾ௕ are adjacent if there is a corresponding street edge 
݁ א  ௌ in common for both faces. When this is the case, we addܧ
edge ݂ ൌ ሺܾ௔, ܾ௕ሻ to ܧ஻. Hence, the city block graph ܤ is a dual 
graph to the street graph ܵ as every face of ܵ corresponds to a 
vertex in ܤ. The geometry of each new block ܾ א ܸ஻ is computed 

ሺܵ, ,ܤ ,ܸ)Ԣሻ = synthesizeܫ  (ܫ
/*Input: Attributed intersection points ܸ, Imagery ܫ. 
  Output: Synthesized streets ܵ, blocks and parcels ܤ,  
          and new imagery ܫԢ */ 
ܵ = connectIntersectionPoints ሺܸሻ 
 computeBlocksAndParcels ሺܵሻ = ܤ
,ܫgenerateNewImagery ሺ = ’ܫ  ሻܤ
 

connectIntersectionPoints ሺܸሻ 
REPEAT 
    FOR each hierarchy level ݄ ൌ ݄଴, ݄ଶ, … , ݄௠ 
        FOR each street ݏ of hierarchy level ݄ 
            randomWalk ሺݏ , ܸሻ 
        ENDFOR 
    ENDFOR 
UNTIL no new street segments are added to any street 

randomWalk ሺݏ , ܸሻ 
FOR each of the two endpoints ݒ௘ of street ݏ  
    Find the point כݒ א ܸ that maximizes ݌ሺݒ௘,  ሻݒ
    IF ݌ሺݒ௜, ሻכݒ ൐ 0 THEN 
        Add segment ሺݒ௘,  ݏ ሻ toכݒ
        Update endpoints of ݏ 
    ENDIF 
    /* if ݌ሺݒ௘, ሻכݒ ൌ 0  no feasible transition points
    have been found (see figure 5a)*/ 
ENDFOR 

computeBlocksAndParcels ሺܵሻ 
Extract blocks as minimum cycles formed by streets ܵ 
FOR each block ܾ 
    Generate a Voronoi diagram from a set of points 
       sampled along the main axis of the OBB of ܾ 
    Each Voronoi region enclosed in ܾ is a parcel of ܾ 
ENDFOR 

generateNewImagery ሺܫ,  ሻܤ
FOR each block ܾ 
    FOR each parcel ݈ of ܾ 
        Find in ܫ an image fragment ݅ with similar 
            shape to the contour of ݈ 
        Generate a quadrilateral grid to produce a
            one-to-one mapping between the ݅ and ݈ 
        Warp ݅ into ݈ using the one-to-one mapping 
    ENDFOR 
ENDFOR 

Figure 3. Pseudocode. Summary of synthesis algorithm. 

Figure 4. Attributes. Left: The hierarchy levels of the example 
streets are calculated and stored in each intersection point they 
generate. Right: A statistical characterization of each street is 
obtained by calculating the mean and variance of the distance 
between points and of the angle between segments. 
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by concatenating ݃ሺ݁௜ሻ, for every edge ݁௜ that forms the polygon 
enclosing ܾ. An edge ݁ א  ௌ is part of the polygon enclosing ܾ ifܧ
at least one of the edges from ܧ஻ that is incident to ܾ intersects ݁.  
Each block ܾ is then subdivided into parcels ܮ௕ ൌ ሼ݈଴, ݈ଵ, … , ݈௡್ሽ. 
The number of parcels per block ݊௕ and the expected aspect ratio 
are determined from the average parcel area stored in the points of 
the edges enclosing ܾ. Our block subdivision algorithm is guided 
by the following observations and assumptions: 
• We assume all parcels have road access (egress rule). 
• A block is subdivided into one or two rows of parcels, such that 

each parcel is touching the street in the front and touching a 
neighboring parcel in the back (and maybe on the sides); 
sometimes parcels have street access both in front and in back 
– this implies one row of parcels and often means very few 
parcels in that block; corner parcels, of course, have access on 
consecutive sides of the parcel. 

• While parcels may be of any shape (and not necessarily 
convex), very often parcels can be well approximated by 
polygons of few edges and most often of four edges. 

