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Modeling Repetitive Motions using Structured Light 
Yi Xu and Daniel G. Aliaga 

Abstract— Obtaining models of dynamic 3D objects is an important part of content generation for computer graphics. 
Numerous methods have been extended from static scenarios to model dynamic scenes. If the states or poses of the dynamic 
object repeat often during a sequence (but not necessarily periodically), we call such a repetitive motion. There are many 
objects, such as toys, machines, and humans, undergoing repetitive motions. Our key observation is that when a motion state 
repeats, we can sample the scene under the same motion state again but using a different set of parameters; thus providing 
more information of each motion state. This enables robustly acquiring dense 3D information difficult for objects with repetitive 
motions using only simple hardware.  After the motion sequence, we group temporally disjoint observations of the same motion 
state together and produce a smooth space-time reconstruction of the scene. Effectively, the dynamic scene modeling problem 
is converted to a series of static scene reconstructions, which are easier to tackle. The varying sampling parameters can be, for 
example, structured-light patterns, illumination directions, and viewpoints resulting in different modeling techniques. Based on 
this observation, we present an image-based motion state framework and demonstrate our paradigm using either a 
synchronized or an unsynchronized structured-light acquisition method.  

Index Terms— Three Dimensional Graphics and Realism, Digitization and Image Capture, Geometric Modeling. 

——————————      —————————— 

1 INTRODUCTION

Modeling dynamic 3D objects is an important part of 
content generation for virtual reality, movies, gaming, 
and other applications. Motion in a scene can vary from 
being completely random, where no motions repeat, to 
exactly periodic, where all motions repeat in a fixed pat-
tern. In this paper, we investigate a 3D modeling para-
digm that exploits the middle ground of modeling mo-
tions that repeat in some way over time. Such repetitive 
(or quasi-periodic) motions occur with mechanical mo-
tions (e.g., toys, pendulum, etc.) and with human activi-
ties (e.g., exercises, walking, etc.). Our work investigates 
efficiently discovering, exploiting, and modeling objects 
undergoing such repetitive motions, rendering them from 
novel viewpoints, and generating new motion sequences.  

Acquiring and modeling dynamic objects is a very 
challenging task. The process involves both creating a 
model of the object and capturing the motion sequence. 
Many general approaches have been proposed for captur-
ing the geometry and appearance of dynamic scenes. One 
such group of approaches uses cameras to passively ob-
serve a scene and to reconstruct the objects and their mo-
tion (e.g. [3][4][8][23][32][41]). However, these methods 
either do not actually acquire any 3D geometry ([8] uses 
an external laser scanner to obtain a full body scan) or 
depend on less robust correspondence computations, col-
or consistency over a large baseline, and/or background 
subtraction. Another group of approaches actively adds 
energy (i.e., light) into the scene in order to significantly 
improve the robustness of 3D reconstruction. Laser scan-

ners obtain detailed models but would require a very fast 
update rate to complete the scans many times a second as 
would be needed to support moving objects. Motion cap-
ture devices sample the motion accurately but do not ob-
tain a model of the moving and deforming object. A sin-
gle-shot structured-light method is able to reconstruct the 
geometry of dynamic objects using the information en-
coded in one frame ([17][18][38]). But, the resolution and 
level-of-detail of the reconstructed objects is low. Thus, 
while an enhanced structured-light method might be able 
to project a few patterns in rapid succession, they would 
have to assume the scene is temporarily stationary 
and/or consisting of slowly moving rigid objects [25]. 
Moreover, active methods in general interfere with the 
appearance of the objects which makes simultaneously 
obtaining dense depth and color hard for dynamic scenes.  

In addition, none of these general methods exploit the 
redundancy introduced by repetitive motions to improve 
the space-time modeling of the moving objects. Some re-
search efforts have focused on detecting and measuring 
repetitive motions from images captured by static and/or 
moving cameras (e.g., [6][21][30]), or on generating new 
video sequences from images captured over time from a 
common viewpoint (e.g., [1][28]). However, these me-
thods do not build a 3D model of the observed object.  

Our key observation is that repetitive motions can be 
discretized into a set of motion states that repeat one or 
more times and the repetitions enable changing the sam-
pling parameters used for each occurrence. Thus, after 
several repeated observations of an object’s motion states, 
we can accumulate a more complete representation of the 
object’s geometry and of the object’s motion. Effectively, 
we are correlating temporally disjoint samples observing 
the same motion state. These samples reconstruct a vir-
tually static object thereby converting the dynamic 3D 
scene acquisition problem into a series of more robust 
static scene reconstructions. There are a variety of sam-

xxxx-xxxx/0x/$xx.00 © 200x IEEE 

———————————————— 
• Yi Xu is a Ph.D. candidate in the Department of Computer Science, Pur-

due University, 305 N. University St., West Lafayette, IN, 47907. E-mail: 
xu43@cs.purdue.edu.  

• Daniel G. Aliaga is an Assistant Professor of Computer Science at Purdue 
University, 305 N. University St., West Lafayette, IN, 47907. E-mail: alia-
ga@cs.purdue.edu.  

Manuscript received (October 31, 2008). 



2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, TO APPEAR, 2009 

 

pling parameters that can be changed between each re-
peated observation of a static scene (e.g. the illumination 
parameters of an active acquisition method).  

The correlation between identical motion states but at 
disjoint time instances is made feasible by further observ-
ing that many 3D motion states can be uniquely identified 
by their projection onto an image plane. Hence, by assum-
ing a static camera is observing the scene; we can discret-
ize the repetitive motion into image-based motion states 
(i.e. specific object poses or shape configurations). Al-
though not all motions are distinguishable by their image 
projection (e.g., a spinning sphere with uniform color), in 
practice most of them are differentiable using a static 
camera due to texture, non-uniform color and geometry. 
We can also use contextual information (e.g., the frames 
before and after) to further distinguish motion states.  

