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An Adaptive Correspondence Algorithm for  
Modeling Scenes with Strong Inter-reflections 

Yi Xu and Daniel G. Aliaga 

Abstract— Modeling real-world scenes, beyond diffuse objects, plays an important role in computer graphics, virtual reality, and 
other commercial applications. One active approach is projecting binary patterns in order to obtain correspondence and 
reconstruct a densely sampled 3D model. In such structured-light systems, determining whether a pixel is directly illuminated by 
the projector is essential to decoding the patterns. When a scene has abundant indirect light, this process is especially difficult. 
In this paper, we present a robust pixel classification algorithm for this purpose. Our method correctly establishes the lower and 
upper bounds of the possible intensity values of an illuminated pixel and of a non-illuminated pixel. Based on the two intervals, 
our method classifies a pixel by determining whether its intensity is within one interval but not in the other. Our method performs 
better than standard method due to the fact that it avoids gross errors during decoding process caused by strong inter-
reflections. For the remaining uncertain pixels, we apply an iterative algorithm to reduce the inter-reflection within the scene. 
Thus, more points can be decoded and reconstructed after each iteration. Moreover, the iterative algorithm is carried out in an 
adaptive fashion for fast convergence.  

Index Terms— Three Dimensional Graphics and Realism, Digitization and Image Capture, Geometric Modeling. 

——————————      —————————— 

1 INTRODUCTION

Creating high-quality models for real-world scenes, such 
as shiny ornaments and artifacts, plays an important role 
in computer graphics, virtual reality, and other commer-
cial applications. Active methods, e.g. structured-light 
systems, add light into the scene and thus, are more ro-
bust than passive methods (e.g. stereo vision [26]) that 
only receive energy from the scene. One popular option 
among structured-light systems is a camera-projector sys-
tem. A naïve system will turn on one or a cluster of pro-
jector pixels at a time and search for the single dot being 
projected onto the scene. To reduce the total number of 
projections, many different codification strategies have 
been proposed [22]. Pairs of camera and projector pixels 
that see the same codeword are corresponded and trian-
gulated to obtain 3D scene samples allowing for point-
based modeling and rendering [10], and other graphics 
applications, such as surface reconstruction [8]. Among 
the many strategies, time-multiplexed codes, e.g. Gray 
codes [9], yield robust and high resolution 3D informa-
tion with a relatively small number of patterns. To 
achieve greater precision, phase shifting patterns, such as 
sine waves [25], can also be applied. 

1.1 Problem Statement 
A fundamental assumption of all these methods is that 
the direct illumination falling onto an observed pixel 
sample is greater than its total indirect (or global) illumi-

nation (e.g. illumination resulting from inter-reflection 
and subsurface scattering). When this condition is not 
met, a correct decoding of all camera pixels is very diffi-
cult to achieve. This problematic scenario occurs even for 
diffuse surface materials because of strong diffuse inter-
reflection. In general, the unexpected illumination might 
cause distant camera pixels to see the same codeword, the 
stripe boundaries of binary patterns to shift from their 
true positions and/or the phase of sinusoidal patterns to 
be disturbed. The result is incorrect correspondences and 
either a bad reconstruction or a large loss of samples. 
Consider the following two examples. (1) If a scene point 
is in shadow, it should have zero intensity under any il-
lumination pattern. However, due to inter-reflection from 
other surface patches, the point might have large intensity 
and thus be classified incorrectly. (2) A scene point may 
appear dark despite being directly illuminated if the part 
of the scene from which it would normally receive a sig-
nificant amount of indirect light is currently not lit. Yet, 
projecting a slightly different pattern might illuminate the 
source of the indirect light and make the same point ap-
pear very bright even if it is now not directly illuminated.  

To achieve more accurate decoding and greater num-
ber of samples in the presence of complex lighting effects, 
previous methods attempt to project binary patterns and 
their inverses [25][30], to use several camera exposure 
times [25], to project multiple patterns with different in-
tensities [27], or to adapt the pattern intensity locally [11]. 
Nevertheless, most of the binary pattern methods assume 
that a scene point is brighter when it is directly illumi-
nated; e.g., a directly illuminated pixel is classified as “1” 
and “0” otherwise. However, this assumption only holds 
when a scene point has a relatively weak indirect light 
component. Furthermore, methods using phase shifting 
patterns assume a linear image formation process when 
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projecting patterns (e.g. sinusoid) with different phases. 
The direct component of a scene point will scale linearly 
according to the phase of the pattern. However, the indi-
rect component depends on the complex interaction of 
scene geometry, scene reflectance, and pattern geometry; 
thus, it is non-linear. This makes such methods fragile. 
While the total direct and total indirect components of a 
fully lit scene can be separated without knowledge of 
scene geometry (e.g., [20]), the indirect component for 
arbitrary patterns depends on the pattern, the scene geo-
metry and the scene reflectance properties. This produces 
the chicken-and-egg problem of needing to know scene 
geometry and reflectance before identifying scene illumi-
nation properties and needing to know scene illumination 
properties in order to perform robust structured-light 
scene acquisition. 

1.2 Observations 
The two key observations of our method are (1) we can 
use a divide-and-conquer approach to iteratively and 
adaptively discover a set of binary patterns that progres-
sively reduce the indirect light but keep the direct light of 
some pixels constant and (2) we can estimate tight intensi-
ty value bounds for when a pixel is on and for when it is 
off under the illumination of arbitrary binary patterns. 
The combination of these observations enables robustly 
classifying a pixel when its indirect component for the 
current pattern is smaller than its direct component 
(which is independent of the pattern). Pixels that cannot 
be initially classified will have their indirect component 
iteratively reduced by the next pattern, thus eventually 
producing a larger number of robustly reconstructed 
points. 

In general, a solution to the aforementioned funda-
mental problem is to either increase direct light or de-
crease indirect light per pixel while keeping the other 
constant. Both enable more robustly identifying directly 
illuminated pixels and thus improving the decoding 
process. On the one hand, simply increasing the amount 
of direct light is not a viable solution because the indirect 
light will also increase. On the other hand, we can decrease 
the amount of indirect light while keeping problematic 
pixels with the same amount of direct light. Hence, the 
directly illuminated pixels can be better decoded. De-
creasing indirect light is possible by using a top-down 
approach of illuminating progressively smaller parts of 
the scene with adaptive patterns. To be more specific, we 
decrease ambiguous pixels’ indirect components by turn-
ing off projector pixels whose codes have already been 
observed by the cameras. The pixels that are directly il-
luminated will still receive the full direct illumination but 
all pixels receive an equal or weaker indirect illumination.  

While an alternative bottom-up approach is also possi-
ble, it would require providing an initial way to segment 
the image and would be inefficient for pixel regions that 
do not suffer from having stronger indirect light than di-
rect light. Rather, a top-down approach and a way to 
bound pixel intensity values for on/off classification 
enables only performing additional work in the proble-
matic areas of the scene and thus extending a standard 
structured-light method only in the necessary regions. 

1.3 Summary 
We present an approach using a structured-light based 
method with Gray code binary patterns which iteratively 
obtains an increased number of accurately reconstructed 

Fig. 1. Modeling Scenes with Strong Inter-reflections.  a) A picture of the scene. b) The same scene under the illumination of a struc-
tured light pattern using one projector. The indirect light is abundant in the scene. c) 3D point cloud reconstructed using standard pixel 
classification during decoding. d) 3D point cloud reconstructed using our robust pixel classification algorithm for one step. e) After 22 
iterations, almost all surfaces visible from the camera’s viewpoint are reconstructed. f) A synthetically-shaded model of the scene from 
the same viewpoint. g) The same synthetically-shaded model of the scene from a different and novel viewpoint. h) A texture mapped 
triangular mesh is rendered from the same novel viewpoint as that of g). 