The general idea for subdividing a block ܾ into ݊௕ parcels is to 
sample the inside of the block with a set of points ௏ܲ, and then to 

calculate the Voronoi diagram of the points in ௏ܲ (Figure 6). Each 
resulting Voronoi region will constitute a parcel ݈ א  ௕. Resultsܮ
have shown that if ௏ܲ is adequately selected, parcel geometries that 
closely resemble the parcels in the original city can be obtained. 
Voronoi points ௏ܲ are generated along an axis that approximately 
splits the block into two halves. We have observed that for most 
blocks this axis corresponds closely to the central segments of the 
medial axis of the block. Since most blocks are nearly rectangular, 
the medial axis can be approximated by the longest axis of an 
oriented bounding-box (OBB) surrounding the block. The segment 
of the axis that lays inside ܾ is then sampled with ሺ݊௕ െ 1ሻ/ݎ௕ 
points, separated by a distance ݀ ൅ ߳, where ݀ is deduced from ݊௕ 
and ݎ௕, ߳ is a Gaussian noise (i.e., ߳~ܰ൫0,  ௕ଶ൯) added to increaseߪ
the diversity of the parcels inside ܾ, and ݎ௕ is the number of rows 
in the block (i.e., 1 or 2). The variance ߪ௕ଶ is computed from the 
standard deviation of the parcel area averages stored with the 
intersection points associated with ܾ. For a single row of parcels 
inside the block, the Voronoi vertices are the ݊௕ െ 1 sampled 
points. In the case of two rows, the Voronoi vertices are given by 
creating two copies of the ሺ݊௕ െ 1ሻ/2 sampled points, and 
translating them a distance േߜ along a direction perpendicular to 
the central axis, where ߜ is a small positive number. 

3.2 Image-based Synthesis 
Synthesizing the image data for a new urban layout fragment uses 
a method for establishing polygon-similarity and an image-warping 
algorithm to generate plausible image content for each newly 
created parcel. Since our urban layouts are created by-example, it 
is natural to assume we can reuse some of the image content of the 
examples to populate the newly created layout fragment. Since 
both the input and created layout fragment are highly structured, 
we cannot resort to simply copying large blocks of pixels. Instead, 
for each new parcel ݈ே whose geometry is an ܽ-sided polygon, we 
find a best parcel ݈ை of the example layout fragment whose 
geometry is a ܾ-sided polygon, and map the polygon of ݈ை to the 
polygon of ݈ே. The selected example parcel image fragment is 
warped via texture-mapping onto the new parcel geometry and 
rendered together with the rest of the layout fragment. 
To find the example parcel ݈ை most similar to the new parcel ݈ே we 
compare the OBB of all example parcels with the OBB of ݈ே. We 
let ݈ை be the parcel whose OBB is most similar in area and aspect 
ratio to the OBB of ݈ே and respects the same side facing the street.  
Our image-warping algorithm generates a correspondence between 
two arbitrary concave or convex polygons. First, it defines a ݏ ൈ ݊ 
quadrilateral grid inside the OBB of ݈ை and the OBB of ݈ே, such 
that a one-to-one mapping can be established between the grids of 

Figure 5. Street Generation. a) A transition probability for the 
random walk is associated to each intersection point based on 
its attributes. A point is not considered when (i) it cannot have 
the current hierarchy level pass through it, (ii) it is statistically 
too improbable for a street to pass through it, (iii) it has been 
traversed by a street the maximum number of times (i.e., 4), or 
(iv) it requires crossing an edge to reach it. b) A same point set 
with different attributes can generate two street networks with 
significantly different styles. c) Once the street segments are 
created, its street poly-line is computed using the tortuosity 
parameter stored in the intersection points. 
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Figure 6. Parcel Generation. Left: A block is extracted from a 
synthetic street network. Middle: The main axis of the oriented 
bounding box of the block is calculated and stochastically 
sampled with points (up). Copies of the points are created on 
each side of the axis, and their Voronoi diagram is calculated 
(bottom). Right: The intersections of the Voronoi diagram with 
the contour of the block are used to help define the parcels. 
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݈ை and of ݈ே. To do so, the algorithm defines for ݈ை and for ݈ே a set 
of ݏ scan lines that are uniformly separated, and perpendicular to 
the main axis of the OBB of each parcel. Then, the method finds 
the intersection points ݌௔,  scan lines and ݏ ௕ between each of the݌
the contours of ݈ை and ݈ே, and generates ݊ uniformly-separated 
sample points along each scanline and between ݌௔ and ݌௕. 
A total of ݏ ൈ ݊ sample points are generated inside each parcel, 
and a one-to-one correspondence is therefore guaranteed. At 
display time, the new parcel ݈ே is rendered using the coordinates of 
the correspondence points to define a quadrilateral mesh, and the 
coordinates of the corresponding example parcel to obtain texture 
coordinates (Figure 7). This results in the example texture being 
warped onto the new parcel. The similarity metric and presence of 
many parcels of different shapes and sizes tends to keep the texture 
stretch small [Zhang et al. 2005]. This method will produce a ܥ଴ 
continuous and non-self-intersecting warp if the projection of both 
parcel’s contours onto the main axis of their OBBs is monotonic. 

