

Interactive Example-Based Urban Layout Synthesis

Daniel G. Aliaga Carlos A. Vanegas Bedřich Beneš
Purdue University

Abstract
We present an interactive system for synthesizing urban layouts by
example. Our method simultaneously performs both a structure-
based synthesis and an image-based synthesis to generate a
complete urban layout with a plausible street network and with
aerial-view imagery. Our approach uses the structure and image
data of real-world urban areas and a synthesis algorithm to provide
several high-level operations to easily and interactively generate
complex layouts by example. The user can create new urban
layouts by a sequence of operations such as join, expand, and blend
without being concerned about low-level structural details. Further,
the ability to blend example urban layout fragments provides a
powerful way to generate new synthetic content. We demonstrate
our system by creating urban layouts using example fragments
from several real-world cities, each ranging from hundreds to
thousands of city blocks and parcels.
Keywords: example-based, texture and image synthesis,
procedural modeling, content-aware image editing.
CR Categories: I.3 [Computer Graphics], I.3.3 [Picture/Image
Generation], I.3.5 [Computational Geometry and Object
Modeling], I.3.6 [Methodology and Techniques].

1. INTRODUCTION
We investigate the problem of synthesizing urban layouts by
example. An urban layout refers to aerial-view images of urban
areas combined with vector-based data describing the street and
parcel network. Such an objective is pursued by numerous
applications including the creation of new urban spaces in a similar
style to an existing location [Mumford 1961], the design and
extension of an urban area according to expected urban growth and
development [Waddell et al. 2007], and the search for urban
designs to accommodate evacuation routes, resources, and policing
[Palma et al. 2007]. This paper describes an example-based
framework (e.g., [Funkhouser et al. 2004, Hertzmann et al. 2001,
Kwatra et al. 2005]) for intuitive interactive synthesis of urban
layouts, using concepts from computer graphics, texture and image
synthesis, and content-aware image editing.
In contrast with traditional image synthesis, an urban layout is a
structured image which contains both vector and image data.
While the imposed structure might facilitate some tasks (e.g.,
finding a route from one location to another), it makes other tasks
more challenging. In particular, easy and intuitive modification and
creation of new urban layouts are difficult because both image and
vector data must be altered in a coordinated fashion. On the one
hand, if we consider an urban layout to be an image without any
structure, then we could use standard image operations to create
new layouts by manipulating image fragments, defined as parts of
an aerial image of an urban area with no structural information.
The image fragments can be copied and pasted together using a
mild amount of overlap and image blending (e.g.,
[Hertzmann2001]). However, this process provides no guarantees
that the resulting street and parcel network is structurally sound.
On the other hand, we could use the structure implied by the street

Example Urban
Fragment

Figure 1. Urban Layout Synthesis. First, our method extracts the street network and per-parcel aerial-view images from real-world
urban layouts. Then, using an example-based approach new layouts are interactively created by synthesizing streets and images based on
data from the example layout fragments.

New Synthesized
Street Network

New Layout with Reused Imagery

Images

Structure

and parcel network to partition an existing urban layout into rigid
structure fragments. The creation task becomes either adding
structure fragments to an existing configuration or creating a new
tiling of structure fragments (e.g., [Cohen et al. 2003]).
Unfortunately, geometrically tiling a plane is restricted to a small
set of polygonal shapes. Moreover, we have the further challenge
of making the streets of adjacent structure fragments form a
plausible connected street network. While the tiling of non-
perfectly fitting image fragments has been studied (e.g., [Kim02]),
these methods require deforming and blending the boundaries
which does not address making the streets of adjacent structure
fragments connected. None of these approaches ensure a sensible
urban layout is maintained or provide an intuitive and interactive
mechanism to quickly synthesize an urban layout that is similar to,
or explicitly different from, input examples.
Our key observation is that we can generate urban layouts by
simultaneously synthesizing vector and image data from example
data. In the context of urban layouts, synthesizing vector data is
accomplished by capturing the properties of an existing
arrangement of streets and producing similar ones. Synthesizing
image data consists of generating new images similar to the
original but able to populate the new street structure. Our strategy
couples vector-based and image-based synthesis and uses a by-
example methodology to enable intuitive high-level operations for
easy urban layout modification and creation. While the objective of
this paper is urban layout creation, our methodology can be applied
to other types of structured images as well.
Our approach interactively synthesizes a new urban layout by
creating and/or joining fragments of urban layouts based on a set of
pre-existing examples. Each urban layout fragment consists of
both structure and image data for a connected subset of the layout
and can range from a small neighborhood to an entire city. The
structure component of an urban layout fragment is represented by
a hierarchical organization of the streets. The hierarchy follows a
Gravelius ordering, traditionally used for plant modeling [Holton
1994], where the longest and most important streets (branches) are
labeled level zero and the streets of each successive branching
level are labeled as of the next level. With the added ability of
supporting loops, this representation fits naturally with many street
patterns. The image component of an urban layout fragment is
represented by a collection of aerial-view images, which are
registered with the street data. To perform synthesis, we use the
aforementioned organization of structure and image data to enable
easily (i) creating new urban layout fragments based on
information from one or more examples, (ii) constraining the
synthesis of a new urban layout to a pre-existing structure or to
user-specified constraints such as a sketch of a city, and
(iii) joining multiple urban layout fragments together to form a
larger urban layout without the user having to be concerned about
structure and image details. Altogether, our approach is able to
succinctly represent a wide variety of urban layouts fragments and
to intuitively and quickly create and/or modify complex structured
images of urban layouts. We have used our approach to create and
modify large layouts based on fragments from several real-world
locations extracted from a Geographical Information System
(GIS)-style database (Figure 1).
The main contributions of our work are
• a structure synthesis algorithm to create the streets and

parcels of a new layout fragment based on input examples,
• an image synthesis method to generate aerial-view imagery

for populating new layout fragments by reusing and warping
image data from a set of input examples, and

• a layout synthesis system providing a set of interactive tools
for assembling a new layout by seamlessly joining example
layout fragments and for creating a new layout by blending
between the styles of one or more example layout fragments.