(a) (c) (e) 

(b) (d) (f) 

29721 pnts 

33553 pnts 

37413 pnts 
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scene points as compared to the conventional approach 
(Fig. 1). Our algorithm adapts the structured-light pat-
terns according to the partially reconstructed scene geo-
metry and reflectance property of the scene so as to re-
duce the amount of indirect illumination, while keeping 
the same amount of direct illumination for the remaining 
non-decoded pixels. Pixels are attempted to be corres-
ponded using a robust decoding algorithm based on es-
timated tight intensity value bounds. A projector-space 
subdivision is used whenever the number of additionally 
decoded pixels for an iteration is too small. Parallelism is 
automatically exploited during subdivision in order to 
simultaneously decode as many non-conflicting pixel 
subsets as possible and, consequently, reduce acquisition 
time. Fig. 2 summarizes our entire algorithm pipeline. 
After separation of the scene under the illumination of a 
fully lit projector into its direct and indirect components 
(Fig. 2a), we capture images and reconstruct 3D points 
(Fig. 2b). Based on the reconstruction result, we reduce 
the inter-reflection within the scene (Fig. 2c) and generate 
new projector patterns (Fig. 2d). Then we iterate the cap-
turing and reconstruction again. If the gain for an itera-
tion is too small, we adaptively subdivide the projector 
image in order to further reduce inter-reflection (Fig. 2e). 
After each iteration, the reconstruction of the scene is 
more complete. The algorithm continues until no more 
points can be decoded and reconstructed. The end result 
is a significantly improved model of the scene including 
objects with strong inter-reflections at the cost of more 
photographs compared to a standard structured-light 
method. We have used our approach to capture several 
datasets of non-diffuse (e.g., glossy) 3D objects. Our me-
thod is consistently able to increase the number of correct-
ly reconstructed points by almost 2x and to decrease the 
number of incorrectly classified pixels by about 10x. 

Our major contributions can be summarized as 
• a robust method to classify a pixel as directly illumi-

nated or not, based on the intensity intervals of a 
pixel under the illumination of a binary pattern,  

• an adaptive structured-light algorithm which itera-
tively reduces the per-pixel indirect component and 
thus allows better reconstruction, and 

• an acquisition system which can acquire complex 
scenes with strong inter-reflections. 

The work introduced in this paper significantly ex-
tends our previous conference publication [33] by pre-
senting an iterative and adaptive structured-light method 
enabling a complete reconstruction of complex scenes.  

2 RELATED WORK 
As related work, we first review various other approaches 
to modeling optically-challenging objects, and then focus 
on difficulties with using structured light to acquire such 
objects, provide an outline of adaptive structured-light 
systems and finally a summary of methods for separating 
illumination components. Altogether, our research builds 
upon these works to create an adaptive structured-light 
system for objects with strong inter-reflections by using 
binary patterns and by using insight provided by direct 
and indirect component separation. 

2.1 Modeling Optically-Challenging Objects 
Methods have been proposed for acquiring objects in the 
presence of inter-reflection, as well as other phenomena, 
such as specular reflection, subsurface scattering, and 
transparency. Some of the early works focus on passive 
approaches that attempt to handle inter-reflection during 
acquisition. For example, Nayar et al. [18][19] presented a 
pioneering approach using an iterative algorithm to esti-
mate scene geometry and reflectance in the presence of 
inter-reflections. This algorithm builds upon a shape-
from-intensity method and estimates shape and inter-
reflection in an alternating fashion for Lambertian surfac-
es. Wada et al. [32] tackled the problem of recovering the 
shape of an unfolded book using the image obtained by a 
typical flatbed image scanner. Their method is also based 
on a formulation from shape-from-shading with inter-
reflections and from moving a proximate light source. A 
piecewise polynomial model is used to approximate the 
geometry of the unfolded book. Yang et al. [34] uses inter-
reflection as a constraint to uniquely determine the shape 
of simple concave polyhedron. Chandraker et al. [3] in-
corporate inter-reflection modeling into Lambertian-
surface photometric stereo. Since inter-reflection is not 
preserved under general bas-relief (GBR) transformation, 
it has been used to successfully resolve the GBR ambigui-
ty inherent in un-calibrated photometric stereo [1]. In 
general, these shape-from-shading and photometric-
stereo methods do not produce robust and accurate 3D 
positional samples as compared to triangulation-based 
structured-light approaches. Moreover, they are only ap-
plied to simple geometrical structures where analytic in-
ter-reflection models may be faithfully constructed. In 
contrast, our method does not rely on the accurate model-
ing of inter-reflection. Rather, we use an adaptive method 
that seeks to physically reduce the inter-reflection com-
ponent for ambiguous pixels, to increase correspondence 
robustness, and to produce an improved 3D model.  

Fig.2. Pipeline of Our Adaptive Structured-Light Algorithm. 

a) Separation b) Capturing 
Reconstruction 

e) Adaptive Subdivision 

c) Iterative Reflection Peeling 

d) New Pattern 
Generation 
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Active methods, such as laser-scanning, have also been 
applied to optically-challenging objects. Curless and Le-
voy [7] proposed a robust space-time processing method 
to reduce the distortion in the acquired range data caused 
by non-uniform illumination. However, inter-reflection is 
not considered in this work. Clark et al. [5] presented a 
method that uses polarized incident laser light to model 
metal objects. By predicting the polarization state of the 
direct reflection, they can successfully distinguish be-
tween true laser stripe and spurious inter-reflections. 
Park and Kak [21] use a multi-peak range imaging me-
thod to capture complex geometry of specular objects.  
They store multiple samples per candidate object point 
and obtain the correct shape by applying a number of 
local and global consistency tests. Unlike these approach-
es, our structured-light method is based on a time-
multiplexed Gray code, which in general requires rela-
tively fewer images obtained using readily-available digi-
tal hardware and does not require any special polariza-
tion filters for the cameras. Furthermore, instead of rely-
ing on detecting false measurements in 3D space after 
triangulation, our method attempts to rigorously reject 
potentially ambiguous camera pixels before triangulation. 
This leads to more robust results.  

Other interesting optical characteristics can also create 
problems for 3D modeling. For instance, Chen et al. [4]  
capture translucent objects using a combination of phase-
shifting patterns and polarization-difference imaging 
based on the fact that subsurface scattering depolarizes 
the incident light. However, specular reflection changes 
the polarization direction instead of depolarizing the in-
cident light. Unless the exact number of inter-reflections 
at each scene point is known, a polarization based me-
thod is not suitable for objects with strong inter-
reflections. Other 3D geometry modeling approaches in-
clude, but are not limited to, acquiring transparent objects 
using polarization analysis [16], light-path triangulation 
[12], and environment matting [15]. In particular, Tarini et 
al. [29] use environment matting to model mirroring ob-
jects using a shape-from-distortion approach. However, 
while these works address optically-challenging objects, 
they do not focus, or in some cases even handle, inter-
reflections. Our observation is that the global illumination 
phenomena of inter-reflections is very common (and im-
portant) and even occurs in scenes where the attempt is to 
be mostly diffuse [6]. Thus, our work is particularly tar-
geted at scenes with strong inter-reflections. 