4. LAYOUT SYNTHESIS 
Using the fragment synthesis algorithm, our approach enables a 
user to interactively assemble new layouts by combining example 
layout fragments. Choosing the location and attributes of each 
intersection point in the new layout is a difficult and time 
consuming process. Thus, we organize the point sets of each 
example layout fragment into an adaptive spatial partitioning that 
facilitates manipulation of the intersection points in a fast and 
intuitive way. Given the spatial data structure, a new layout is 
assembled by a sequence of layout synthesis operations. The user 
simply copies and pastes together the point sets of example 
fragments from which the system synthesizes a new and complete 
layout. The point sets can be placed next to each other with no 
overlap or with overlap. The former corresponds to the intuitive 
notion of assembling pieces of a puzzle. The latter is used to 
represent a blending of the styles of the corresponding original 
example fragments. In both cases, the user is sketching the new 
layout by only manipulating point sets and does not need to be 
concerned with the structure and imagery. Therefore, arbitrary 
layout fragments can be easily and interactively assembled 
together. The algorithms presented in Section 3 are used to connect 
the new intersection points with street segments based on their 
attributes, to populate the resulting street network with parcels and 
imagery, and finally to yield a new synthetic urban layout. 

4.1 Organizing Intersection Points 
The attributed intersection points ܸ௦ of each example fragment are 
organized into a spatial partitioning that divides the points into 
contiguous regions of approximately similar attributes. The 
intersection points of an arbitrary example fragment may have 
significantly varying attributes (e.g., varying spatial densities, 
different distributions of hierarchy levels, etc.). This may result in 
a strong dissimilarity between the intersection points of two layout 
fragments to be pieced together when creating a new layout by 
example. The dissimilarity hinders providing a smooth transition 
between the structures of the two fragments. To automatically 
synthesize a transition from one fragment to another, we partition 
each layout fragment into spatial nodes containing points of similar 
attributes. Intuitively, we seek to partition the layout fragment into 
areas that are each approximately self-similar; e.g., a downtown 
area containing a regular grid of intersection points, a housing 
subdivision containing a particular style of intersection points, etc. 
This in turn enables modeling each node using a simple set of 
stochastic parameters and enables parametrically producing 
attributed intersection points that can smoothly change from the 
attributes of one fragment to those of another fragment. Altogether, 
this facilitates defining a set of attributed intersection points that 
can either (i) exhibit a smooth spatial transition from the structure 
of one fragment to that of another adjoining one, or (ii) have 
attributes that are a weighted combination of the attributes from 
two or more layout fragments. 
Instead of using a regular grid of boxes that would hardly each 
have similar attributes, our approach is to partition the set of 
attributed intersection points for each example layout into a quad-
tree data structure, whose leaf nodes are rectangles containing a set 
of points of approximately uniform spatial distribution. Moreover, 
each leaf node also stores the relative probability of each hierarchy 
level within the confines of the associated quadrilateral. Thus, the 
quad-tree captures both the distribution of the locations of the 
intersection points and the spatial distribution of the hierarchy 
levels within the layout fragment. To construct the quad-tree, the 
OBB of the set of intersection points from an example layout is 
recursively subdivided until each leaf node has (i) a set of roughly 
uniformly-distributed intersection points, (ii) a minimum area, or 
(iii) a minimum number of intersection points. While other point 
distributions can be used as a model (e.g., 2D Gaussian 
distribution), an assumption of uniform density enables us to 
capture a grid-like configuration of intersections, which would be 
difficult with a Gaussian distribution.  