We present an image-based framework for modeling 

and acquiring dynamic 3D objects undergoing repetitive 
motions. Using the assumption that the states of a 3D re-
petitive motion are distinguishable under image projec-
tions, our method first finds the repeating patterns in an 
initial image sequence captured by a static camera under 
constant lighting (Fig. 1a). Then, the original repetitive 
motion is discretized into M motion states, each of which 
is represented using an image (Fig. 1b). We arrange them 
into a finite state machine (Fig. 1c). The repetitive motion 
may include rigid transformations and arbitrary object 
deformations, but the object must stay within a working 
volume in order for the static camera to analyze the mo-
tion. We demonstrate the framework using a time-
multiplexed structured-light method using a pair of cam-
era and projector (Fig. 1d). The observed object and its 
motion can be played back in the original order or rear-
ranged to produce new motion and in both cases observ-

(a)  Initial Sequence under Constant Room Light

(c) Finite State Machine 

Fig 1. Overview. a) A static camera captures the repetitive motion under constant light. b) Image‐based motion states are 
identified from the initial sequence. c) Using the observed states and transitions, we construct a finite state machine of the 
motion. d) Structured‐light acquisition captures video  frames under alternating constant  room  light and projected pat‐
terns. e) Space‐time polygonal models (either texture mapped or gray shaded). 

(b)  Observed Motion State Sequence 

moving observer, fixed motion    changing time, fixed observer 

(d) Image Sequence under Our Pattern Sequence (grayscale)
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(e) Reconstructions 



XU AND ALIAGA:  MODELING REPETITIVE MOTIONS USING STRUCTURED LIGHT 3 

 

able from novel viewpoints (Fig. 1e).  
Our method obtains dense and robust depth and color 

samples of the dynamic object. We use time-multiplexed 
codes to densely sample the object during each motion 
state without assuming a static scene during several con-
tiguous frames (or tracking patterns between adjacent 
frames) and without being limited to rigid scene motion. 
In addition, the repetitive motion also enables obtaining 
images of the dynamic object free of interferences gener-
ated by the projected illumination patterns. We demon-
strate our method using several real-world objects and 
scenes undergoing a variety of repetitive motions. Our 
main contributions are: 

• an image-based methodology for acquiring and 
modeling repetitive motions in real-world scenes, 

• an active dense depth and color acquisition sys-
tem for scenes containing rigid and non-rigid objects un-
dergoing repetitive motions using synchronized hard-
ware, and 

• an unsynchronized version of the system which 
does not require projector and camera customization. 

The work presented in this article extends that of our 
previous conference publication [37]. A previous passive 
method of ours [36] uses a static camera to observe re-
peating motion states, and uses a moving camera to sam-
ple each motion state from a set of viewpoints in order to 
perform a per-state visual hull reconstruction. In this ar-
ticle, we improve the framework introduced in [36] and 
introduce a new active method (Section 4.1), different 
than the one of [37] (Section 4.2), for robustly and unob-
trusively acquiring dense samples of dynamic scenes un-
dergoing repetitive motions. We also perform qualitative 
evaluation of our method and compare our method with 
a standard structured-light implementation for static 
scenes. For clarity and conciseness in this article, our pas-
sive method is not included; we refer the reader to [36] for 
a detailed discussion of that system. 

2. RELATED WORK 
Our research builds upon work in active acquisition 

and repetitive motion analysis and acquisition. While 
significant work exists in object acquisition, acquiring 
dynamic objects is still a major challenge for 3D geometric 
modeling and acquisition. 

2.1 Active Acquisition of Dynamic Objects 
Active acquisition techniques project patterns onto the 

scene and capture their projections to obtain depth infor-
mation. Methods that only require “one frame” are suita-
ble for dynamic scenes. However, the pattern must en-
code as much information as possible to facilitate camera-
camera (or camera-projector) correspondences. Zhang et 
al. [38] use de Bruijn illumination patterns and multi-pass 
dynamic programming. Fong and Buron [10] use a fixed 
pattern that combines color stripes and sinusoidal intensi-
ty changes. Koninckx et al. [17][18] improve performance 
by adjusting geometric and color-coded patterns to the 
scene. Kang et al. [16] use active illumination to assist 
multi-baseline stereo computation. One-shot methods are 

more flexible and easier to use than our method because 
they do not involve multiple frames. However, they ob-
tain reconstructions of relatively low density or depend 
on carefully identifying many colors and shapes which is 
difficult and troublesome in an arbitrary scene. 

Some one-frame methods have partially remedied si-
multaneously projecting structured-light patterns and 
acquiring scene color. Frueh and Zakhor [11] use two 
cameras to capture color and low-resolution infra-red 
structured-light patterns. Iddan and Yahav [13] capture 
both color and low-resolution depth using a single infra-
red “light pulse”. In contrast, in our setting we acquire 
color and structured-light patterns separately without 
relying on infra red. Similarly, Waschbüsch et al. [33] use 
at least three cameras and a rapidly-alternating struc-
tured-light pattern and its inverse to enhance the scene 
with features for stereo matching and to acquire color 
textures that are illuminated with an all-lit projector. 
However, in contrast to our method, they cannot acquire 
the scene under normal room lighting, do not use time-
multiplexed structured-light codes but rather stereo, and 
need a highly customized hardware infrastructure. 
Another system also uses very specialized hardware to 
capture models of human facial expressions [15][35].  The 
system operates at 1500Hz and projects a set of 24 binary 
structured-light patterns and 29 basis lighting directions 
at 24Hz. Each set of images are warped to the same time 
instance using optical flow.  Similar to our method, they 
also insert frames captured without patterns. However, 
they use these pattern-free frames to track the optical 
flow; while we use these images to assist motion state 
matching and do not require a 1500 Hz camera. 

For slowly moving objects, multi-frame methods can 
be used. For example, Rusinkiewicz et al. [25] sample ri-
gid and colorless objects by projecting and tracking at 
high frame rate a small number of patterns where each 
stripe boundary has a unique code over four consecutive 
frames. Their method targets rigid objects. The space-time 
stereo methods [7][39] project changing patterns for a few 
consecutive frames and use a slanted window during 
stereo correspondence. However, since the number of 
patterns is limited, they use stereo matching to enhance 
resolution; thus requiring at least one more camera than 
our method. Weise et al. [34] present a fast 3D scanning 
system using a modified projector and three cameras. 
Their system uses three phase-shifting patterns and ste-
reo-based phase unwrapping to establish correspondence. 
This requires a more complicated hardware setup than 
ours. In our method, temporally disjoint frames can be 
corresponded and no limit is placed on the code length; 
thus a single projector-camera pair can be used to acquire 
high-resolution samples. Moreover, we use robust Gray 
code patterns for correspondence; as compared to multi-
view stereo methods, our method is more robust to non-
Lambertian surfaces, depth discontinuity and supports 
faster moving scenes (see Section 6.4). 

For acquiring non-rigid deforming objects, photome-
tric stereo can also be used. Color photometric stereo me-
thod [12] uses three lights (e.g., red, green, and blue 
lights) and captures the scene under these lights simulta-
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neously using three color channels. This method assumes 
the surface of the object to capture has uniform material 
properties. In addition, the approach needs a calibration 
object of the same material as the target object. Further-
more, no absolute geometry can be acquired since the 
surface is integrated from a normal field. 