2.2 Binary Pattern Structured Light 
Coded structured light systems project illumination pat-
terns onto the scene while assuming the scene is mostly 
diffuse and the effects of inter-reflection can be ignored. 
The patterns are used to generate a correspondence be-
tween one or more projectors and cameras. The coding 
strategies can be classified as temporal coding, spatial 
coding, and direct coding [22]. From among these, tem-
poral time-multiplexed coding is widely used. In such 
systems, a set of patterns are projected onto the scene 
while the cameras are taking images successively. Binary 
patterns (e.g., black and white) use only the values 0 and 

1 as the basis of the codeword; therefore, it is easy to de-
code but requires more pattern images as compared to 
multiple gray level coding methods. 

Accurately classifying pixels located within the black-
and-white stripes is a crucial step for both diffuse and 
non-diffuse scenes. Even though the process is concep-
tually simple, it is difficult to achieve robust classification 
in real-world scenes containing complex surface-light 
interactions including strong indirect lighting effects. 
Trobina [30] presented a way to threshold the images by 
using an adaptive threshold for each pixel. The per-pixel 
threshold is computed by taking images under all-white 
and all-black patterns and averaging the two. The author 
demonstrated that using a pattern and its inverse yields 
more accurate results. The same strategy is also used in 
[25]. Each pixel is classified based on whether the pixel or 
its inverse is brighter. These standard methods will not 
work well when the scene has strong indirect lighting 
effects. In this article, we propose a method that produces 
better classification in such scenarios and also recognizes 
when a pixel cannot be robustly classified. 

As a side note, some previous works achieve higher 
accuracy by using different exposure times [25] or mul-
tiple intensity illumination images [27]. Our improvement 
to the pixel classification process can also be used with 
such methods. 

2.3 Adaptive Structured Light System 
Our approach iteratively adapts the pattern images ac-
cording to the partially reconstructed scene geometry and 
scene reflectance properties. There are related efforts 
which also aim to take the environment into account 
when designing code patterns. Caspi et al. [2] was among 
the first methods to explicitly model the transformation 
from projected color to observed color of the camera. 
Their adaptive n-color codes can achieve the same accura-
cy as binary Gray codes but using fewer patterns. Ko-
ninckx et al. [11] introduced an adaptive algorithm in 
which the pattern intensity is adjusted to avoid over- and 
under-exposure based on a calibrated camera-projector 
chain. The geometry of the patterns is also adjusted to 
avoid aliasing caused by the foreshortened patterns being 
projected on the scene. Although these methods solved 
some of the recognized problems in time-multiplexing 
structured light (e.g. large number of patterns, speculari-
ties, and aliasing), they assumed that the impact of global 
light phenomena is small. In contrast, our method expli-
citly deals with the problem of strong inter-reflection dur-
ing structured-light acquisition. Moreover, since we are 
using more robust binary codes, only cameras need to be 
calibrated; projector calibration is not strictly necessary. 

Adaptive structured illumination can also be applied 
to estimate the full light transport matrix from a projector 
to a camera [24]. This matrix encodes the relation between 
each camera pixel and each projector pixel; it can be esti-
mated by turning on one projector pixel at a time. In [24] 
an adaptive subdivision scheme is proposed to speed up 
computing the light transport matrix. Although the full 
matrix is computed, there is no knowledge about the di-
rect correspondence between camera and projector rays --
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thus, no geometry is reconstructed. The focus of our pa-
per is to create detailed and accurate 3D geometric mod-
els for complex scenes with strong inter-reflections. 

2.4 Direct and Indirect Illumination Components 
Finally, to acquire scenes with strong inter-reflections we 
build upon methods for decomposing the intensity of a 
pixel into the direct component and indirect (or global) 
component. The direct component is due to a single ref-
lection. The indirect component is due to multiple reflec-
tions (e.g., inter-reflection, refraction, and subsurface scat-
tering). Seitz et al. [23] proposed an inverse light trans-
port theory to estimate the inter-reflection component for 
Lambertian surfaces. This method requires a very large 
number of images to compute matrices used in an inter-
reflection cancellation process.  

More recently, Nayar et al. [20] presented a fast me-
thod to separate the direct and global components of a 
scene lit by a single light source using high frequency 
illumination patterns. In theory, a high frequency pattern 
and its inverse are enough to do the separation. In prac-
tice, more pattern images, such as shifting chessboard 
patterns, are used to compensate for the low resolution of 
the projector. As pointed out by the authors, the high fre-
quency images among the structured-light patterns can 
also be used to do the separation. Therefore, our pixel 
classification method precludes the need for additional 
capturing and thus can be applied to previously acquired 
datasets.  

To actually classify a pixel as on or off, we need to 
know the direct and indirect component under the illu-
mination of structured-light patterns. Although the direct 
component is independent of the pattern shape, the indi-
rect component is difficult to compute. Instead of seeking 
these values explicitly, our method attempts to establish 
bounds of the indirect and direct component and uses the 
bounds for classifying pixels as on or off. 

3 ROBUST PIXEL CLASSIFICATION 

We first present our robust pixel classification algorithm 
for arbitrary binary patterns. Pixels that cannot be classi-
fied will be resolved via our adaptive process described 
in the next section. A structured-light method uses a set 
of rules to decide whether a pixel is capturing an illumi-
nated or non-illuminated surface point. Pixels corres-
ponding to surface points visible from the camera but not 
from the projector should be labeled as uncertain. In the 
following, we describe our pixel intensity intervals and 
classification rules for using one or two binary patterns 
per bit of the codeword. 

3.1 Pixel Intensity Intervals 
To help with classification, we define a pixel’s potential 
intensity interval. For example, for an 8-bit per channel 
camera, its value can span at most 0 to 255. This interval 
can be further subdivided into Pon for when the pixel is 
directly illuminated and Poff for when it is not. Pixel classi-
fication methods generally establish the lower and upper 
bounds of the two intervals (either explicitly or implicit-
ly). Then, if intensity p is within one interval but not in 

the other, the pixel belongs to that category. Otherwise, 
the pixel is labeled as uncertain.  

For example, a simple threshold method assumes Poff 
belongs to [0, t-] and Pon belongs to [t+, 255], where t- and 
t+ are two user-defined threshold values which may or 
may not be the same. Pixels can be classified by compar-
ing their intensities against the thresholds as shown in 
Fig. 3a. A more accurate method uses a fixed but different 
value for each pixel as the classification threshold t [30]. 
Each of the four pixels in Fig. 3b has a different binary 
threshold ti and thus has different Pon and Poff intervals. 
The threshold can be computed by taking two images 
under all-white and all-black illuminations and averaging 
the two. Methods that project a pattern and its inverse 
assume the two intervals are non-overlapping, i.e. the 
lower bound of Pon is larger than the upper bound of Poff 
[25]. In this case, a single comparison between the pixel 
and its inverse decides which interval the pixel falls into 
without explicitly computing t (Fig. 3c). 

These methods assume that the two intervals are non-
overlapping. However, this is not true if the scene point is 
undergoing strong indirect illumination. Our method 
overcomes the problem by correctly establishing the low-
er bounds and upper bounds for Pon and Poff. With these 
intervals, our algorithm classifies pixels as on/off accu-
rately and robustly. Furthermore, our algorithm can ro-
bustly reject pixels that are invisible from the projector or 
problematic due to excessively strong inter-reflection. 
This is important because incorrect classification leads to 
inaccurate decoding and then to bad reconstruction. 