4.2 Synthesis Operations 
In subsequent by-example processing, the attributed intersection 
points of example fragments and their aforementioned spatial 
organization are used to enable several synthesis operations: join, 
blend, and expand. Without loss of generality we explain the 
operations for two example point sets ܮ௔ and ܮ௕. The point sets can 
be joined by simply placing copies of their attributed intersection 
points next to each other and then the synthesis algorithm will 
connect the points to produce a new combined layout. In order to 
provide a smoother structural transition, the point sets should 
overlap. Then, we define a spatially varying blending operation 
within the overlap area. The points nearer to ܮ௔will show a style 
more similar to that of the layout from which ܮ௔ was obtained; vice 
versa for ܮ௕. An interesting variant of blending is that if the point 
sets overlap completely, we can define a constant value over the 
entire overlap region that serves to “interpolate” between the styles 
of the two sets. Finally, the same methodology is used to expand 
an existing layout. The user sketches the expansion by placing 
points (e.g., ܮ௔ or ܮ௕) next to an existing or synthesized layout. 

Figure 7. Image Warping. Given a blank, new synthetic parcel 
(bottom left), a similar parcel with image (source) is found (top 
left). A one-to-one correspondence is found between sample 
points on both parcels (middle), so that the image of the source 
parcel can be warped to the new parcel (bottom right). 



 

The synthesis algorithm connects the new intersection points to the 
existing street network. Combining these operations allows for 
significant expressivity in designing urban layouts by example. 

5. OBTAINING EXAMPLE FRAGMENTS 
Example fragments for use in our synthesis process are obtained by 
automatically calculating the attributes of a set of existing street 
intersection points. GIS databases are widely available for many 
cities and thus are a good source of data for computing example 
fragments. For our purpose of urban layout synthesis, we assume a 
GIS database contains a set of unorganized piecewise linear curves 
(poly-lines) describing street centerlines, a description of the 
individual parcels of land, and a set of geo-registered aerial-view 
images. The aerial-view images are directly used by the image 
synthesis steps of a new layout. Although GIS databases can be 
straightforwardly used for simple aerial flyovers or for querying 
for a particular street, city block, or route to follow (e.g., map 
directions), they are not adequately organized for the structure-
based synthesis steps of urban layouts. Nevertheless, they do 
contain sufficient information to derive the intersection points and 
attributes necessary for our structure-based synthesis. 

The set of intersection points ܸௌ of a real-world layout fragment is 
constituted by all the pair-wise intersection points between street 
centerlines, and by all street centerline endpoints. The set of 
intersection points by themselves (i.e., with no additional 
attributes) does not capture the “style” of the layout; for instance, 
two layouts may have the same set of intersection points but very 
different street patterns (see Figure 5b). Thus, we calculate the set 
of attributes (as mentioned in Section 3.1.1) using the GIS 
database. To calculate the intersection point hierarchy levels, we 
select a small percentage of the longest and widest streets of the 
layout as the main branches and set their level to ݄଴. Any streets 
crossing them are defined to be of the next level of branches, e.g., 
݄଴ ൅ 1. This process is repeated until all streets are labeled, and it 
exploits the notion of first labeling the longest and widest streets 
and then recursively labeling the smaller roads. For the hierarchy 
levels ݄ଵ, ݄ଶ, … , ݄௠, the streets of level ݄௜ will be all those that 
intersect at least one street of level ݄௜ିଵ, and that have not already 
been labeled with another hierarchy level. Since the maximum 
number of hierarchy levels ݉ is not known in advance, ݄଴ 
represents the highest hierarchy level, and ݄௠ the lowest. The 
remaining attributes of average tortousity, average parcel area, and 
the statistical characterization with the mean and variance of the 
distance and angle between two consecutive intersection points are 
easily computed from the GIS street centerlines and parcel data.  

6. RESULTS AND DISCUSSION 
We have used our approach to interactively create several synthetic 
urban layouts from fragments of real-world cities. We first 
demonstrate how our attributed point sets capture the structural 
characteristics of a real-world layout fragment. Then, we show the 
results of several operations used to compose layouts by example. 
All street networks and images are interactively generated by our 
system using the example fragments. 
We have chosen parts of four cities from around the world, each of 
them exhibiting a different style of street network and from which 
multiple example layout fragments are extracted: Madrid, Istanbul, 
Buenos Aires, and Lafayette, IN. The sizes of the individual 
example layout fragments we extract from our set of cities vary 
from a few streets, blocks, and parcels to several hundred streets 
and blocks and several thousand parcels. The imagery was 
obtained from Google Maps. Although the needed street data can 
be obtained from GIS databases, the data of our examples was 
obtained using a simple interactive editor except for Lafayette 
which was provided by the town’s urban planning division. 