System Overview
The system takes as input fragments from one or more existing
urban layouts and interactively builds up a new layout. It also uses
a parameterized method to synthesize a new fragment based on one
or more examples and supports combining multiple new fragments
in order to create a larger layout. Each example fragment is
automatically computed from GIS vector data describing the street
network and parcels and from registered aerial images.
Fragment synthesis consists of two parts: structure synthesis
(Section 3.1) and image synthesis (Section 3.2). In structure
synthesis, our street generation algorithm connects street
intersections and generates a new street network that exhibits the
attributes encoded in the intersection points. Parcels are then
automatically created inside the city blocks defined by the new
streets. In image synthesis, new parcels are filled with aerial
imagery, warped from similar parcels of example layout fragments.
To generate a new layout, the user interactively copies and places
groups of attributed intersection points in the region where a new
layout is to be synthesized (Section 4). Three different high-level
synthesis operations are defined between example layout
fragments: join, expand and blend. To assist with the synthesis
operations, the attributed street intersection points of each layout
fragment are placed into an adaptive spatial partitioning data
structure. Each leaf node of this data structure corresponds to a
portion of a layout fragment that has similar spatial attributes and
is considered an atomic unit.
The example layout fragments are automatically computed from
GIS vector data and from aerial imagery (Section 5). For each
example fragment, the system calculates the intersection points
between the streets, and encodes a characterization of the geometry
of the streets and parcels as attributes of the intersection points.

2. RELATED WORK
Our approach builds on concepts from example-based techniques
and relates to methods in procedural modeling and image-based
modeling. In the following sections, our work is described and
compared to activities in these major areas.

2.1 Example-based Synthesis
Example-based approaches have a long history in graphics for they
provide a fast way to generate complex results by borrowing from
existing data. Texture synthesis exploits the regularity of patterns
that appear in example texture fragments to create more texture
(e.g., [Kwatra et al. 2005]) or terrain (e.g. [Zhou et al. 2007]) of a
similar, potentially very complex, appearance. Wei et al. [2008]
proposed inverse texture synthesis as a way to synthesize a
compact representative texture from which a non-regular texture
can be synthesized. Further, several content-aware image editing
techniques propose algorithms to change existing textures or
images. Avidan and Shamir [2007] describe approaches to resize
and retarget images whereby the visually important information is
maintained. Fang and Hart [2007] propose a technique to re-
synthesize image texture when reshaping a textured portion of an
image and to reduce unwanted deformations. Kim and
Pellacini [2002] introduce an image mosaic algorithm whereby
images of objects are composed together to form the final picture
of an arbitrary shape. Structured data has also been generated by
example. For instance, Funkhouser et al. [2004] and Sloan et al.
[2001] developed systems to generate 3D models by using multiple

example objects. Nevertheless, none of these methods are
concerned with synthesizing both structure and image data.
Also relevant to our work are some systems that have edited
images of urban layouts. In particular, Hertzmann et al. [2001]
describe a framework for processing images by example. While
they modify aerial photographs of cities they do not maintain or
produce any underlying street and parcel information. Previously,
we have described a constraint-based system for modifying urban
layouts [Aliaga et al. 2008]. Parcels and streets are interconnected
such that moving the street changes the parcel and vice versa.
While this prior method is aware of the structure of an urban
layout, it provides no tools to synthesize the structure (e.g., streets)
of new layouts, no methods to synthesize the imagery for new
layouts, and no mechanism to expand an existing layout.
This paper extends example-based methods to consider both
structure and image data. Similarly to Ijiri et al. [2008], we enable
growing a layout by pieces, but our approach deals with large
geometrical structures and not only with an immediate
neighborhood. We also generate content tuned to urban layouts and
its associated imagery producing not only high quality visual
imagery, but also a feasible network of streets and parcels.

2.2 Procedural Modeling
One of the first procedural techniques describing 3D city
generation was introduced in [Parish and Mueller 2001]. It is based
on both L-systems [Prusinkiewicz and Lindenmayer 1996] and
Open L-systems [Měch and Prusinkiewicz 1996]. A similar
approach for the template-based street network generation is that of
[Sun et al. 2002] which also uses a rule-based rewriting system.
Procedural methods have also been extended to the synthetic
generation of buildings [Mueller et al. 2006, Wonka et al. 2003]
and to the creation of buildings and façades imitating real-world
structures [Mueller et al. 2007]. Nevertheless, these approaches
require the explicit specification of a set of rewriting rules and/or
the model is generated at once which limits editing.
Recently, Chen et al. [2008] proposed using tensor fields to guide
the generation of street graphs. While the user controls editing via
high-level parameters, it is challenging to steer the tensor fields to
connect to and extend existing urban spaces and to blend between
different existing street network styles. Further, no parcels or
aerial-view images are produced. In contrast, our goal is to produce
closed street networks, parcels, image content, and to provide
higher-level example-based editing.

2.3 Image-based Modeling and Computer Vision
The efforts of image-based modeling and computer vision are
focused primarily on the creation of geometric models, typically
from photographs and/or laser-data, and combining the geometry
with the images. Numerous reconstruction methods have been
proposed using aerial imagery (e.g., [Vestri and Devernay 2001;
Ribarsky et al. 2002]), ground-level imagery, or combinations of
both (e.g., [Frueh and Zakhor 2003]). In addition to extracting the
global urban structure, it is difficult for these methods to segment
the data into all of streets, parcels, and building structures.
Regardless, the approaches do not typically address the efficient
modification of the captured geometry and of the urban
configuration. In contrast, our focus is precisely on enabling the
intuitive design of urban spaces and layouts in the style of provided
exemplary real (or imaginary) urban spaces.