Ultimately, impressive results can be obtained by fit-
ting the acquired data to a prior synthetic model (e.g. the 
face model used in the space-time face [40]). The focus of 
our method is acquisition; nevertheless, the data acquired 
using our method can also be the input to other modeling 
and animation approaches that use predefined models.    

2.2 Repetitive Motions  
Analyzing and capturing repetitive motions in 2D and 

in 3D settings has gained significant interest from the 
computer graphics community and related fields in past 
years. Several different motions exhibit such repetition. 
Thus, for clarity we show in Table 1 a categorization of 
object motions based on the sequencing pattern and fre-
quency of the motion states. In particular, a static scene 
corresponds to a single state that repeats indefinitely. A 
completely random motion means every state is different 
and occurs only once. If some states appear more than 
once, then, based on the frequency of the appearance of 
the states, the motion is defined as low multiplicity or 
high multiplicity random motion. If a whole subsequence 
repeats itself infinitely, the motion is periodic. By using 
the repetition frequency of the motion states within a sin-
gle period, periodic motion can also be sub-classified as 
low-multiplicity or high-multiplicity.  

Several research efforts have focused on detecting and 
measuring periodic motions usually from image se-
quences captured by static and/or moving cameras (e.g., 
[6][21][30]). Video textures and its extension to panora-
mas generate an infinitely varying image sequence that 
enhances images from a stationary viewpoint with projec-
tions of repetitive motions [1][28]. State automata can also 
be used for hand gesture recognition [22]. However, these 
works focus only on periodic motion analysis and/or do 
not build a dynamic 3D model of the object over time. 

Some passive 3D reconstruction methods have been 
proposed for periodic or quasi-periodic motions. For ex-
ample, Starck et al. [31] capture human motion from a 
multiple (10) viewpoint video sequence. They use a mo-
tion graph [20] to generate transitions of different motions 

in order to synthesize novel animation sequences. Sand et 
al. [27] use a complicated hardware infrastructure to ac-
quire motion data by using a commercial motion capture 
system and silhouette data by using a set of surrounding 
synchronized cameras. They use the repetitiveness of lo-
cal configurations of an articulated object (e.g., human 
body) to construct a complete and high-quality model. 
Both of the aforementioned methods require multiple 
camera setups and rely on foreground extraction. Einars-
son et al. [9] follow a different approach that acquires a 
7D time-varying reflectance field of constant-speed hu-
man locomotion on a treadmill, but no explicit geometry 
is reconstructed. Similar constant speed assumption is 
used to create motion lumigraph for toy helicopter in [2]. 

In contrast, we define repetitive motion to consist of 
the bottom four types of Table 1, namely high-
multiplicity random motion and periodic motions. More-
over, our observed motion does not need to be periodic 
and does not need to be of constant speed. Rather, our 
approach automatically extracts the motion states that can 
be assembled to form a smoothly repeating sequence and 
can be used for 3D scene reconstruction. Hence, the re-
sulting captured motion and geometry is similar to, but 
not necessarily identical to, the true object motion.  

3. IMAGE-BASED MOTION STATES 
A fundamental part of our approach is to discretize the 

repetitive motion into a set of motion states. Fig. 2 shows 
the pipeline of our system. Our approach requires both 
determining a set of image-based states that represent the 
observed motion and choosing states that have been 
sampled sufficiently for the reconstruction algorithm. 
Towards this goal, we have developed two algorithms for 
separating the motion into states: global motion discreti-
zation and real-time motion discretization. We explain 
these methods in the following two subsections.  

3.1 Global Motion Discretization 
Global motion discretization requires all images to be 

already captured and obtains a set of motion states with 
maximized sample coverage per state but at the expense 
of additional capture time and storage space require-
ments. The image acquisition strategy is straightforward. 
We use a static camera to continuously record images of 

State Sequence Motion Type 
(A)* static 
ABCDEFGH… random 
ABCDGHAIJKB … low multiplicity random 
ABCADEABCABE… high multiplicity random 
(ABCDEFGH)* periodic 
(ABACDEFGH)* low multiplicity periodic 
(ABCADEAB)* high multiplicity periodic 
 Table 1. Motion Categories. We categorize motions into 
several  types;  the  bottom  four  are  considered  as  repeti‐
tive motions  in  this article. Each  letter  represents a mo‐
tion state and is color coded to highlight repetitions. 

Motion   
Discretization 

Active Acquisition 

Image Cluster per      
Motion State 

Reconstruction 
& Rendering 

Space-time 
Models 

Fig 2. System Pipeline. Our system consists of three ma‐
jor  components.  Image‐based motion  states  provide  in‐
formation  for active acquisition  in order  to create space‐
time models for the repetitive motions.  

Image-based Motion States 
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the repetitive motion and a projector to project struc-
tured-light patterns oblivious to the repetitive motions of 
the object. The static camera first captures N initial 
frames. The number N is chosen to be long enough so that 
general repetitive motion can be captured. Then it cap-
tures an additional N frames for each of the P structured-
light patterns. The acquisition is not synchronized with 
the repetitive motion in any way. After acquisition, the 
images are grouped into clusters where each cluster cor-
responds to a sufficiently sampled motion state and the 
clusters are organized into a finite state machine that de-
scribes the overall motion sequence. 

3.1.1 Image Clusters 
First, the captured data is grouped into a list of N im-

age clusters where each cluster contains one initial frame 
and the best-matched candidate image from each of the 
remaining P patterns. The images are clustered by com-
paring an initial frame against all the candidate frames 
and finding the one that minimizes the average per-pixel 
difference for each pattern.  As shown in Fig. 3, the com-
parison for each initial frame produces an array of length 
P where each entry contains the index of the most similar 
image from each of the P pattern image sequences. Im-
ages in the same cluster observe and sample the same 
motion state. The per-pixel image difference between a 
candidate image (with pattern) and an initial frame 

(without pattern) is large, thus it is difficult to compare 
them directly. To enable image clustering, we use a dy-
namics preserving image matching or a color-calibrated 
image matching. These two methods will be introduced 
in Section 4 with more details. The discretization process 
also assigns to each of the initial N frames a rank, which is 
computed by comparing the average per-pixel difference 
of each initial frame to all the candidate images within the 
cluster. The ranking will give preference to motions that 
tend to repeat and will downplay spurious motions.  