Figure 8. Abstraction into Attributed Points. The attributed 
intersection points of the street network of an example urban 
layout fragment (left) have been copied and dropped in an 
empty area (right). Our system is then used to connect 
intersection points. Notice the similarity between the 
reconstructed street network and the original one. 

Figure 9. Expansion. An urban layout (left) with grid-pattern blocks grows into an empty area inside the layout that has been filled 
with attributed intersection points taken from a fragment of a grid city (middle), and attributed intersection points taken from the 
fragment of an irregular city (right). In both cases, new streets are generated which exhibit the style encoded in the intersection points. 



 

First, we show how a set of attributed intersection points captures 
the style of an existing urban layout (Figure 8). We used our 
program to create a copy of the attributed intersection points of 
Lafayette. This is interactively accomplished via a single mouse-
dragging and pasting operation. The copied intersection points are 
automatically connected in a way that closely resembles the layout 
of the original city. Notice for instance how the main (longest and 
widest) streets in the synthetic city are almost identical to those of 
the example city. The errors in the recovered network are due to 
the presence of highly atypical streets and to the stochastic nature 
of our algorithm. While this particular result could also be 
accomplished by a simple copy and paste, it serves to show the 
effectiveness of our representation in capturing the style of a city 
using a mostly stochastic process. 
To compose larger layouts, we demonstrate several types of 
synthesis operations. Figure 9 shows an urban layout (left) with 
grid-pattern city blocks (e.g., Buenos Aires) growing into an empty 
area inside the layout (e.g., a park). First, the user has placed a set 
of attributed intersection points taken from a similar grid-pattern 
city (middle). Street segments are automatically generated to 
connect the points in a way that closely resembles the style of the 
original city. In a second experiment (right), the user has placed a 
different set of attributed intersection points copied from a city 
with a more irregular street pattern (e.g., Istanbul -- see right side 
of Figure 10). Again, street segments exhibiting a style similar to 
that of the example city are created to connect the intersection 
points. In this latter case, there is a clear (but rough) transition in 

the style of the street network. Notice the higher tortuosity of the 
new streets and the small angles at many of the intersection points. 
In both cases, new streets are reasonably connected to the original 
street network. 
A result of a spatially varying blending operation is shown in 
Figure 10. Example layout fragments are extracted from urban 
areas of different styles: one exhibiting a grid-pattern (left), and 
one exhibiting an irregular pattern (right). A new street network is 
generated as a combination of both patterns (middle). The blending 
value provided by the user defines the attributes of the upper points 
to be more similar to those of the intersection points in the grid 
pattern, and a different blending value defines the attributes of the 
lower points to be more similar to those of the points in the 
irregular pattern. On a large scale, the blending of both styles is 
visible from a view of the entire new layout. On a small scale, the 
blending is also seen in details such as the higher variance in the 
distance between intersection points at the bottom of the layout 
(similar to the irregular pattern), and the lower tortuosity of the 
street segments at top of the layout (similar to the grid pattern). 
Figure 11 shows the result of a sequence of join and blend 
operations. The original street network of an existing irregular 
pattern city is loaded by the user. A copy of the set of attributed 
intersection points of a grid-pattern city is then placed to the 
northwest (left) of the original layout. Next, a copy of the 
intersection points of both the irregular pattern city and the grid 
pattern city are placed in the space between the original city and 

Figure 10. Blending. The user takes attributed intersection points of two fragments (left, right) from cities with different styles. Our 
quadtree-based approach modifies the points so that they encode a spatially varying (North-South) blend of both styles. A new street 
network is created by our street generation algorithm that intuitively resembles a merge of the example street networks (middle). 

Figure 11. Join and Blend. Sequences of join and blend operations have been used to generate both street networks. In this case, the blue 
fragment (with grid pattern) and the red fragment (with irregular pattern) are connected in two different positions relative to each other. 