3. FRAGMENT SYNTHESIS
Fragment synthesis creates both the structure and image content of
individual fragments which will later be combined to form new
and larger layouts. Our approach to synthesizing individual

fragments is inspired by the following observations: (i) a compact
approximation of the geometrical structure of a layout can be
represented by a spatial distribution of attributed street intersection
points where the attributes include a characterization of the street
geometry and parcel sizes in the vicinity of each intersection point
(Figure 2), and (ii) the aerial-view images of an existing urban area
are naturally partitioned by the street and parcels into small image
fragments which can be warped and re-used as imagery of newly
synthesized layout fragments. Based on these observations, we
describe a parameterized synthesis algorithm to generate new
geometrical structure from a spatial distribution of attributed
intersection points and a method to generate new layout imagery
from a set of aerial-view images of existing urban areas (Figure 3).
Layout fragment synthesis will create and populate several data
structures that collectively define a new layout fragment ܮ ൌ
ሺܵ, ,ܤ is the set of city blocks ܤ ,ሻ, where ܵ is the street networkܫ
and parcels, and ܫ is the set of aerial images. Structure synthesis
uses a set of 2D street intersection points ܸௌ ൌ ሼݒ଴, ,ଵݒ … , ,௏ೄ|ሽ|ݒ
each with associated attributes, to generate two undirected
attributed graphs: ܵ ൌ ሺܸௌ, ௌሻ storing the synthesized streetܧ
network, and ܤ ൌ ሺܸ஻, ஻ሻ, storing the corresponding city blockܧ
and parcel information. Image synthesis uses image fragments
from a set of input aerial-view images to generate a new set of
image fragments ܫ for use by the new layout fragment. Our system,
does not explicitly cut out image fragments from the original
images, but rather stores the original images and uses texture
coordinates to index the image data.

3.1 Structure-based Synthesis
Synthesizing the structure of a new urban layout fragment proceeds
in two steps: First, the street graph ܵ ൌ ሺܸௌ, ௌሻ is completed byܧ
joining the intersection points ܸௌ with edges ܧௌ created by a
random walk based algorithm. Second, the city-block graph
ܤ ൌ ሺܸ஻, and (ܵ is the dual graph of ܤ) ܵ ஻ሻ is derived fromܧ
captures the structure and adjacency of the city blocks. The city-
block graph is then used to generate individual parcels (and later
aerial-view images) within each city-block.

3.1.1 Street Generation
The street generation algorithm synthesizes a network of streets
that attempts to follow the layout style implied by the attributed
intersection points ܸௌ (Figure 4). We define a street intersection
point ݒ௜ א ܸௌ to be between two crossing streets – crossings of
more than two streets would have to be modeled by a collection of
street intersection points. The algorithm performs directed random
walks through the points in ܸௌ. The initial steps connect
intersection points so as to form streets of hierarchy h0 (e.g.,
highways and avenues). In subsequent steps, the connectivity of
the less important streets of levels ݄ଵ, ݄ଶ, … , ݄௠ is produced. While
there is no guarantee the hierarchy levels correspond one-to-one

Figure 2. Streets and Intersection Points. Left: Set of streets
(yellow) and street intersection points (blue) which form part of
an example fragment. Right: The characteristics of the street
network can be encoded as attributes of the intersection points.

with actual street importance, our process of using hierarchy levels
has proved to be suitable for layout synthesis.
The attributes associated with each point include:
(i) the intersection hierarchy level ݄௔ሺݒ௜ሻ and ݄௕ሺݒ௜) of the two

streets that could be created through ݒ௜ (used for generating
street connectivity),

(ii) the average tortuosity (e.g., ratio between the length of the
curve segment and the distance between its endpoints) ݐ௔ሺݒ௜ሻ
and ݐ௕ሺݒ௜ሻ of each of the streets incident to ݒ௜ (used for
generating the geometry of a street segment),

(iii) the average area ܽሺݒ௜ሻ of the parcels in the vicinity of ݒ௜
(used for generating city-blocks), and

(iv) the statistical characterization of the two streets that could
pass though through ݒ௜ (used for generating street
connectivity). This characterization consists of four values per
street: the mean ߤௗ and variance ߪௗଶ of the distance between
two consecutive intersection points, and the mean ߤఈ and
variance ߪఈଶ of the angle between two consecutive street
segments.

A step in the random walk for street generation consists in moving
from a base point ݒ௜ to one of the target points ݒ௝, and connecting
the points with a new street segment. The target point is randomly
selected by using the transition probabilities ݌൫ݒ௜, ௝൯ calculatedݒ
from a bi-variate Gaussian distribution defined by the mean ሺߤௗ,
 .௜ (Figure 5a)ݒ ఈଶሻ stored in the base pointߪ ,ௗଶߪఈሻ and variance ሺߤ
Intuitively, this stochastic process prefers a target point ݒ௝ with the
following two properties: the distance from ݒ௝ to ݒ௜ is closest to the
mean distance ߤௗ between intersection points and the angle formed
between the proposed segment ሺݒ௜, ௝ሻ and the last existingݒ
segment of the street is most similar to the mean angle ߤఈ between
consecutive segments. A user-defined threshold is used to ignore
segments of very low transition probability.
Performing a step to an intersection point is subject to constraints
imposed by the hierarchy levels stored in the points, by the number
of times an intersection point has been connected, and by
previously generated street segments. A step of the random walk
on a street of hierarchy level ݄௞ can move to a point ݒ௝ if and only
if ݄௞ ൌ ݄௔൫ݒ௝൯ or ݄௞ ൌ ݄௕ሺݒ௝ሻ. We assume that only two streets
pass through an intersection point. Furthermore, we do not allow
generation of new intersection points in the street generation phase.
Consequently, a newly generated street segment cannot cross an
existing street in an arbitrary position, but only in an intersection
point. In all three constraint cases, we set to zero the transition
probability from ݒ௜ to an invalid point ݒ௝, i.e., ݌൫ݒ௜, ௝൯ݒ ൌ 0.
A random walk on a hierarchy level ݄௞ and through ݒ௜ ends when
for all ݒ௝ we have ݌൫ݒ௜, ௝൯ݒ ൌ 0. In this case, a new random walk is
started from an available connection slot in a point ݒ௜ with
݄௔ሺݒ௜ሻ ൌ ݄௞ or ݄௕ሺݒ௜ሻ ൌ ݄௞. The process ends when no new
random walks can be started.
Since the street segments between intersection points in the
example layout fragments are not necessarily straight lines, we use
the tortousity attributes of the points defining the segment ݁ to
generate a poly-line representing the geometry of the segment
(Figure 5c). The poly-line mimics the style of the example streets
and is stored as an attribute ݃ሺ݁ሻ in the corresponding edge.