255 

(a) 

(b) 

(c) 

Fig. 3. Intensity Intervals. a) A simple method classifies pixel 
using two user-defined thresholds. b) An adaptive method uses 
a fixed but different threshold for each pixel. Each of the four 
pixels has a different threshold. c) A more expensive method 
classifies a pixel according to whether the pixel or its inverse is 
brighter.   
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3.2 Single Pattern Classification Rules 
We first derive the decision rules for classification using a 
single pattern per bit of the codeword. The classification 
rules involve a sequence of comparisons. For a directly 
illuminated pixel, its intensity p can be decomposed into 
two components: direct component d and indirect com-
ponent ion. The direct component is the response to the 
direct light from the projector; therefore, d is invariant 
under different illumination patterns. In contrast, the in-
direct component ion depends on the bidirectional reflec-
tion distribution function (BRDF) at the scene point, the 
radiance of every surface patch in the direction of the 
scene point, the relative geometric configurations be-
tween the point and other surface patches, and set of the 
surface patches that are lit. Without detailed scene infor-
mation, this global component is difficult to calculate. For 
an indirectly illuminated pixel, its intensity p only con-
tains the indirect component ioff. In summary, 

 
                            on is pixel if onidp +=                           (1) 
                             off is pixel if      offip =                          (2)                       

 
Since the direct component d of an illuminated pixel is 

invariant to the illumination pattern, we can compute d 
for each pixel using the separation method introduced by 
Nayar et al. [20]. Their algorithm estimates the per-pixel 
direct component d, and total indirect component itotal for 
a scene lit by all projector pixels. Note that indirect com-
ponent ion and ioff depend on the illumination pattern and 
the scene geometry; thus, they are different from itotal. 

After d is computed, determining the intervals Pon and 
Poff becomes a problem of finding the lower bounds and 
upper bounds for ion and ioff. Both ion and ioff are indirect 
components of the pixel when about half of the projector 
pixels are on. Therefore, they are smaller than or equal to 
the total indirect component itotal because a scene point 
receives more indirect light when all projector pixels are 
turned on. As intensity values, they are also larger than or 
equal to zero. Thus, 

 
                                  ],0[ totalon ii ∈                                    (3) 
                                  ],0[ totaloff ii ∈                                    (4) 

 
From (1), (2), (3) and (4), we establish the lower and 

upper bounds for intervals Pon and Poff: 
 

                               ],[ totalon iddP +⊆                               (5) 
                                 ],0[ totaloff iP ⊆                                   (6) 
 
As shown in Fig. 4a, when d > itotal, i.e. the scene point 

has a stronger direct component, the two intervals are 
completely separated. In this case, the decision rules are 
as follows: 

 
Rule 1:       p < itotal →  pixel is off 
                   p > d →  pixel is on 
                   otherwise →  pixel is uncertain       (d > itotal) 
 
The two intervals are very similar to each other when d 

is close to zero (as in Fig. 4b). This situation can happen 
when the surface point is not visible from the projector, 
i.e., it is in shadow. Thus, the pixel should be discarded 
from reconstruction. This situation can also occur for a 
visible pixel with a very small direct component. In this 
case, the indirect light from other parts of the scene has a 
huge impact on its observed intensity. We do not have 
sufficient information to robustly know why the pixel is 
brighter and hence the pixel should be discarded. Our 
algorithm detects these situations and classifies the pixel 
as uncertain when d is smaller than a predefined mini-
mum threshold m. 

 
Rule 2:       d < m →  pixel is uncertain                    (d ≈ 0) 
 
When d ≤ itotal, the pixel has a relatively stronger indi-

rect component and the two intervals overlap near the 
middle range. This is shown in Fig. 4c. The pixel can be 
labeled as on/off only if its intensity p is smaller than the 
lower bound of Pon or larger than the upper bound of Poff. 

Fig. 4. Pixel Classification Scenarios. a) The intervals are completely separated when d > itotal. b) The two intervals are indistinguisha-
ble when d ≈ 0 (shadow and surface outside of the projector’s view frustum). c) The two intervals overlap when d ≤ itotal. 

(a) (b) (c) 

   

Pixel Intensity Pixel Intensity Pixel Intensity 

d ≈ 0 d ≤ itotal d>itotal 

Pon Pon Pon 

Poff Poff Poff 0 itotal 

d d+itotal 

0 itotal 

d d+itotal 

0 itotal 

d d+itotal 
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Closer values of d and itotal produce larger classifiable in-
tervals. Therefore, we have the following decision rules: 

 
Rule 3:      p < d →  pixel is off 
                  p > itotal →  pixel is on 
                  otherwise →  pixel is uncertain         (d ≤ itotal) 
 
Combining the rules for the three different cases to-

gether, we derive the following single pattern classifica-
tion rules: 

 

3.3 Dual Pattern Classification Rules 
Projecting the code pattern and its inverse yields two val-
ues for each pixel which can be used to improve robust-
ness. Both pixel values, p and p , obey the same single 
pattern classification rules. The single pattern rules can be 
combined and extended to form dual pattern classifica-
tion rules (see Table 2). In this way, our algorithm per-
forms an on/off classification only when a pixel and its 
inverse exhibit consistent behaviors. 

It is worth noting that when d > itotal, the two intervals 
are separated. Hence, the mapping from a pixel and its 
inverse to the two intervals is one-to-one. Thus, the classi-
fication rules can be simplified as the brighter one among 
the two must be directly illuminated. In other words, d > 
itotal is a sufficient condition for a brighter pixel among a 
pixel and its inverse to be directly illuminated, and is the 
assumption used in some previous methods (e.g. [25]). 

3.4 Tight Intervals under a Projector 
In order to improve the classifiable regions for the ambi-
guous case when d ≤ itotal, we need to decrease the overlap 
between the intervals. This could be accomplished by 
either finding a larger lower bound of Pon or a smaller 
upper bound of Poff. However, given the limitation of not 
knowing the scene geometry a priori, these bounds are 
already tight. 
   Consider the following two scenarios regarding an ob-
served point (including its corresponding image pixel) 
and a surface patch elsewhere in the scene. The scene is 
such that the point receives indirect light only from the 
surface patch. The patch itself does not receive any indi-

rect light. With an illumination pattern, it might be the 
case that the point is “on” and the surface patch is “off”. 
In this case, the patch does not provide any indirect light 
for the point. The intensity of the point’s corresponding 
image pixel only contains its direct component d. This is a 
minimum condition for when the intensity of an illumi-
nated pixel reaches the lower bound d of interval Pon.  

Next, consider the case of when a different illumina-
tion pattern makes the point “off” and the patch “on”. 
The point’s only source of illumination is the indirect 
light from the single patch. This implies the point’s itotal is 
only a function of the light from the patch. Since the patch 
does not receive any indirect light, its irradiance is a re-
sult of the direct light it receives and thus is constant 
when lit. Therefore, the light the patch gives to the point 
is also constant and does not change as long as the patch 
is lit. This is precisely the definition of itotal and hence the 
intensity of point’s corresponding pixel equals to itotal. 
This is the condition when the intensity of a non-
illuminated pixel reaches the upper bound itotal of interval 
Poff. Without knowing the geometry, when a scene is un-
der the illumination of a subset of pixels from a fully lit 
projector, the presented lower bound of Pon and upper 
bound of Poff are already tight.  

4. ADAPTIVE STRUCTURED LIGHT ALGORITHM 
Our adaptive algorithm exploits the fact that the size of 
the ambiguous region can be reduced when the scene is 
illuminated by binary patterns. In general, shrinking the 
size of the ambiguous region requires either increasing 
the lower bound of Pon or decreasing the upper bound of 
Poff. On the one hand, projecting higher illumination in-
tensity for the “on” bits will increase the lower bound of 
Pon but the indirect component will increase as well. If the 
higher intensity is still from the same projector, all inten-
sities will be scaled by a constant factor so that no new 
information is gained. If multiple calibrated projectors are 
used to increase the direct illumination, due to the differ-
ent configurations between the scene and different projec-
tors, it is uncertain whether the ambiguity will decrease. 
On the other hand, decreasing the upper bound of Poff, i.e. 
the total indirect component itotal, can be achieved by turn-
ing off part of the projector pixels. Iterations can be per-
formed to adaptively disable projector pixels and obtain 
an efficient acquisition.   