3.1.2 Finite State Machine 
Using the ranked initial images, a compact finite state 

machine of the motion states is extracted through an itera-
tive process. First, each initial frame (and its associated 
image cluster) is labeled as a unique motion state. Two 
states are merged into one if and only if their per-pixel 
image difference is smaller than a predefined clustering 
threshold. The merging process repeats iteratively until 
no states are similar enough. After convergence, each mo-
tion state has one or more initial frames. The initial frame 
with the highest rank is used as the representative frame 
for that motion state. From the resulting motion states, we 
construct a finite state machine that is representative of 
the observed repetitive motion. The overall process en-
sures that the best set of images per motion state is used 
during reconstruction; thus, the reconstruction quality is 
maximized. The best matching quality comes at a price of 
many image comparisons: each of the N initial frames is 
compared against NP candidate images and against each 
of the other N initial frames during finite state machine 
creation. 

Although one would expect a perfectly repeating set of 
motion states for periodic motion, both periodic and qua-
si-periodic motion may include spurious states together 
with the repeating motion sequence. In the case of period-
ic motion, the discrete time sampling of the camera may 
cause a new and different state to be occasionally cap-
tured. For example, a pendulum can be observed from the 
static camera as predominantly having the state sequence 
(ABCDCBA)* but sometimes the sequence (ABCDCEA) 
may appear. A quasi-periodic motion is one that does not 
exactly repeat but exhibits significant similarities over 
time. We place the states and transitions that appear more 
than a predefined number of times into a finite state ma-
chine and we disregard spurious states. To ignore dead-
ends, we extract the largest strongly-connected compo-
nent of the state machine. A similar method is used in [20] 

1 

P patterns 

best matches for image #1 

2 
3 
4 

N 

candidate images initial sequence 

N 

Fig 3. Global Motion Discretization. For each  image  in 
the initial sequence, we find an array of the best‐matched 
candidate images. The initial N images are ranked based 
on  the  average  similarity  to  their  corresponding  candi‐
date images. 

1     …  N 

G
D

H

CBA 
E

F

State Sequence and Ranks (the frames with underscore are the best from each motion state): 
A  B  C  D  B  C  D  B  C  E F G A B C H F G A  B  C  E  F G A
24  22  14  6  1  21  10  11  4  13 2 7 26 16 9 23 25 12 5 15  19  17  18 3 8
 
Finite State Machine: 

Fig 4. Motion State Machine. a) Top: using  the  static  camera,  the observed  initial  frames are partitioned  into motion 
states (letters) and ranked based on sampling quality (numbers). b) Bottom: both periodic and quasi‐periodic motions are 
approximated by a finite state machine. 
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to prune motion graphs.  
Fig. 4 shows a didactic example of the ranks of the ini-

tial frames, the corresponding motion state sequence, and 
the resulting finite state machine. Given a hypothetical 
initial sequence of 26 frames, the system groups the mo-
tion into a high-multiplicity periodic-motion sequence of 
only 7 states, and one spurious state that is discarded 
(state H in this case).  A more complicated finite state ma-
chine for a real dataset can be found in Fig. 1. 

3.2 Real-Time Motion Discretization 
Real-time motion discretization first uses a short initial 

frame sequence to calculate a set of motion states. Then it 
classifies all subsequent images in real time to one of the 
motion states. It provides the benefit of reduced capture 
time and storage space but a slightly more complicated 
image acquisition strategy. From the initial sequence, a 
finite state machine is constructed as previously de-
scribed (without the ability to rank images). Then, our 
method matches a current image to a cached representa-
tive image of one of the motion states. If an input image 
could not be sufficiently matched to any state, it is dis-
carded. This implies that spurious motion states of the 
repetitive motion are appropriately ignored since they do 
not help to sample the desired motion. The threshold for 
the matching controls the overall quality of the data fed to 
the later reconstruction phase. A large threshold might 
lead to a fast acquisition, but images of the same state can 
vary significantly. On the other hand, a small threshold 
leads to slow completion, but images within each state are 
very similar. During real-time motion discretization, a 
currently captured frame is compared against all the 
frames in the cached finite state machine; therefore, only 
simple motions can be discretized in real time using low-
er resolution. For example, the flag example shown in Fig. 
7 can be acquired using real-time motion discretization at 
quarter resolution and 30 frames per second (~30 states). 

3.3 Motion Rendering 
Our method allows us to rearrange the order of the 

motion states producing new motion sequences and repe-
titive motions. The finite state machine contains all the 
potential states and transitions. Similar to video textures 
[28], we produce repetitive motions similar to or different 
from the original motion by walking through the finite 
state machine in different ways. However, since for each 
state we already have sampled images and a recon-
structed 3D model, the observer can freely move the vir-
tual viewpoint during the new motion sequence. For ex-
ample, if a motion is (ABABABABCDCDCD)*, then we 
can play back as is or change it to (ABCD)*, (BCDCDA)*, 
or to (AB)* and in all cases allow the observer to conti-
nuously change the viewpoint. 

4. ACTIVE ACQUISITION 
Our image-based motion state framework enables an 

active and robust acquisition of repetitive motions. We 
capture a single video sequence using a static camera and 
use only one additional digital projector to project illumi-
nation patterns onto the scene. Further, when observing 

repetitive motions, our framework enables using either a 
synchronized or unsynchronized camera-projector sys-
tem. The synchronized version provides the ability to 
obtain images of the scene under constant room lighting 
without requiring a controlled environment while the 
second approach omits the need for any synchronization 
efforts but only acquires images under controlled projec-
tor illumination. In the following two sections, we de-
scribe both active methods. 

4.1 Synchronized Acquisition 
Our synchronized camera-projector system samples 

the motion using a structured-light approach which cap-
tures repeating three-frame sequences. Our method as-
sumes the scene observed during a three-frame sequence 
is moving and will repeat. 

4.1.1 Dynamics-Preserving Image Matching 
Our method discretizes the motion but uses “states” 

effectively defined by a consecutive triple of frames. First, 
a sequence of initial frames is captured under constant 
room lighting (i.e., projector turned off) as in Section 3. 
Each of these initial frames corresponds to a different mo-
tion state frame (Fig. 5 middle row). Then, the dynamic 
scene is captured with the camera synchronized to the 
projector and using an alternating sequence of structured-
light pattern (projector turned on) and constant room 
light (projector turned off). Fig. 5 top and bottom rows 

(a) (b)  (c)

(d) (e) (f)  (g)

(h) (i)
Fig  5.  Dynamics‐Preserving  Image Matching. Middle 
row  (d‐g)  shows  four  consecutive motion  state  images. 
First and third rows show three consecutive frames using 
two  different  alternating  patterns  respectively.  Images 
from  the  same  column  are  observing  the  same motion 
state. Frame b (captured under a binary pattern) observes 
the same motion state as frame f because frames a and c 
match  frame  e and g  respectively. Frame  i also observes 
the same motion state as frame e. 