Join Join 



 

the points dropped in the previous step. The system automatically 
calculates a new street network that joins the original city with the 
grid pattern points and that exhibits a blended style. 
Figures 12 and 13 present additional examples. Figure 12 is an 
example of two layout fragments exhibiting irregular (left) and 
regular (right) patterns that have been joined together. The street 
network is the result from a spatially varying blending value, 
yielding a smooth transition between the two layout fragment 
styles. The parcel imagery is also interpolated between both cities, 
i.e., parcels towards the left side of the blend region used more 
textures from the irregular pattern city, while parcels on the right 
side used more textures from the regular pattern city. The blend 
parameter is used to modulate a simple probability value that 
determines which layout is searched for the best fitting parcel 
image. Such interpolations can be used to easily assemble a city 
from a variety of layout fragments and associated imagery. 
Figure 13 shows an expansion of a city producing both structure 
and images. Observe how a similar style of streets is produced and 
the seam between the original and new blocks is hard to see. 

7. CONCLUSIONS 
We have presented an interactive system to synthesize new layouts 
by example. The structure and image data of example layout 
fragments is separated. Then, both a structured-based synthesis and 
an image-based synthesis are performed resulting in a new 
synthetically created urban layout. Our core synthesis algorithm 
can be used to perform several high-level editing operations such 
as joining, expanding, and blending example layout fragments. The 
last option, blending, provides a powerful, yet intuitive, way to 
synthesize new layout fragments by blending between the styles of 
several examples. All operations are fully interactive except for 
parcel image generation which in our current implementation may 
take from seconds to several minutes. Nonetheless, new and 
complete layouts with plausible street networks and aerial imagery 
can be quickly generated without the user being concerned about 
low-level details. Our approach is useful to a variety of 
applications for virtual environments, entertainment, architecture, 
emergency management, and urban planning. 

Figure 12. Larger example using multiple operations. (top) A fragment with irregular pattern (left) is joined together with a fragment 
with grid pattern (right) by a street network resulting from a spatially varying blending operation. (middle) Parcel imagery is generated 
by example from fragment on left side and (bottom) as an interpolation of imagery from both fragments. 

Figure 13. Expansion with Images. A layout fragment with an irregular pattern is automatically expanded to the East. New streets are 
connected to the example fragment and exhibit a similar style as the streets of the fragment. Imagery is also re-used to populate the new 
street network. Notice the difficult-to-see transition between the original fragment and the new streets and parcels. 



 

Limitations. We have identified three limitations in our synthesis 
algorithm. First, the parcel image generation process assumes there 
is sufficient variety of parcel shapes and sizes available to fit in the 
synthetically created parcels. This results from our image-reuse 
strategy. If the provided input layout is too small or has a small 
variety of parcel shapes, it will be difficult to find good matches 
for parcel filling without severe image warps and high parcel 
image repetition. As our system is applied to larger areas, this issue 
becomes progressively less problematic. Second, while parcel 
images are selected from existing areas of the same general 
classification (e.g., zoning), contextual information is in general 
not used to select and warp parcel images. This is not strictly a 
limitation, but it may cause unwanted image warping. Third, 
without user editing, our method is not well suited for reproducing 
highly atypical streets of an example layout fragment. Since our 
system relies on street intersection points, an atypical street will 
have relatively few intersection points that capture its style and a 
street network different to the original one might be produced. An 
example of this case are the odd-looking streets synthesized from 
the duplicated intersection points of the streets with atypical 
orientation, near the center of the original urban layout of Lafayette 
(Figure 8). In these cases, the user would need to correct the 
generated street network. 
Future Work. We are pursuing several items for future work. 
First, we would like to extend our approach to also consider the 
underlying terrain geometry. Thus in addition to characterizing the 
street network on a plane, changes in the terrain height should 
affect growth patterns. Second, a natural extension is to further 
produce synthetic content within each parcel. One option is to use 
a procedural modeling engine to generate 3D content within each 
parcel (e.g., [Aliaga et al. 2007, Mueller et al. 2006, Wonka et al. 
2003]). A third direction of future work is to integrate our system 
with an urban simulation (e.g., [Waddell et al. 2007]) engine to 
provide automatic high-level control to guide the urban expansion. 
Furthermore, we could develop a feedback loop to generate 
visualizations of the urban spaces during a simulation. 
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