4.1 Iterative Reflection Peeling 
To improve reconstruction, our method decreases the 
upper bound of Poff (itotal) while keeping the lower bound 
of Pon (d) unchanged for ambiguous pixels. Our observa-
tion is that a pixel’s indirect component decreases mono-
tonically to the number of enabled projector pixels re-
gardless of whether the pixel is directly illuminated or 
not. Consider the following scenario: the total indirect 
component of camera pixel p under a fully lit projector is 
defined as itotal; if any one projector pixel is turned off, the 
new indirect component i' of pixel p will decrease if the 
disabled projector pixel contributed to pixel  p’s indirect 
component or will remain unchanged otherwise. There-

TABLE 1.  SINGLE PATTERN CLASSIFICATION RULES 

d < m → pixel is uncertain 
p < min(d, itotal) → pixel is off 
p > max(d, itotal) → pixel is on 

   otherwise → pixel is uncertain 

TABLE 2.  DUAL PATTERN CLASSIFICATION RULES 

d < m → pixel is uncertain 
d > itotal & p > p  → pixel is on 
d > itotal & p < p  → pixel is off 
p < d & p  > itotal → pixel is off 
p > itotal & p < d → pixel is on 

otherwise → pixel is uncertain 
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fore: 
 
                                           totalii ≤'                                                                     (7) 
 
Disable more projector pixels will make the indirect com-
ponent decrease monotonically. This gives us the ability 
to reduce ambiguous pixels’ indirect components by 
simply turning off those projector pixels whose codes 
have already been observed by the cameras, since they 
are not useful anyway. 

Our iterative reflection peeling algorithm starts from an 
all-white projector mask image I0 (Fig. 5). First we esti-
mate the per-pixel direct component d and total indirect 
component itotal under the illumination of I0 using [20]. 
Then, Gray code patterns and their inverses are projected 
onto the scene. Our robust pixel classification algorithm, 
described in the previous section, is used to decode the 
pattern images. Then, we identify the projector pixels, 
which correspond to the codes that have already been 
recovered, and disable them. This produces a new projec-
tor mask image I1 with a reduced number of white pixels 
as compared to I0. We perform an AND operation be-
tween I1 and each of the Gray code patterns to obtain a set 
of new patterns to be projected in the next iteration. 

To estimate the tight intensity value bounds for Poff and 
Pon under the newly generated structured-light patterns, 
we first compute the per-pixel direct component d and 
indirect component i1 under the illumination of projector 
mask image I1. The direct component is again invariant 
under different patterns as long as the scene point is di-
rectly illuminated. Therefore, the intensity p of a pixel 
under the illumination of I1 can take on either one of the 
following two values: 

 
1idp +=   if directly illuminated by I1          (8)  

              1ip =     if not directly illuminated by I1      (9) 
 
The camera pixels not directly illuminated by I1 are not 
important because they either have already been assigned 

a correct codeword in a previous iteration or are in sha-
dow and cannot be reconstructed at all. Thus, the per-
pixel indirect component i1 can be computed by simply 
subtracting the total direct image (per-pixel d) from the 
image captured under the illumination of I1. We assume 
the camera intensity response is linear.  Since our algo-
rithm estimates the intensity range for pixel classification 
instead of computing the exact camera intensity, a small 
error can be handled by conservatively adjusting the 
boundaries. The resulting image of the subtraction has the 
value i1 for the unresolved camera pixels. Then, the new i1 
(≤ itotal) is the upper bound of Poff. More pixels are assigned 
a correct code due to the fact that the ambiguous region is 
reduced by peeling away part of the global inter-reflection. 
Afterwards, a new projector mask image I2 is generated 
and the iterations continue until convergence. The pipe-
line of the iterative reflection peeling algorithm is illu-
strated in Fig. 5.  

The algorithm converges when almost all the codes are 
observed and the reconstruction is almost complete. Nev-
ertheless, it can also happen when the indirect component 
is too strong everywhere for all the unresolved pixels 
such that no additional pixels can be decoded. Thus, the 
divide-and-conquer method described in following sec-
tion is used to tackle this problem.  

4.2 Divide-and-Conquer Scheme 
It has already been shown that a projector image with less 
enabled pixels results in decreased indirect component 
for every camera pixel. This principle can also be applied 
when the indirect component is strong for all the remain-
ing unresolved camera pixels. The key idea is to subdi-
vide the projector image Ik into n smaller patches and per-
form the iterative reflection peeling algorithm on each 
patch separately. Since the indirect component for every 
camera pixel is decreased, the ambiguous region is re-
duced allowing more decoding and reconstruction. If ne-
cessary, each patch can be subdivided further in order to 
obtain a complete 3D model. The choice of subdivision 
logic is less important since the indirect component of 
every camera pixel is guaranteed to decrease or remain 
unchanged after subdivision. We choose a quadtree re-
cursive subdivision (i.e. subdividing regions into four 
rectangles) due to its suitability for covering the entire 2D 
projector image space. 

A naïve subdivision would sequentially execute the 
reflection peeling algorithm using each one of the subdi-
vided projector patches. However, this might be redun-
dant. Consider the following case. Each of a set of patches 
(e.g., 1, 2, 3, and 4) illuminates a group of camera pixels, 
either directly or indirectly. If the set of illuminated cam-
era pixels of projector patch 1 does not overlap with those 
of patch 2, patch 1 and 2 should be combined and the ref-
lection peeling algorithm should be performed only once 
using projector patch 1 and 2 together as one input mask. 
We call them non-conflicting projector patches. The fact 
that rays from one projector patch do not contribute to the 
indirect components of camera pixels corresponding to 
the other projector patch enables us to capture less images 
for a reconstruction. 

Mask the Gray code patterns 
by Ik and capture images un-

der the new patterns 

Turn off reconstructed projector 
pixels and obtain Ik+1 

Increase k by 1 

Let I0 be an all-white 
projector image 

Apply pattern decoding 
and reconstruction 

Enough points re-
constructed? 

Exit 

Fig.5. Iterative Reflection Peeling Algorithm.

No 

Yes 



XU AND ALIAGA:  AN ADAPTIVE CORRESPONDENCE ALGORITHM FOR MODELING SCENES WITH STRONG INTER-REFLECTIONS 9 

 

4.3 Capture Acceleration 
We exploit the parallelism due to non-conflicting projec-
tor patches by using an adaptive subdivision algorithm 
(Fig. 6). Similar to that in the work of [24], the goal of 
adaptive subdivision is to reduce total capturing time. 
However, the overall objective of [24] is to identify the set 
of camera pixels illuminated by each projector pixel (ei-
ther directly or indirectly), while our algorithm tries to find 
the set of camera pixels that are directly illuminated by 
one projector pixel with the help of time-multiplexed cod-
ing. In general, our algorithm requires much less projec-
tion-capture cycles than that of [24] and will produce a 3D 
model. 