(j) 



XU AND ALIAGA:  MODELING REPETITIVE MOTIONS USING STRUCTURED LIGHT 7 

 

show such image sequences for two different patterns. 
The images before and after each structured-light pattern 
frame are captured under the constant room light.  

During motion discretization, we best match a cap-
tured pattern frame to a motion state image by comparing 
the temporally adjacent frames. For example, the differ-
ence between Fig. 5b (candidate pattern frame) and 5f 
(pattern-free motion state frame) is calculated as the sum 
of the difference between Fig. 5a and Fig. 5e and the dif-
ference between Fig. 5c and Fig. 5g. Let R represent a 
frame captured under constant room light and S 
represent a frame captured under structured light; thus, 
ܴଵܴଶܴଷ represents a three-frame sequence of motion state 
images. The best-matched three-frame candidate se-
quence should have the configuration ܴଵܵଶܴଷ, and not 
ଵܴܵଶܵଷ in order to minimize the image differences for the 

first and third frames. This is because the image differ-
ence between an R frame and an S frame is large. By as-
suming the motion dynamics is preserved during a three-
frame sequence, we can conclude that frame ܵଶ and frame 
ܴଶ sample the same motion state. In this way, we avoid 
comparing an S frame directly to an R frame. The S 
frames are then grouped together eventually yielding a 
full time-multiplexed sampling of each motion state.  

We highlight that this comparison method supports a 
wide range of motion during the three-frame sequence 
(i.e., we do not suppose only slow motions occur) and 
does use both neighbors for image matching. Consider 
the following pendulum-like repetitive motion state se-
quence: (ABCDCBA)*. Motion state B can be followed by 
both state C and A. This leads to ambiguity if only the 
leading frame is used for image matching. Although two 
motion states might sandwich more than one possible 
state; the probability is low due to the fact that motion 
dynamics is preserved in three consecutive frames cap-
tured at a relatively high frame rate. The use of neighbor-
ing and contiguous images to preserve motion dynamics 
is also exploited by Schödl et al. [28]. However, in our 
work the window of images is used to match motion 
states under very different illumination scenarios. 

It is worth noting that our method for image matching 
does not require an explicit classification of the candidate 
frame as under room or structured-light illumination. The 
best matching mechanism implicitly enforces the three-
frame sequence to be under room light, structured light, 
and room light. It is also interesting that the frame rate of 
the reconstructed motion is not reduced in half because 

all the motion-state images (Fig. 5d-g) can be sufficiently 
sampled and they are captured at full camera frame rate.  

4.1.2 Reconstruction 
We use a time-multiplexed Gray code [14] to recon-

struct the scene but perform additional computations to 
account for minor scene fluctuations among the captured 
patterns of the same motion state. Since the motion will 
not be perfectly repeating, there is a small variation over 
the multi-pattern images per motion state. This leads to 
bad samples along the boundary of the foreground object. 
To alleviate this problem, we represent the point samples 
as a depth map and perform morphological operations. 
We first apply erosion to remove outliers and smooth the 
boundary of the reconstructed geometry. Then, we per-
form dilation to compensate for missing samples due to 
motion variation. The dilation is guided by the segmented 
motion state image, i.e. we only extrapolate within each 
color segment so as not to pass through the depth discon-
tinuity similar to the method in [33]. After world-space 
and image-space outlier rejection, the final point samples 
are then triangulated from the 2D viewpoint of the static 
camera. Triangles either too big or too thin are rejected. 
Based on the triangulation information, a Laplacian oper-
ator is used to smooth the raw reconstruction. 

4.2 Unsynchronized Acquisition 
An alternative method that omits the need for any syn-

chronization and pattern alternating is using two-color 
patterns, rather than standard black-and-white patterns. 
This requires capturing fewer images than the synchro-
nized method because all candidate frames are captured 
with a colored binary pattern, while in the synchronized 
method only half of them have a projected structured-
light pattern.  

4.2.1 Two-Color Patterns 
Projecting constant structured light prevents having to 

rapidly change illumination patterns. However, it necessi-
tates robustly matching the candidate images illuminated 
by structured-light patterns to initial frames captured 
under constant illumination. This is difficult because 
compared images would be under very different illumi-
nation conditions. It is even worse when using traditional 
black-and-white patterns (either stripes or sinusoidal pat-
terns) because any motion occurring in the non-
illuminated (i.e., black) areas will be invisible (Fig. 6c). 
The problem is severe during the initial stripe patterns of 

a)  b)  c)  d)  e) 
Fig 6. Two‐Color Structured Light. a‐b) Two example motion states under all white  light. c) Using conventional white‐
black stripes, both states seem identical. d‐e) Our calibrated two‐color structured light discerns between the two states. 
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Gray codes because of the large contiguous regions and, 
unfortunately, these are exactly the patterns correspond-
ing to the most-significant bits of the Gray code sequence. 
This ambiguity affects both the motion-state matching 
and the decoding process for scene reconstruction. It 
might even occur between the projection of a pattern and 
its inverse (a commonly used method to improve robust-
ness against unknown surface albedo and global illumi-
nation effects). In general, it leads to pixels being inconsis-
tently labeled amongst the pattern images and thus pro-
ducing fewer correctly decoded pixels. However, the total 
amount of ambiguity is scene and motion dependent. 

Our approach uses two-color (red and blue) patterns 
(Figure 6d-e) to enable accurately matching images with 
projected patterns to initial frames captured under a 
floodlit projector pattern (a pattern with all pixels set to 
white). This is a different use of color than that for reduc-
ing the total number of patterns [5] or for improving ro-
bustness [24]. Further, it is worth noting that in many 
structured-light methods for dynamic scenes, the images 
illuminated by the patterns are the only source of color 
information. In our case, we can extract color from the 
floodlit motion-state images and thus the two-coloring of 
the patterns does not affect the final color of the recon-
structed object. 