3.1.2 City-Block Generation
Once the street generation is completed, we compute the blocks
and parcels enclosed by the new streets yielding the city-block
graph ܤ ൌ ሺܸ஻, ݒ ஻ሻ. Each pointܧ א ܸ஻ corresponds to a city
block and forms a closed face of ܵ (i.e., a closed cycle). Two city
blocks ܾ௔, ܾ௕ are adjacent if there is a corresponding street edge
݁ א ௌ in common for both faces. When this is the case, we addܧ
edge ݂ ൌ ሺܾ௔, ܾ௕ሻ to ܧ஻. Hence, the city block graph ܤ is a dual
graph to the street graph ܵ as every face of ܵ corresponds to a
vertex in ܤ. The geometry of each new block ܾ א ܸ஻ is computed

ሺܵ, ,ܤ ,ܸ)Ԣሻ = synthesizeܫ (ܫ
/*Input: Attributed intersection points ܸ, Imagery ܫ.
 Output: Synthesized streets ܵ, blocks and parcels ܤ,
 and new imagery ܫԢ */
ܵ = connectIntersectionPoints ሺܸሻ
 computeBlocksAndParcels ሺܵሻ = ܤ
,ܫgenerateNewImagery ሺ = ’ܫ ሻܤ

connectIntersectionPoints ሺܸሻ
REPEAT
 FOR each hierarchy level ݄ ൌ ݄଴, ݄ଶ, … , ݄௠
 FOR each street ݏ of hierarchy level ݄
 randomWalk ሺݏ , ܸሻ
 ENDFOR
 ENDFOR
UNTIL no new street segments are added to any street

randomWalk ሺݏ , ܸሻ
FOR each of the two endpoints ݒ௘ of street ݏ
 Find the point כݒ א ܸ that maximizes ݌ሺݒ௘, ሻݒ
 IF ݌ሺݒ௜, ሻכݒ ൐ 0 THEN
 Add segment ሺݒ௘, ݏ ሻ toכݒ
 Update endpoints of ݏ
 ENDIF
 /* if ݌ሺݒ௘, ሻכݒ ൌ 0 no feasible transition points
 have been found (see figure 5a)*/
ENDFOR

computeBlocksAndParcels ሺܵሻ
Extract blocks as minimum cycles formed by streets ܵ
FOR each block ܾ
 Generate a Voronoi diagram from a set of points
 sampled along the main axis of the OBB of ܾ
 Each Voronoi region enclosed in ܾ is a parcel of ܾ
ENDFOR

generateNewImagery ሺܫ, ሻܤ
FOR each block ܾ
 FOR each parcel ݈ of ܾ
 Find in ܫ an image fragment ݅ with similar
 shape to the contour of ݈
 Generate a quadrilateral grid to produce a
 one-to-one mapping between the ݅ and ݈
 Warp ݅ into ݈ using the one-to-one mapping
 ENDFOR
ENDFOR

Figure 3. Pseudocode. Summary of synthesis algorithm.

Figure 4. Attributes. Left: The hierarchy levels of the example
streets are calculated and stored in each intersection point they
generate. Right: A statistical characterization of each street is
obtained by calculating the mean and variance of the distance
between points and of the angle between segments.

0‐1 0‐1

0‐1

0‐1

1‐2

1‐1

1‐2

1‐2

1‐2

2‐22‐2

1‐2

1‐2
2‐2

by concatenating ݃ሺ݁௜ሻ, for every edge ݁௜ that forms the polygon
enclosing ܾ. An edge ݁ א ௌ is part of the polygon enclosing ܾ ifܧ
at least one of the edges from ܧ஻ that is incident to ܾ intersects ݁.
Each block ܾ is then subdivided into parcels ܮ௕ ൌ ሼ݈଴, ݈ଵ, … , ݈௡್ሽ.
The number of parcels per block ݊௕ and the expected aspect ratio
are determined from the average parcel area stored in the points of
the edges enclosing ܾ. Our block subdivision algorithm is guided
by the following observations and assumptions:
• We assume all parcels have road access (egress rule).
• A block is subdivided into one or two rows of parcels, such that

each parcel is touching the street in the front and touching a
neighboring parcel in the back (and maybe on the sides);
sometimes parcels have street access both in front and in back
– this implies one row of parcels and often means very few
parcels in that block; corner parcels, of course, have access on
consecutive sides of the parcel.

• While parcels may be of any shape (and not necessarily
convex), very often parcels can be well approximated by
polygons of few edges and most often of four edges.

The general idea for subdividing a block ܾ into ݊௕ parcels is to
sample the inside of the block with a set of points ௏ܲ, and then to

calculate the Voronoi diagram of the points in ௏ܲ (Figure 6). Each
resulting Voronoi region will constitute a parcel ݈ א ௕. Resultsܮ
have shown that if ௏ܲ is adequately selected, parcel geometries that
closely resemble the parcels in the original city can be obtained.
Voronoi points ௏ܲ are generated along an axis that approximately
splits the block into two halves. We have observed that for most
blocks this axis corresponds closely to the central segments of the
medial axis of the block. Since most blocks are nearly rectangular,
the medial axis can be approximated by the longest axis of an
oriented bounding-box (OBB) surrounding the block. The segment
of the axis that lays inside ܾ is then sampled with ሺ݊௕ െ 1ሻ/ݎ௕
points, separated by a distance ݀ ൅ ߳, where ݀ is deduced from ݊௕
and ݎ௕, ߳ is a Gaussian noise (i.e., ߳~ܰ൫0, ௕ଶ൯) added to increaseߪ
the diversity of the parcels inside ܾ, and ݎ௕ is the number of rows
in the block (i.e., 1 or 2). The variance ߪ௕ଶ is computed from the
standard deviation of the parcel area averages stored with the
intersection points associated with ܾ. For a single row of parcels
inside the block, the Voronoi vertices are the ݊௕ െ 1 sampled
points. In the case of two rows, the Voronoi vertices are given by
creating two copies of the ሺ݊௕ െ 1ሻ/2 sampled points, and
translating them a distance േߜ along a direction perpendicular to
the central axis, where ߜ is a small positive number.