4.3.1 Adaptive Subdivision 
For clarity, we discuss the algorithm using the example 
illustrated in Fig. 6. The algorithm starts with a single 
projector patch (Fig. 6a). The projector mask (Fig. 6b) con-
sisting of only one patch is used to start the first iterative 
reflection peeling. After it converges, the projector patch 
(Fig. 6a) is uniformly subdivided into four patches (Fig. 
6c, patch 1-4). If any of the projector patches is almost 
black (i.e. the number of un-resolved projector pixels is 
less than a small threshold), we discard that patch. Then, 
we project the patches (patch 1-4 in Fig. 6c) sequentially 
onto the scene and capture images under the illumination 
of them. We discard any projector patch that produces a 
dark camera image, since it projects to a part of the scene 
not visible to the camera (patch 2 in this example). Then, 
to maximize parallelism, we seek to group the projector 
patches that are non-conflicting. If any two captured im-
ages have non-overlapping sets of pixels that are illumi-
nated either directly or indirectly, the corresponding pro-
jector patches are non-conflicting (patch 1 and 4 in this 
example). Therefore, we can group the patches into one 
mask. In this example, after the subdivision, we obtain 
two masks (Fig. 6d): one consists of only one patch (3) 
and the other consists of two patches (1, 4). Each mask 
will be used to start a new iterative reflection peeling 
step. 

When these two iterative algorithms converge, we 
need to subdivide the projector patches further, resulting 
in 12 smaller projector patches (Fig. 6e patch 1-12). From 
the knowledge of the upper level, for example, we know 
patch 1 and 9 are non-conflicting. They can already be 
grouped together. Therefore, we only need to project and 
capture eight images to identify non-conflicting projector 
patches: (1, 9), (2, 10), (3, 11), (4, 12), (5), (6), (7), and (8). 
By comparing the captured images, these sets can be fur-
ther merged. For example, (1, 9), (4, 12) and (8) are black 
projector patches, (2, 10) and (5) do not conflict, and (6) 
results in a black camera image. Thus, only three masks 
are needed in this example: (7), (2, 5, 10), and (3, 11) (Fig. 
6f) and three new iterative peeling procedures are carried 
out using the three masks as input. The divide-and-
conquer continues until all iterations converge or the pro-
jector patches are too small. 

4.3.2 Direct Illumination-Based Adaptation 
Since we are only interested in directly illuminated camera 

pixels for correspondence purpose, we can easily discard 
projector patches that only generate indirect illumination 
on the scene. This can be done by subtracting the total 
direct image from the captured images under the illumi-
nation of each projector patch P. Given the direct compo-
nent d and the indirect component ip, the intensity p of a 
pixel under the illumination of projector patch P can take 
on either one of the following two values: 

 
pidp +=   if directly illuminated by P          (10)  

            pip =     if not directly illuminated by P      (11) 
 

After subtracting the total direct intensity d from each 
pixel, we obtain the difference intensity p’: 

           
pip ='        if directly illuminated by P                (12)  

      dip p −='     if not directly illuminated by P      (13) 
 

If p’ is negative, the pixel is not directly illuminated by the 
patch since ip is non-negative. If every pixel of the differ-
ence image is negative, the projector patch does not pro-
duce any direct illumination on the scene. Thus, the patch 
can be safely discarded from further processing. In prac-
tice, we disable a patch by testing whether a difference 
image is too dark (i.e., below a small intensity threshold). 

By subtracting the total direct component, the intensity 
of the camera pixels that are already decoded will become 
negative since there is no direct light coming to that pixel. 
Therefore, these pixels can be easily detected and will be 
ignored when computing non-conflicting patches. By dis-
carding projector pixels that only produce indirect light 
and removing the impact of already decoded camera pix-
els during non-conflicting set test, our method significant-
ly speeds up the original adaptive subdivision.  

5. RECONSTRUCTION AND RENDERING 
To show the results of our adaptive algorithm, we im-
plemented a reconstruction and rendering engine, which 
uses two mutually calibrated digital cameras and an un-
calibrated digital projector. During each iteration, the de-
coding process concatenates the bits from all our binary 

Fig.6. Adaptive Subdivision. Subdivision scheme for three 
levels (left) and corresponding binary images that are used to 
mask the Gray code patterns for each level (right). 

1 

1 2 

3 4 

1 2 
3 4 

5 6 
7 8 

9 10 
11 12 

(1) 

 (3)            (1,4) 

        (7)           (2,5,10)        (3,11) 

(a)  (b)  

(c)  (d)  

(e)  (f)  
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classification images, ignoring any pixel with uncertain 
bits. Then pixels seeing the same codes from two cameras 
are corresponded and triangulated. 

Establishing correspondences implies identifying 
common surface points observed by both cameras. The 
decoding procedure produces a set of candidate camera 
pixels for each projector pixel illuminating the scene. In 
practice, digital cameras are often higher resolution than 
projectors and thus several nearby camera pixels decode 
the same projector pixel codeword. The decoding results 
per camera are stored in two camera-resolution size code 
maps: one for each of the XY coordinates. A pixel value x 
in the X code map means that the camera pixel sees the 
projector pixel whose X coordinate is x. Similarly occurs 
for the Y code maps. In order to improve reconstruction, 
we apply standard clean up algorithms as suggested in 
[25]. We first fill in small holes of the code map and inter-
polate the code values into these regions to enforce 
smoothness. We then remove small isolated clusters in 
the code maps to reject outliers.  

Although the major decoding process is the same for 
all iterations, the later iterations can take advantage of the 
information gathered in the earlier ones. For example, on 
the one hand, if a camera pixel is successfully decoded 
and reconstructed in an earlier iteration, it should no 
longer be considered as a candidate for the remainder of 
the process. On the other hand, if a projector pixel has 
been assigned to a reconstructed 3D point, any camera 
pixel seeing its codeword should be discarded because 
the projector pixel is already disabled.  Thus, outliers are 
easily detected and rejected. 

 We group the pixels seeing the same codeword and 
use the center as the overall position. To ignore misclassi-
fications, an image-space culling method removes same-
code pixel clusters that span too much image area. Cor-
responded pixels are triangulated to obtain the 3D loca-
tion of a scene point. Triangulation accuracy depends on 
the baseline and calibration accuracy of the two cameras. 
In our system, we use high-resolution and carefully cali-
brated cameras to obtain good triangulation results. Nev-
ertheless, correspondence and calibration errors may 
cause erroneously reconstructed scene points that are 
excessively distant from their neighboring scene points – 
these points are trivially culled from the solution set. 

Finally, renderings are produced by a projective tex-
ture mapping of the reconstructed mesh. The meshing is 
performed in the camera image plane using 2D Delaunay 
triangulation. Although the texture contains both diffuse 
and directional reflections, we use it to shade the scene as 

it would be seen from the camera’s viewpoint. To further 
separate the diffuse and specular components in the tex-
ture images, we could incorporate a polarization based 
method (e.g. [17][31]), a color-space method (e.g. [14]), or 
a high-frequency structured-light method (e.g., [13]).  

6. IMPLEMENTATION DETAILS 
We use two Canon Digital XTi SLR cameras, each captur-
ing images at a resolution of 3888 by 2592, and an Opto-
ma DLP projector used at 1024 by 1024 pixel resolution (a 
subset of the native resolution of 1400x1050 pixels). Dur-
ing a capturing session, shifting chessboard patterns are 
initially projected to separate the direct and indirect com-
ponents for each pixel. The pattern is composed of 5 by 5 
small blocks and is shifted 1 pixel a time and 9 times 
along each of the X and Y directions. The exposure is kept 
low in order to avoid overexposure (e.g., due to high-
lights or caustics) and to limit the signal from dark projec-
tor pixels. Thus, the ambient term is very small and can 
be safely ignored in both separation and classification.  

During each iteration, 16 binary Gray code patterns 
and their inverses are projected onto the scene, resulting 
in 32 images per camera. Of these patterns, 8 are horizon-
tal stripe patterns and the remaining 8 are vertical stripe 
patterns. These patterns are the AND result between the 
original Gray code patterns and the current projector 
mask. When a new projector mask is computed, we apply 
a mild morphological dilation operator to the projector 
image in order to ensure the borders of the stripes are 
captured by the cameras. Whenever a subdivision is ne-
cessary, we also capture up to 4l (l is the level of subdivi-
sion) images to perform quadtree subdivision. In practice, 
due to parallelism, the number of captured images is 
much smaller than 4l when l > 1 as explained in Section 
4.3. 