4.2.2 Color-Calibrated Image Matching 
To compare two-color structured light candidate im-

ages to the initial floodlit motion-state images, we use a 
color-calibrated image matching method. The key idea is 
to compare a pixel illuminated by a red (blue) stripe to 
the red (blue) channel of the corresponding pixel in the 
motion-state image. Based on the typical color spectrum 
of digital cameras, we expect the red and blue color chan-
nels to offer little or no overlap and thus we choose red 
and blue color stripes. We adjust camera parameters to 
prevent saturation when capturing floodlit motion-state 
images. These images encode the response of the scene to 
red and blue light. However, in general the response is 
not the same as red-only or blue-only light due to the dif-
ferent spectral compositions of projectors and cameras 
and the spectral overlap between green channel and 
red/blue channels. 

The actual radiometric chain from projector pixel value 
to camera pixel intensity is complicated. The projector 
pixel value is first mapped to radiant flux. Then, the sur-
faces modulate the incoming light and reflect it towards 

the camera. The camera maps irradiance from the scene to 
camera pixel values. Both the camera and projector re-
sponse curves are nonlinear; thus making the calibration 
difficult. However, a complete calibration is not necessary 
for our purpose. Unlike other structured-light methods 
which rely on accurate recognition of projected colors, the 
red-blue stripes in our method can be easily distinguished 
from each other. Furthermore, the image matching me-
thod finds a best matched object pose from a set of candi-
dates using image difference. An exact zero difference is 
not crucial because a mismatch in object pose leads to a 
larger difference than that caused by imperfect color cali-
bration. Please refer to [19] for a detailed discussion on 
projector-camera chain calibration for structured light. 

In our system, we assume a simple linear color model. 
We estimate the spectral response of the camera to projec-
tor light using a triple of calibration images. We capture a 
scene (either the actual scene with no motion or a similar 
one-time calibration scene) with red-only, blue-only, and 
white projector light.  Then, we compute scale factors for 
the red and blue channels of the all-white-light floodlit 
image that minimize the difference between the single-
channel images and the floodlit image. The scale values 
depend on the scene and on the actual hardware used. In 
practice, we found this simple linear color response mod-
el works quite well. 

For motion state matching, our method computes a 
normalized image difference. The stronger color channel 
(r or b) of each pixel p of a structured-light pattern image 
is subtracted from the corresponded and scaled pixel q of 
the floodlit motion-state image. Thus, given a predefined 
threshold t, per-pixel difference is defined as: 

݀ሺ, ሻݍ ൌ ቐ
     ݐ ՜ | െ |ݍ
     ݐ ՜ | െ |ݍ
݁ݏ݅ݓݎ݄݁ݐ ՜ ݂݀݁݊݅݁݀݊ݑ 

 . 

After motion-state matching, the captured images are 
rearranged to yield a time-multiplexed sampling of the 
scene. A 3D reconstruction is then performed and the all-
white-light floodlit motion-state images are used as tex-
tures for the resulting triangulation. 
 
 
 
 
 

Table 2. Datasets. We list the characteristics of the datasets used for testing our methods. The first four are captured using 
our synchronized active acquisition method and the later three are captured using our unsynchronized method. 

Dataset  Capture 
Time 

Capture
Frame Rate 

No. of 
States 

Images 
Stored 

No. of 
Points 

Discretiza‐
tion Time 

Reconstruc‐
tion Time 

Synchronized 

Dragon  13.3 min  60Hz 52 13600 ~14000  4.3 hr  0.12 hr
Flag  14 min  30Hz 36 6120 ~14700 0.6 hr  0.1 hr

Bicycle A  5.1 min  20Hz 20 6120 ~35000 1.2 hr  0.1 hr
Cruiser A  5.7 min  20Hz 22 6800 ~34500 2.2 hr  0.1 hr

Unsynchro‐
nized 

Bicycle B  5.5 min  30Hz 34 9900 ~33000  3.5 hr  0.2 hr
Cruiser B  4.6 min  30Hz 53 8250 ~33200  3.2 hr  0.5 hr
Exerciser  2.7 min  30Hz 20 4900 ~34000 0.6 hr  0.15 hr
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5. IMPLEMENTATION DETAILS 
We implemented our system in C/C++ using OpenGL 

and OpenCV libraries on a PC with a 3.6GHz CPU and 
2GB memory. The prototype implementation of our sys-
tem uses a 640x480 200Hz Point Grey Research (PGR) 
digital camera connected to the PC for determining im-
age-based motion states and a Canon Realis SX6 LCOS 
projector (1280x1024 pixels and three explicit LCD panels 
so as minimize spectral overlap). The projector and cam-
era are geometrically calibrated using the method in [26]. 
In the synchronized method, the camera is externally 
triggered using the v-sync signal of the projector at 60Hz. 
Due to disk write performance, images can only be stored 
in memory at this frame rate. In order to output the 
frames to disk in real time, a lower frame rate (e.g. 30Hz) 
can be used. In the unsynchronized version, the exposure 
is set to be long enough to ensure the camera grabs a sta-
ble pattern image. Thus, the system runs at 30Hz. Color 
calibration used for two-color structured-light patterns 

computed that the camera’s average scale factors to make 
floodlit images match separately-illuminated images are 
1.398 and 1.043 for red and blue, respectively.  

6. RESULTS AND DISCUSSION 
We have captured several datasets. Table 2 shows the 

details. For each dataset, we list the time for acquiring the 
images, the capturing frame rate, the number of recon-
structed motion states, the total number of captured im-
ages, the number of points, the motion discretization 
time, and the model reconstruction time. 

6.1 Reconstruction Results 
Fig. 1 depicts the system pipeline using the dragon da-

taset. The static camera captures a video sequence of the 
scene under constant room light (Fig. 1a) and observes 52 
motion states (Fig. 1b). From the observed states and 
transitions, our method automatically builds a finite state 
machine of the motion sequence (Fig. 1c). During syn-
chronized active acquisition, the projector illuminates the 
scene with different Gray code patterns (alternating pro-
jector on and off) and the camera captures the images 
(Fig. 1d). After global motion discretization, our method 
constructs a model for each of the 52 motion states. After 
reconstruction, a moving observer can freeze the motion 
(Fig. 1e left) and a static observer can see the motion over 
time (Fig. 1e right).  

Fig. 7-8 show additional results using the synchronized 
acquisition system. Our method can faithfully reconstruct 
dense depth and color samples of repetitive motion, in-
cluding certain types of human motion such as motion 
sequences on a bicycle and cardio cruiser. 