3.2 Image-based Synthesis
Synthesizing the image data for a new urban layout fragment uses
a method for establishing polygon-similarity and an image-warping
algorithm to generate plausible image content for each newly
created parcel. Since our urban layouts are created by-example, it
is natural to assume we can reuse some of the image content of the
examples to populate the newly created layout fragment. Since
both the input and created layout fragment are highly structured,
we cannot resort to simply copying large blocks of pixels. Instead,
for each new parcel ݈ே whose geometry is an ܽ-sided polygon, we
find a best parcel ݈ை of the example layout fragment whose
geometry is a ܾ-sided polygon, and map the polygon of ݈ை to the
polygon of ݈ே. The selected example parcel image fragment is
warped via texture-mapping onto the new parcel geometry and
rendered together with the rest of the layout fragment.
To find the example parcel ݈ை most similar to the new parcel ݈ே we
compare the OBB of all example parcels with the OBB of ݈ே. We
let ݈ை be the parcel whose OBB is most similar in area and aspect
ratio to the OBB of ݈ே and respects the same side facing the street.
Our image-warping algorithm generates a correspondence between
two arbitrary concave or convex polygons. First, it defines a ݏ ൈ ݊
quadrilateral grid inside the OBB of ݈ை and the OBB of ݈ே, such
that a one-to-one mapping can be established between the grids of

Figure 5. Street Generation. a) A transition probability for the
random walk is associated to each intersection point based on
its attributes. A point is not considered when (i) it cannot have
the current hierarchy level pass through it, (ii) it is statistically
too improbable for a street to pass through it, (iii) it has been
traversed by a street the maximum number of times (i.e., 4), or
(iv) it requires crossing an edge to reach it. b) A same point set
with different attributes can generate two street networks with
significantly different styles. c) Once the street segments are
created, its street poly-line is computed using the tortuosity
parameter stored in the intersection points.

(c)

(a)

(b)

Connectivity

Query vertices
for tortuosity

Generate
Geometry

(1)

(2)

(3)

Figure 6. Parcel Generation. Left: A block is extracted from a
synthetic street network. Middle: The main axis of the oriented
bounding box of the block is calculated and stochastically
sampled with points (up). Copies of the points are created on
each side of the axis, and their Voronoi diagram is calculated
(bottom). Right: The intersections of the Voronoi diagram with
the contour of the block are used to help define the parcels.

0.19

0.38
0.31

0.12

(i)(ii)

(iv)

(iii)

݈ை and of ݈ே. To do so, the algorithm defines for ݈ை and for ݈ே a set
of ݏ scan lines that are uniformly separated, and perpendicular to
the main axis of the OBB of each parcel. Then, the method finds
the intersection points ݌௔, scan lines and ݏ ௕ between each of the݌
the contours of ݈ை and ݈ே, and generates ݊ uniformly-separated
sample points along each scanline and between ݌௔ and ݌௕.
A total of ݏ ൈ ݊ sample points are generated inside each parcel,
and a one-to-one correspondence is therefore guaranteed. At
display time, the new parcel ݈ே is rendered using the coordinates of
the correspondence points to define a quadrilateral mesh, and the
coordinates of the corresponding example parcel to obtain texture
coordinates (Figure 7). This results in the example texture being
warped onto the new parcel. The similarity metric and presence of
many parcels of different shapes and sizes tends to keep the texture
stretch small [Zhang et al. 2005]. This method will produce a ܥ଴
continuous and non-self-intersecting warp if the projection of both
parcel’s contours onto the main axis of their OBBs is monotonic.

4. LAYOUT SYNTHESIS
Using the fragment synthesis algorithm, our approach enables a
user to interactively assemble new layouts by combining example
layout fragments. Choosing the location and attributes of each
intersection point in the new layout is a difficult and time
consuming process. Thus, we organize the point sets of each
example layout fragment into an adaptive spatial partitioning that
facilitates manipulation of the intersection points in a fast and
intuitive way. Given the spatial data structure, a new layout is
assembled by a sequence of layout synthesis operations. The user
simply copies and pastes together the point sets of example
fragments from which the system synthesizes a new and complete
layout. The point sets can be placed next to each other with no
overlap or with overlap. The former corresponds to the intuitive
notion of assembling pieces of a puzzle. The latter is used to
represent a blending of the styles of the corresponding original
example fragments. In both cases, the user is sketching the new
layout by only manipulating point sets and does not need to be
concerned with the structure and imagery. Therefore, arbitrary
layout fragments can be easily and interactively assembled
together. The algorithms presented in Section 3 are used to connect
the new intersection points with street segments based on their
attributes, to populate the resulting street network with parcels and
imagery, and finally to yield a new synthetic urban layout.

4.1 Organizing Intersection Points
The attributed intersection points ܸ௦ of each example fragment are
organized into a spatial partitioning that divides the points into
contiguous regions of approximately similar attributes. The
intersection points of an arbitrary example fragment may have
significantly varying attributes (e.g., varying spatial densities,
different distributions of hierarchy levels, etc.). This may result in
a strong dissimilarity between the intersection points of two layout
fragments to be pieced together when creating a new layout by
example. The dissimilarity hinders providing a smooth transition
between the structures of the two fragments. To automatically
synthesize a transition from one fragment to another, we partition
each layout fragment into spatial nodes containing points of similar
attributes. Intuitively, we seek to partition the layout fragment into
areas that are each approximately self-similar; e.g., a downtown
area containing a regular grid of intersection points, a housing
subdivision containing a particular style of intersection points, etc.
This in turn enables modeling each node using a simple set of
stochastic parameters and enables parametrically producing
attributed intersection points that can smoothly change from the
attributes of one fragment to those of another fragment. Altogether,
this facilitates defining a set of attributed intersection points that
can either (i) exhibit a smooth spatial transition from the structure
of one fragment to that of another adjoining one, or (ii) have
attributes that are a weighted combination of the attributes from
two or more layout fragments.
Instead of using a regular grid of boxes that would hardly each
have similar attributes, our approach is to partition the set of
attributed intersection points for each example layout into a quad-
tree data structure, whose leaf nodes are rectangles containing a set
of points of approximately uniform spatial distribution. Moreover,
each leaf node also stores the relative probability of each hierarchy
level within the confines of the associated quadrilateral. Thus, the
quad-tree captures both the distribution of the locations of the
intersection points and the spatial distribution of the hierarchy
levels within the layout fragment. To construct the quad-tree, the
OBB of the set of intersection points from an example layout is
recursively subdivided until each leaf node has (i) a set of roughly
uniformly-distributed intersection points, (ii) a minimum area, or
(iii) a minimum number of intersection points. While other point
distributions can be used as a model (e.g., 2D Gaussian
distribution), an assumption of uniform density enables us to
capture a grid-like configuration of intersections, which would be
difficult with a Gaussian distribution.