All software is implemented on a Dell PC with 3.2GHz 
CPU and 2GB memory. Separation on a scene takes about 
120 seconds for each camera. Classifying all images from 
each camera takes about 60 seconds. The lower bounds 
and upper bounds derived in Section 3 and 4 are for ideal 
scenarios. In practice, due to the light leaking from the 
deactivated projector pixels, “fogging” inside the projec-
tor that adds light to the patterns, and projector and cam-
era non-linearities, it is not exact. To compensate, we use 
a small ε to conservatively reject pixels close to the inter-
val boundary. The same ε is also used in standard me-
thods to improve reliability. 

Name bowl dinnerware objects1 objects 2  lady 
# of images captured (standard method needs 64) 682 770 1650 1698 482 
Total image acquisition time (min) 55 60 145 146 40 
Total modeling time (min) 34 38 90 94 22 
# of points using standard classification 7463 25990 25239 29721 58672 
# of points using our classification (1 iteration) 9050 28555 33712 33553 57833 
# all points reconstructed using our system 14010 30292 38395 37398 60677 
# of iterations 8 9 22 23 5 
# of subdivisions 1 2 3 3 0 

TABLE 3.  DATASETS STATISTICS
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7. RESULTS 
We have applied our approach to the capture of five ex-
ample scenes, ranging from a single concave object to 
complex scenes with several objects. Table 3 summarizes 
the statistics of our datasets. The first dataset is a single 
bowl. The dinnerware dataset consists of three mugs, one 
bowl and two VitrelleTM glass plates. The objects 1 dataset 
has two plastic buckets and three porcelain ornaments. 
The objects 2 dataset is formed of several shiny objects 
which generate a lot of inter-reflection. Finally, the lady 
dataset is a case containing strong diffuse inter-reflection. 
We list the total number of photographs captured, the 
amount of time spent capturing images and reconstruct-
ing the models, the number of iterations and adaptive 
subdivisions to capture the final model, and the number 
of points reconstructed using standard classification (the 
method that compares pattern image and its inverse as in 
Fig. 3c), our classification for only one iteration, and our 
classification for all iterations. The number of points re-
ported is obtained by adjusting global culling thresholds 
until there are no visual outliers. Since our cameras have 
much higher resolution than the projector, the number of 
reconstructed points is much less than the number of 
camera pixels. For bowl and dinnerware, only areas con-
taining the objects are reconstructed, additional points 
belonging to walls and tables are discarded. As shown in 
the table, a significant amount of time was spent captur-
ing images and transferring them from our cameras to the 
computer using USB cables. In addition, our high-

resolution 3CCD camera produces high quality imagery 
but increases processing time because of the greater num-
ber of pixels. Using a lower resolution camera can reduce 
both acquisition and processing time but at the expense of 
lower image quality. 

The first dataset is a single concave and white porce-
lain bowl. Fig. 7 shows pictorially the classification results 
of the bowl. As one can see, the actual images (Fig. 7a) are 
difficult to classify due to strong inter-reflection. The 
standard method produces a lot of false positives (Fig. 
7b). In contrast, our method avoids misclassifications by 
declaring these difficult pixels as uncertain (Fig. 7c). The 
unclassified pixels are resolved during later iterations of 
our algorithm (Fig. 7d). In the presence of highlights and 
caustics, the smoothness constraint assumed by the sepa-
ration method does not hold [20]. Therefore, the esti-
mated direct and indirect components are inaccurate. In 
this case, our method does generate false labeling for the 
pixels belonging to such regions (circular structure in Fig. 
7d). However, we found that the post-processing of the 
correspondence data will easily reject these outliers. Our 
final classification is very close to the ground truth (Fig. 
7e). The ground truth results are generated by manually 
classifying the pixels in each pattern image.  

To understand the behavior better, we graph the num-
ber of correctly classified pixels and incorrectly classified 
pixels for both standard method and our method. A pixel 
is correctly classified if its on/off decision is the same as 
that of the ground truth. A pixel is incorrectly classified if 

Fig.7. Classification Results.   a) The first two rows are part of the actual pictures of the bowl under the illumination of two patterns. The 
third row shows a zoom-in view on a rectangular region of the second pattern. b) The classification results using standard method that 
uses a pattern and its inverse. A white (black) pixel means on (off). c) Classification results using our robust method for one iteration. A 
gray pixel means uncertain. d) Classification results after applying our algorithm for all iterations. e) Manually labeled ground truth. 

      a) Picture     b) Standard 
classification 

c) Our 
classification      
(1st iteration) 

d) Our 
classification        
(all iterations) 

e) Manually 
labeled ground 

truth 
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its on/off decision is opposite to that of the ground truth. 
Fig. 8 shows the two graphs. When computing the num-
ber of correctly classified pixels for level l, we only count 
those that are correctly classified for all levels up to l. For 
incorrectly classified pixels, we count those that are incor-
rectly classified for any level up to l.  As can be seen, al-
though standard classification can produce 45% more 
correct classifications than one step of our method, it also 
generates 41 times more incorrectly classified pixels. Dur-
ing reconstruction, these false positives cause correctly 
classified pixels to be culled away. By applying our ro-
bust classification for all the iterations we obtained 21% 
more correct classifications and 10 times less incorrect 
ones. Thus, the overall modeling quality is much higher. 
The numbers reported for all iterations includes those of 
the first iteration and all the later iterations. 

Fig. 9 shows the pictures of the results for the bowl. The 
quantitative improvement over standard method is 21% 
for the first iteration and 88% after 8 iterations. The recon-
structed point cloud using standard method is irregular 
(Fig. 9a). In contrast, our method initially avoids dealing 
with ambiguous regions and reconstructs the non-
ambiguous areas fairly well (Fig. 9b). The final recon-
struction after several iterations of our method is close to 
a complete model (Fig. 9c). The remaining small holes are 
due to difficult configurations such as caustics, pixel over-
flow due to specular highlights, and surface patches that 
are nearly parallel to the viewing or lighting directions.  

Since we have manually labeled the pixel-code maps 
for this dataset, we can apply the same reconstruction 
engine to produce a ground truth point cloud. Then, 
points reconstructed using ground truth classification, 
standard classification, and our classification can all be 
corresponded through their projector pixel coordinates; 
this allows us to easily compute the distance between the 
ground truth model and a reconstructed model without 
aligning models and/or finding the closest points be-
tween the models. To evaluate the accuracy and complete-
ness of our approach, we use the same metric as in Seitz et 
al. [28]. We first compute the per-point distance between 

the ground truth model (G) and the model to be eva-
luated (R). To evaluate accuracy, we compute the distance 
d, for which, X% of points of R are within distance d to 
ground truth G. A more accurate reconstruction tends to 
have a smaller d value. Fig. 10a shows the results for dif-
ferent X values (plotted along the horizontal axis) using 
standard method and our method. As can be seen, our 
method consistently produces more accurate reconstruc-
tions than standard method. To measure completeness, 
we compute the fraction of points of ground truth G that 
are within a certain distance d to the model R. Fig. 10b 
shows the results for different d values (plotted along the 
horizontal axis). Our method produces about 30% more 
points than standard method. The completeness score for 
our method is close to 100% when the distance d is suffi-
ciently large. The base of the percentage is different in the 
two graphs; therefore, the d values are different for the 

Fig.8. Number of Correctly and Incorrectly Classified Pixels. The horizontal axis is the level of Gray code subdivision; higher values 
correspond to more stripes in the projected pattern. The vertical axis represents the number of correctly/incorrectly classified pixels. As 
compared to the standard method, our method produces both more correctly classified pixels and less incorrectly classified pixels. 
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Fig.9. Modeling the Bowl. Point cloud reconstructed using a) 
standard method, b) our robust classification for one iteration, 
and c) our method for all iterations. d) The final model is ren-
dered from a novel viewpoint using texture mapping. 
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same X value. We avoided very difficult regions during 
manual classification for creating the ground truth model. 
This leads to the fact that the ground truth model has 
fewer points than the model reconstructed by our me-
thod. Hence, the d value for the second graph may be 
smaller even when the percentage number is the same. 