Fig. 9 shows results using the unsynchronized version 
of our active method. Using two-color structured light, 
we are able to cluster images captured under different 
color patterns with the floodlit motion-state images (Fig. 
9a). Using the images with Gray code patterns per motion 

Fig 8. Synchronized Active Acquisition: We show two datasets (bicycle A and cruiser A) acquired using our synchronized 
active method. a) Changing motion states and a fixed novel viewpoint. b) Changing novel viewpoints and a fixed motion 
state. Examples are rendered using either texture mapping (using motion state images captured under constant room light 
as the textures) or gray shading. Wireframe zoom‐in views are also provided (highlighted in yellow). 

a) changing time, fixed novel viewpoint b)     moving observer, fixed motion state

Fig  7.  Flag. We  show  the  reconstruction  of  a  flag  toy, 
which uses a motor to generate periodic waving effects. 

Raw Reconstruction  Smoothed Reconstruction

Texture Mapping  Gray Shading 
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state, our method successfully reconstructs 3D models of 
several scenes (Fig. 9b-d) allowing novel view rendering. 
Fig. 9e-f shows additional space-time modeling results 
using our unsynchronized active acquisition method. 

Finally, the repetitive motions of any of our datasets 
can be altered yielding new and different motions. The 
user specifies a new way to traverse the finite state ma-
chine and can still freely move the virtual viewpoint. 
More examples are in the accompanying video. 

 6.2 Clustering Threshold 
Our global motion discretization method clusters the 

initial N frames to form motion states. Fig. 10 illustrates 
the tradeoff that results from different clustering thre-
sholds using the unsynchronized acquisition. The hori-
zontal axis represents the amount of clustering performed 
between initial frames. The vertical axis represents the 

average of the smallest matching error between candidate 
images and initial images of each motion state. The units 
of both axes are average per-pixel difference. Ideally, we 
desire a solution at y=0 (i.e., zero motion difference be-
tween the pattern images and the white-light motion-state 
images) and x=0 (i.e., no clustering, thus exactly each 
frame of the initial sequence is reconstructed). However, 
except for perfectly periodic motion and temporal sam-
pling perfectly synchronized with the repetitions (which 
results in a horizontal line at y=0), this is impractical. 
Thus, we seek for a “sweet spot” that produces a ba-
lanced trade-off of the two errors. For example, the 
matching error decreases monotonically when the cluster-
ing threshold increases, but at a slower rate when the 
clustering threshold is larger than x=0.04; thus we can use 
this threshold to achieve a good balance. A different crite-
rion is to minimize the absolute difference between clus-
tering threshold and matching error. In this way, the dif-
ference between pattern images and motion-state images 
is no more than the difference amongst motion-state im-
ages -- and vice versa. This in general occurs at x=0.1. 
Therefore, for our datasets, the sweet spot is in the clus-
tering range of [0.04, 0.1], and this is the range we used.  

6.3 Accuracy and Completeness 
To evaluate the reconstruction quality of our method, 

we compare the reconstruction of a static pose of the flag 
to the most similar motion state during a repetitive mo-
tion sequence. Since the two reconstructions are implicitly 
registered (i.e., they are observed by the same camera), 
we can easily compute the average distance between 
points that share the same code value and are in both re-
constructions. We perform the analysis using the syn-
chronized system. The limiting accuracy of our structured 
light system, at the resolution of our hardware and for a 
static scene, is 0.6mm. This is the average distance from 

Fig 10. Clustering Trade‐off. We  show  the  tradeoff be‐
tween  clustering  and matching  error. Larger  clustering 
threshold  leads to smaller matching error to the pattern 
images. The sweet spot is in the range of [0.04, 0.1]. 

M
atching Error 

Bicycle
Cruiser
Exerciser

Clustering Threshold 

a)  b)  d) 

State A 

State B  c)

Fig 9. Unsynchronized Active Acquisition. a)  Images captured under all white  light and  two‐color structured  light  for 
two different motion states. b & c) Texture mapped polygonal models for the cruiser B and exerciser datasets rendered from 
novel viewpoints and d) polygonal model rendered using gray shading for the bicycle B. (e‐f) Additional modeling results. 

e)   changing time, fixed novel viewpoint f)   moving observer, fixed motion state
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the point samples reconstructed for a diffuse planar board 
to a fitted hypothetical plane. The average point-to-point 
distance between the reconstructions of a motion state 
and the corresponding static pose is only 0.69mm. The 
standard deviation is 0.73mm. The diagonal of the flag is 
about 300mm. Therefore, our active acquisition is able to 
obtain dense samples for moving objects with good accu-
racy. Fig. 11 shows a color-coded distance map between 
the two reconstructions. Most of the points are close ex-
cept for some boundary points. 

To further evaluate the accuracy and completeness of 
our method, we use the same metric as in [29]. First, we 
place a vase object (with a radius of about 100mm) on an 
electric turntable rotating at 4 rpm (0.8 degrees of rotation 
per image when capturing at 30Hz). The object is placed 
approximately 60 mm off-center so that when it rotates, 
an apparent large rotational motion occurs. We capture 
six static poses Si of the object by manually rotating the 
turntable about 20 degrees each time to six different 
orientations and using a structured-light acquisition sys-
tem for static objects. Then, we turn on the electric turnta-
ble and capture a space-time model of the object rotating 
on the turntable by using both our methods. The recon-
structions Ri of the six corresponding motion states to the 
six static poses are used in the evaluation. To measure 
accuracy, we compute the distance di for which 90% of the 
points of Ri are within distance di of Si. Smaller di value 
means more accurate reconstructions. Fig. 12a shows the 
results for the six Ri. As can be seen, our method in almost 
all cases produces accurate reconstructions within 1mm 
of those of the corresponding static poses. To measure 
completeness, we compute the fraction of points of Si that 
are within distance di of reconstruction Ri. Fig. 12b shows 
the results for di=1mm. Our method always produces 
more than 85% of the maximum possible number of 

points. In most cases, the synchronized method produces 
slightly better (lower accuracy score and higher com-
pleteness score) reconstructions than unsynchronized 
method, but not always.  

To quantify the advantage of using our two-color pat-
terns vs. standard black-white patterns during unsyn-
chronized acquisition, Fig. 13 compares the results of us-
ing red-blue patterns for the bicycle dataset to only using 
a single color for the subset of the image surrounding the 
motion (e.g., using “red” and assuming “blue” corres-
ponds to black). The graph shows an advantage in our 
favor of about 10% – the benefit is of course motion and 
scene dependent. Pictorial examples of failures were pre-
viously shown in Fig. 6.  