4.2 Synthesis Operations
In subsequent by-example processing, the attributed intersection
points of example fragments and their aforementioned spatial
organization are used to enable several synthesis operations: join,
blend, and expand. Without loss of generality we explain the
operations for two example point sets ܮ௔ and ܮ௕. The point sets can
be joined by simply placing copies of their attributed intersection
points next to each other and then the synthesis algorithm will
connect the points to produce a new combined layout. In order to
provide a smoother structural transition, the point sets should
overlap. Then, we define a spatially varying blending operation
within the overlap area. The points nearer to ܮ௔will show a style
more similar to that of the layout from which ܮ௔ was obtained; vice
versa for ܮ௕. An interesting variant of blending is that if the point
sets overlap completely, we can define a constant value over the
entire overlap region that serves to “interpolate” between the styles
of the two sets. Finally, the same methodology is used to expand
an existing layout. The user sketches the expansion by placing
points (e.g., ܮ௔ or ܮ௕) next to an existing or synthesized layout.

Figure 7. Image Warping. Given a blank, new synthetic parcel
(bottom left), a similar parcel with image (source) is found (top
left). A one-to-one correspondence is found between sample
points on both parcels (middle), so that the image of the source
parcel can be warped to the new parcel (bottom right).

The synthesis algorithm connects the new intersection points to the
existing street network. Combining these operations allows for
significant expressivity in designing urban layouts by example.

5. OBTAINING EXAMPLE FRAGMENTS
Example fragments for use in our synthesis process are obtained by
automatically calculating the attributes of a set of existing street
intersection points. GIS databases are widely available for many
cities and thus are a good source of data for computing example
fragments. For our purpose of urban layout synthesis, we assume a
GIS database contains a set of unorganized piecewise linear curves
(poly-lines) describing street centerlines, a description of the
individual parcels of land, and a set of geo-registered aerial-view
images. The aerial-view images are directly used by the image
synthesis steps of a new layout. Although GIS databases can be
straightforwardly used for simple aerial flyovers or for querying
for a particular street, city block, or route to follow (e.g., map
directions), they are not adequately organized for the structure-
based synthesis steps of urban layouts. Nevertheless, they do
contain sufficient information to derive the intersection points and
attributes necessary for our structure-based synthesis.

The set of intersection points ܸௌ of a real-world layout fragment is
constituted by all the pair-wise intersection points between street
centerlines, and by all street centerline endpoints. The set of
intersection points by themselves (i.e., with no additional
attributes) does not capture the “style” of the layout; for instance,
two layouts may have the same set of intersection points but very
different street patterns (see Figure 5b). Thus, we calculate the set
of attributes (as mentioned in Section 3.1.1) using the GIS
database. To calculate the intersection point hierarchy levels, we
select a small percentage of the longest and widest streets of the
layout as the main branches and set their level to ݄଴. Any streets
crossing them are defined to be of the next level of branches, e.g.,
݄଴ ൅ 1. This process is repeated until all streets are labeled, and it
exploits the notion of first labeling the longest and widest streets
and then recursively labeling the smaller roads. For the hierarchy
levels ݄ଵ, ݄ଶ, … , ݄௠, the streets of level ݄௜ will be all those that
intersect at least one street of level ݄௜ିଵ, and that have not already
been labeled with another hierarchy level. Since the maximum
number of hierarchy levels ݉ is not known in advance, ݄଴
represents the highest hierarchy level, and ݄௠ the lowest. The
remaining attributes of average tortousity, average parcel area, and
the statistical characterization with the mean and variance of the
distance and angle between two consecutive intersection points are
easily computed from the GIS street centerlines and parcel data.

6. RESULTS AND DISCUSSION
We have used our approach to interactively create several synthetic
urban layouts from fragments of real-world cities. We first
demonstrate how our attributed point sets capture the structural
characteristics of a real-world layout fragment. Then, we show the
results of several operations used to compose layouts by example.
All street networks and images are interactively generated by our
system using the example fragments.
We have chosen parts of four cities from around the world, each of
them exhibiting a different style of street network and from which
multiple example layout fragments are extracted: Madrid, Istanbul,
Buenos Aires, and Lafayette, IN. The sizes of the individual
example layout fragments we extract from our set of cities vary
from a few streets, blocks, and parcels to several hundred streets
and blocks and several thousand parcels. The imagery was
obtained from Google Maps. Although the needed street data can
be obtained from GIS databases, the data of our examples was
obtained using a simple interactive editor except for Lafayette
which was provided by the town’s urban planning division.

Figure 8. Abstraction into Attributed Points. The attributed
intersection points of the street network of an example urban
layout fragment (left) have been copied and dropped in an
empty area (right). Our system is then used to connect
intersection points. Notice the similarity between the
reconstructed street network and the original one.

Figure 9. Expansion. An urban layout (left) with grid-pattern blocks grows into an empty area inside the layout that has been filled
with attributed intersection points taken from a fragment of a grid city (middle), and attributed intersection points taken from the
fragment of an irregular city (right). In both cases, new streets are generated which exhibit the style encoded in the intersection points.