6.4 Comparison with Multi-frame Methods 
Multi-frame methods (e.g. space-time stereo [7][39]) 

utilize inter-frame consistency to enhance acquisition res-
olution of a single frame active stereo. A thorough study 
in [7] concludes that for a static scene, a long temporal 
window is optimal (i.e. using many patterns in a struc-
tured-light setting). However, for dynamic scenes, they 
indicate shorter temporal windows yield better results. In 
their experiments, a translational motion of 3-4 pixels be-
tween consecutive frames reduces the optimal temporal 
window size to about 3-4 frames. For rotational motion, 

Fig 12. Accuracy and Completeness. We compute the a) 
accuracy score and b) completeness score  for six differ‐
ent motion states of a vase rotating on a  turntable. The 
two methods produce similar results. 

     Motion State 

Accuracy      (mm)

Completeness 

     Motion State 

(a)      Synchronized        Unsynchronized

(b)      Synchronized        Unsynchronized

Fig  11. Accuracy  Comparison  of  the  Reconstructions. 
The  top  row  shows  the  reconstructions  of  a)  reference 
static object  and  b)  its  corresponding motion  state  cap‐
tured by our system and rendered using gray shading. c) 
A color‐coded distance map between the two reconstruc‐
tions. d) One of the input frames to our system. 

 1mm         3mm 

a) static object  b) matching motion state

c) distance map 
d) input frame
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the optimal temporal window is 8 frames for a slow 0.3 
degrees per frame motion and only 2 frames for a faster 3 
degrees per frame. Hence, as the motion speed increases, 
the optimal window size for space-time stereo analysis 
tends to reduce. Upon reaching one frame, space-time 
stereo becomes equivalent to either standard stereo (i.e., 
depends on passive feature detection) or to one-frame 
structured-light methods (see Section 2.1).  

In contrast, our method is able to support faster mo-
tions and still produce high-quality and dense reconstruc-
tions. To compare our method with such multi-frame me-
thods, we perform reconstructions of scene motion occur-
ring at different speeds. We place a bear object on the 
aforementioned turntable and alter the turntable speed. 
The object is placed off-center to simulate both transla-
tional and rotational object motion. Fig. 14a shows the 
maximum pixel motion for consecutive frames in the 
original video sequence and in the image cluster for a 
particular motion state computed by our method. Our 
approach is able to group pattern images of the same mo-
tion state together, despite the large object motion speed 
(e.g., up to nearly 5 degrees per frame) and produce re-
constructions.  Fig. 14b shows the reconstruction of the 
bear when it is static and Fig. 14c shows various recon-
structions when the bear is rotating at increasing speed. 
While our method shows improved resilience to faster 
motion speeds, very high motion speeds can eventually 
cause problems because of an increase in the number of 
spurious states (Section 3.1.2) and motion blur (the latter 

also being a limitation for space-time stereo). 
An alternative design of our system could be to incor-

porate the mentioned multi-frame methods with our re-
petitive motion recognition. For example, instead of using 
a full Gray code pattern, we could project high-frequency 
stripe patterns such as those used in space-time stereo 
[7][39] (though still interspersed with images captured 
under constant room lighting). When there are motion 
repetitions, we would use the repetition to cluster pattern 
images seeing the same motion state together. This would 
enable using longer temporal windows for space-time 
stereo processing and potentially result in improved re-
sults. This design does not assume the images in the same 
cluster are exactly repeating. However, it does not have 
the advantages of a highly controlled Gray code, such as 
dense acquisition and robustness against depth disconti-
nuity, and would require an additional calibrated camera. 

7. CONCLUSIONS AND FUTURE WORK 
We have introduced an image-based methodology for 

modeling repetitive motion as a set of smoothly changing 
motion states and for obtaining a dense and robust space-
time reconstruction of the scene. The repetition is ex-
ploited in order to convert the dynamic scene acquisition 
problem into that of capturing many static scenes. Fur-
ther, our approach obtains dense reconstructions without 
needing an infrastructure of many cameras and projectors 
(as little as one camera and one projector is sufficient). 
Our method reliably detects the motion state, adapts the 
sampling parameters, and is able to use time-multiplexed 
codes enabling a robust active acquisition of the dynamic 
scene. The observed object and its motion can be played 
back in the original order or rearranged to produce new 
motion and in both cases observable from novel view-
points. Finally, our active method uses only one camera 
and one projector, yet is able to acquire both dense color 
and dense depth samples at the same time. 

There are a few current limitations. First, our method 
does not target acquiring general dynamic scenes. In-
stead, when the scene motion has repetitions, we can ex-
ploit this property. Our image-based motion state method 
requires almost exact repetition; thus handling more nat-
ural motion is difficult. Second, we assume moving ob-
jects remain in a compact working volume and do not 
have global translation and rotation. Third, our approach 
assumes single object motion. Multiple objects with repe-

Fig. 13. Comparison of Decoded Pixels. Because of bet‐
ter  state matching,  our  two‐color  structured  light  pat‐
terns decode more pixels than black‐white patterns. 

State Number 

# of D
ecoded Pixels 

Red-Blue  
Stripes 

Black-White 
Stripes 

Fig. 14. Increasing Motion Speed.  a) We manually find the maximum pixel movement for consecutive frames both in the 
captured video and in the image cluster for one motion state and for four increasing motion speeds. b) The reconstruction 
when the bear object is static. c) Reconstructions of the bear object rotating at the increasing speeds shown in the graph. 

(a) 

M
ax D
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ent  

(pixels) 

Rotation Speed 

Consecutive 
Frames 

After 
Clustering 

(b) (c) 
Increasing Motion Speed (degrees/frame) 
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titive motions can be handled only if they do not occlude 
each other and a prior knowledge of segmentation is giv-
en. There are also some additional limitations for the un-
synchronized method.  The red-blue patterns cannot be 
used to faithfully recover dark or green-only surfaces. In 
the presence of cyan or yellow surfaces, the red--blue pat-
terns degenerate to the same restrictions as the black-
white Gray code. In these cases, the synchronized acquisi-
tion can be used at the cost of a little bit more complicated 
hardware setup and longer capturing time. 

With regard to future work, we would like to investi-
gate how to capture local repetitive motion but under 
global translation and rotation. One option is to use fea-
ture tracking and image warping as a means to align 
translating objects. Second, we would like to study the 
theoretical aspect of how many static views are enough to 
uniquely identify all repetitive motions. Third, we would 
like to investigate other sampling parameters, which can 
be adjusted when the motion state repeats to enable addi-
tional applications. 
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