First, we show how a set of attributed intersection points captures
the style of an existing urban layout (Figure 8). We used our
program to create a copy of the attributed intersection points of
Lafayette. This is interactively accomplished via a single mouse-
dragging and pasting operation. The copied intersection points are
automatically connected in a way that closely resembles the layout
of the original city. Notice for instance how the main (longest and
widest) streets in the synthetic city are almost identical to those of
the example city. The errors in the recovered network are due to
the presence of highly atypical streets and to the stochastic nature
of our algorithm. While this particular result could also be
accomplished by a simple copy and paste, it serves to show the
effectiveness of our representation in capturing the style of a city
using a mostly stochastic process.
To compose larger layouts, we demonstrate several types of
synthesis operations. Figure 9 shows an urban layout (left) with
grid-pattern city blocks (e.g., Buenos Aires) growing into an empty
area inside the layout (e.g., a park). First, the user has placed a set
of attributed intersection points taken from a similar grid-pattern
city (middle). Street segments are automatically generated to
connect the points in a way that closely resembles the style of the
original city. In a second experiment (right), the user has placed a
different set of attributed intersection points copied from a city
with a more irregular street pattern (e.g., Istanbul -- see right side
of Figure 10). Again, street segments exhibiting a style similar to
that of the example city are created to connect the intersection
points. In this latter case, there is a clear (but rough) transition in

the style of the street network. Notice the higher tortuosity of the
new streets and the small angles at many of the intersection points.
In both cases, new streets are reasonably connected to the original
street network.
A result of a spatially varying blending operation is shown in
Figure 10. Example layout fragments are extracted from urban
areas of different styles: one exhibiting a grid-pattern (left), and
one exhibiting an irregular pattern (right). A new street network is
generated as a combination of both patterns (middle). The blending
value provided by the user defines the attributes of the upper points
to be more similar to those of the intersection points in the grid
pattern, and a different blending value defines the attributes of the
lower points to be more similar to those of the points in the
irregular pattern. On a large scale, the blending of both styles is
visible from a view of the entire new layout. On a small scale, the
blending is also seen in details such as the higher variance in the
distance between intersection points at the bottom of the layout
(similar to the irregular pattern), and the lower tortuosity of the
street segments at top of the layout (similar to the grid pattern).
Figure 11 shows the result of a sequence of join and blend
operations. The original street network of an existing irregular
pattern city is loaded by the user. A copy of the set of attributed
intersection points of a grid-pattern city is then placed to the
northwest (left) of the original layout. Next, a copy of the
intersection points of both the irregular pattern city and the grid
pattern city are placed in the space between the original city and

Figure 10. Blending. The user takes attributed intersection points of two fragments (left, right) from cities with different styles. Our
quadtree-based approach modifies the points so that they encode a spatially varying (North-South) blend of both styles. A new street
network is created by our street generation algorithm that intuitively resembles a merge of the example street networks (middle).

Figure 11. Join and Blend. Sequences of join and blend operations have been used to generate both street networks. In this case, the blue
fragment (with grid pattern) and the red fragment (with irregular pattern) are connected in two different positions relative to each other.

Join Join

the points dropped in the previous step. The system automatically
calculates a new street network that joins the original city with the
grid pattern points and that exhibits a blended style.
Figures 12 and 13 present additional examples. Figure 12 is an
example of two layout fragments exhibiting irregular (left) and
regular (right) patterns that have been joined together. The street
network is the result from a spatially varying blending value,
yielding a smooth transition between the two layout fragment
styles. The parcel imagery is also interpolated between both cities,
i.e., parcels towards the left side of the blend region used more
textures from the irregular pattern city, while parcels on the right
side used more textures from the regular pattern city. The blend
parameter is used to modulate a simple probability value that
determines which layout is searched for the best fitting parcel
image. Such interpolations can be used to easily assemble a city
from a variety of layout fragments and associated imagery.
Figure 13 shows an expansion of a city producing both structure
and images. Observe how a similar style of streets is produced and
the seam between the original and new blocks is hard to see.

7. CONCLUSIONS
We have presented an interactive system to synthesize new layouts
by example. The structure and image data of example layout
fragments is separated. Then, both a structured-based synthesis and
an image-based synthesis are performed resulting in a new
synthetically created urban layout. Our core synthesis algorithm
can be used to perform several high-level editing operations such
as joining, expanding, and blending example layout fragments. The
last option, blending, provides a powerful, yet intuitive, way to
synthesize new layout fragments by blending between the styles of
several examples. All operations are fully interactive except for
parcel image generation which in our current implementation may
take from seconds to several minutes. Nonetheless, new and
complete layouts with plausible street networks and aerial imagery
can be quickly generated without the user being concerned about
low-level details. Our approach is useful to a variety of
applications for virtual environments, entertainment, architecture,
emergency management, and urban planning.

Figure 12. Larger example using multiple operations. (top) A fragment with irregular pattern (left) is joined together with a fragment
with grid pattern (right) by a street network resulting from a spatially varying blending operation. (middle) Parcel imagery is generated
by example from fragment on left side and (bottom) as an interpolation of imagery from both fragments.

Figure 13. Expansion with Images. A layout fragment with an irregular pattern is automatically expanded to the East. New streets are
connected to the example fragment and exhibit a similar style as the streets of the fragment. Imagery is also re-used to populate the new
street network. Notice the difficult-to-see transition between the original fragment and the new streets and parcels.

Limitations. We have identified three limitations in our synthesis
algorithm. First, the parcel image generation process assumes there
is sufficient variety of parcel shapes and sizes available to fit in the
synthetically created parcels. This results from our image-reuse
strategy. If the provided input layout is too small or has a small
variety of parcel shapes, it will be difficult to find good matches
for parcel filling without severe image warps and high parcel
image repetition. As our system is applied to larger areas, this issue
becomes progressively less problematic. Second, while parcel
images are selected from existing areas of the same general
classification (e.g., zoning), contextual information is in general
not used to select and warp parcel images. This is not strictly a
limitation, but it may cause unwanted image warping. Third,
without user editing, our method is not well suited for reproducing
highly atypical streets of an example layout fragment. Since our
system relies on street intersection points, an atypical street will
have relatively few intersection points that capture its style and a
street network different to the original one might be produced. An
example of this case are the odd-looking streets synthesized from
the duplicated intersection points of the streets with atypical
orientation, near the center of the original urban layout of Lafayette
(Figure 8). In these cases, the user would need to correct the
generated street network.
Future Work. We are pursuing several items for future work.
First, we would like to extend our approach to also consider the
underlying terrain geometry. Thus in addition to characterizing the
street network on a plane, changes in the terrain height should
affect growth patterns. Second, a natural extension is to further
produce synthetic content within each parcel. One option is to use
a procedural modeling engine to generate 3D content within each
parcel (e.g., [Aliaga et al. 2007, Mueller et al. 2006, Wonka et al.
2003]). A third direction of future work is to integrate our system
with an urban simulation (e.g., [Waddell et al. 2007]) engine to
provide automatic high-level control to guide the urban expansion.
Furthermore, we could develop a feedback loop to generate
visualizations of the urban spaces during a simulation.

8. ACKNOWLEDGEMENTS
This work is supported in part by the Purdue Research Foundation.
We thank Adrian Lim for his help with the datasets. We are also
very grateful to the reviewers for their valuable comments.

References
ALIAGA, D. G., BENEŠ, B., VANEGAS, C. A., ANDRYSCO, N. 2008.

Interactive reconfiguration of urban layouts. IEEE Computer
Graphics & Applications (May/June), 28, 3, 38-47.

ALIAGA, D. G., ROSEN, P., BEKINS, D. 2007. Style Grammars for
Interactive Visualization of Architecture. IEEE Trans. on
Visualization and Computer Graphics, 13, 4, 786-797.

AVIDAN, S., AND SHAMIR, A. 2007. Seam carving for content-aware
image resizing. ACM Trans. on Graphics, 26, 3.

CHEN, G., ESCH, G., WONKA, P., MUELLER, P., ZHANG E. 2008.
Interactive Procedural Street Modeling. ACM Trans. on
Graphics, 27, 3.

COHEN M., SHADE J., HILLER S., DEUSSEN O. 2003. Wang Tiles for
Image and Texture Generation. ACM Trans. on Graphics, 22, 3.

FANG, H., AND HART, J. C. 2007. Detail preserving shape
deformation in image editing. ACM Trans. on Graphics, 26, 3.

FRUEH, C., AND ZAKHOR, A. 2003. Constructing 3D city models
by merging aerial and ground views. IEEE Computer Graphics
& Applications, 23, 6, 52–61.

FUNKHOUSER, T., KAZHDAN, M., SHILANE, P., MIN, P., KIEFER, W.,
TAL, A., RUSINKIEWICZ, S., DOBKIN, D., 2004. Modeling by
Example. ACM Trans. on Graphics, 23, 3, 652-663.

HERTZMANN, A., JACOBS, C., OLIVER, N., CURLESS, B., SALESIN, D.
2001. Image Analogies. In Proc. of ACM SIGGRAPH 2001.

HOLTON, M., 1994. Strands, Gravity, and Botanical Tree Imagery,
Computer Graphics Forum 13(1) 57–67.

IJIRI, T., MECH, R., IGARASHI, T., MILLER, G. 2008. An Example-
based Procedural System for Element Arrangement. Proc. of
Eurographics, 429-436, Computer Graphics Forum, Vol. 27.

KIM, J., AND PELLACINI, F. 2002. Jigsaw image mosaics. ACM
Trans. on Graphics, 21, 3, 657–664.

KWATRA, V., ESSA, I., BOBICK, A., KWATRA, N. 2005. Texture
Optimization for Example-Based Synthesis. ACM Trans. on
Graphics, 24, 3, 795-802.

MĚCH, R., AND PRUSINKIEWICZ, P. 1996. Visual models of plants
interacting with their environment. In Proc. of ACM SIGGRAPH
1996, 397-410.

MUELLER, P., WONKA, P., HAEGLER, S., ULMER, A., GOOL, L. V.
2006. Procedural modeling of buildings. ACM Trans. on
Graphics, 25, 3, 614–623.

MUELLER, P., ZENG, G., WONKA, P., GOOL, L. V. 2007. Image-
based procedural modeling of façades. ACM Trans. on
Graphics, 26, 3.

MUMFORD, L. 1961. The City In History, Harcourt, Brace, &
World (New York).

PALMA DE, A., PICARD, N., WADDELL, P. 2007. Discrete Choice
Models with Capacity Constraints: An Empirical Analysis of the
Housing Market of the Greater Paris Region, Journal of Urban
Economics, 62, 204-230.

PARISH,Y. I. H., AND MUELLER, P. 2001. Procedural modeling of
cities. In Proc. of ACM SIGGRAPH 2001, 301-308.

PRUSINKIEWICZ, P., AND LINDENMAYER, A. 1996. The algorithmic
beauty of plants. Springer-Verlag, New York, Inc., NY, USA.

RIBARSKY, W., WASILEWSKI, T., FAUST, N. 2002. From urban
terrain models to visible cities. IEEE Computer Graphics &
Applications, 22, 4, 10–15.

SLOAN P., ROSE C., COHEN M. 2001. Shape by Example. Proc. of
ACM Symp. on Interactive 3D Graphics, 135-143.

SUN, J., YU, X., BACIU, G., GREEN, M. 2002. Template-based
generation of road networks for virtual city modeling. Proc. of
ACM Symp. on Virtual Reality Software and Technology, 33–40.

VESTRI, C., DEVERNAY, F. 2001. Using Robust Methods for
Automatic Extraction of Buildings. IEEE Computer Vision and
Pattern Recognition, 133-141.

WADDELL, P., ULFARSSON, G., FRANKLIN, J., LOBB, J. 2007.
Incorporating Land Use in Metropolitan Transportation
Planning. Transp. Res. Part A: Policy and Practice, 41,382-410.

WEI, L., HAN, J., ZHOU, K., BAO, H., GUO, B., SHUM, H. 2008. ACM
Trans. on Graphics, 27, 3.

WONKA, P., WIMMER, M., SILLION, F., RIBARSKY, W. 2003. Instant
Architecture. ACM Trans. on Graphics, 22, 3, 669-677.

ZHANG, E., MISCHAIKOW, K., TURK, G., 2005. Feature-Based
Surface Parameterization and Texture Mapping, ACM Trans. on
Graphics, 24, 1, 1-27.

ZHOU, H., SUN, J., TURK, G., REHG, J. 2007. Terrain Synthesis from
Digital Elevation Models. IEEE Trans. on Visualization and
Computer Graphics, 13, 4, 834-848.