To evaluate the contributions from different compo-
nents of our iterative algorithm (i.e. initial pixel classifica-
tion, iterative reflection peeling, and adaptive subdivi-
sion), we compute the accuracy and completeness score of 
each step for the bowl dataset. For computing accuracy 
score, we set the X% value to be 90%. For completeness 
score, we set the distance d to be 1.0mm. The results are 
listed in Table 4. The accuracy of our method decreases 
when using more iterations because the later iterations 
are eventually dealing with more optically-difficult re-
gions of the scenes; thus are less robust. However, the 
overall error is still rather small. Our reflection peeling 
algorithm (step 2) completes the object from 60% to 90%. 
The gain of adaptive subdivision (step 3 and 4) on this 
particular dataset is relatively small; in general, it is very 
dependent on scene geometry and reflectance. 

To show the effects of outlier rejection (image- and 
world-space culling discussed earlier in Section 5), we 

show synthetically-shaded models without and with out-
lier rejection using standard method and our method in 
Fig. 11.  The original reconstruction using standard me-
thod (Fig 11a) is noisier than that using our method (Fig 
11c). After outlier rejection, standard method only recon-
structs an incomplete model (Fig 11b). In contrast, our 
method produces both improved correctness and im-
proved completeness (Fig 11d). 

For the more complicated dinnerware, objects 1, and ob-
jects 2 datasets, our method also performs better than 
standard method. The improvement of the first step 
ranges from 10% to 34%. After all iterations, the im-
provement is 17%-88%. Fig. 12 and Fig. 13(a-d) show the 
reconstruction results for dinnerware and objects 1. The 
results for objects 2 were shown in Fig. 1. With 8-23 itera-
tions and at most 3 levels of subdivision, our algorithm 
can reconstruct quite complete models for various types 
of scenes. It is interesting to note that for a subdivision 
level 3, the projector image is divided into 8x8 small 
patches. However, there are only about a little more than 
20 iterations in total. This is because parallelism is ex-
ploited by efficiently combining non-conflicting projector 
patches together. 

The lady statue is white and diffuse; thus a perfect sub-
ject for standard structured light. However, when it is 
placed in a corner, diffuse inter-reflection is prevailing. 
Although for the entire scene, standard method produces 
slightly more points than our method with only one itera-
tion (58672 vs. 57833), our method generates more points 
on the lady statue (8900 vs. 9066).  After 5 iterations, our 
points reconstruct a nearly complete model of 60677 
points (9413 points on the statue). Fig. 13(e-h) shows the 
results.  
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D
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m
) 
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) 
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 mm 

(a) (b) 
Fig.10. Reconstruction Accuracy and Completeness. a) Accuracy: The distance d (Y axis) when X% (X axis) of points of a recon-
structed model R (using either standard method or our method) is within distance d to the ground truth model G. A more accurate recon-
struction tends to have smaller d value. b) Completeness: The percentage (Y axis) of points of the ground truth model G is within distance 
d (X axis) to the reconstructed model R. A more accurate and complete reconstruction has a higher completeness score. 

TABLE 4.  CONTRIBUTIONS OF DIFFERENT COMPONENTS

Step 1 2 3 4 
Accuracy (mm) 0.367 0.710 0.711 0.723 
Completeness 60% 90% 92% 95% 

Legend:  
   1 = our pixel classification before reflection peeling 
   2 = reflection peeling converged before subdivision 
   3 = after subdivision and reflection peeling only on 

upper left quarter of projector mask 
   4 = full algorithm done 
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8. CONCLUSIONS AND FUTURE WORK 
We have presented an adaptive and iterative algorithm 
for modeling scenes with strong inter-reflections. Our 
algorithm is based on establishing accurate pixel intensity 
intervals of a scene during the illumination of a struc-

tured-light pattern. By iteratively reducing the inter-
reflection within the scene, our algorithm is able to ro-
bustly decode more camera pixels in successive iterations. 
Furthermore, the inter-reflection is reduced in an adap-
tive manner whereby parallelism is exploited in order to 
decrease total image capturing time. Our experiments 
show that as compared to a standard method, our algo-

Fig. 12. Dinnerware Set.  a) A picture of the scene. b) The same scene under the illumination of a structured-light pattern during first itera-
tion (left) and second iteration (right). c) 3D point cloud reconstructed using standard pixel classification. d) 3D point could using our pixel 
classification for one step. e) Complete point cloud after 9 iterations. e) Rendering the scene as a texture mapped triangular mesh. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

25990 pnts 

28555 pnts 

30292 pnts 

(a) (b) (c) (d) 

Fig. 13. Modeling Scenes with Inter-reflection. a, e) 3D point cloud using standard method. b, f) 3D point could using our one step ro-
bust pixel classification. c, g) Complete point cloud after 21 and 9 iterations, respectively. d, h)  Rendering the scene as a synthetically-
shaded triangular mesh from a novel viewpoint. Each bottom right insert shows texture mapped models of the scene.  

(h) (g) (f) (e) 

Fig. 11. Outlier Rejection.  Synthetically-shaded model reconstructed using standard method before outlier rejection (a) and afterwards 
(b). Synthetically-shaded model reconstructed using our method before outlier rejection (c) and afterwards (d). 

(a) (b) (c) (d) 
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rithm improves both the quantity and quality of the re-
constructed 3D points. This produces dense datasets suit-
able, for instance, for content creation, virtual reality, and 
other applications. Our reflection peeling and subdivision 
approach can also be applied to standard pixel classifica-
tion case. Standard method tends to produce non-uniform 
reconstructions due to large number of outliers (e.g. Fig. 
9a); the remaining projector pixels distribute the entire 
projector image space. Our robust pixel classification re-
constructs optically-simple regions completely in the ear-
lier stages. Therefore, the projector patches corresponding 
to these regions can be discarded earlier in the pipeline. 
This leads to faster convergence than applying reflection 
peeling directly to standard method. 

One limitation of our algorithm is being conservative. 
If the pixel intensity is in the ambiguous classification 
interval, our method classifies the pixel as uncertain and 
relies on later iterations to decode it. For an object with 
strong subsurface scattering, such as fluffy toys and can-
dles, its direct component can be very weak. Therefore, 
our algorithm will classify many pixels as uncertain while 
a standard method can produce at least a very coarse re-
construction.  

We are investigating several avenues of future work. 
First, the current system uses a uniform quadtree subdi-
vision. The remaining pixels on a projector image might 
be arbitrarily shaped, thus a non-uniform and non-
regular subdivision scheme (e.g., an oriented-bounding-
box hierarchy) would help produce a tighter-fitting spa-
tial hierarchy and thus further reduce capture time. 
Second, our system currently ignores the fact that specu-
larities and caustics violate the assumption of the di-
rect/indirect illumination separation algorithm and thus 
no valid intensity intervals are defined in these areas. In 
the future, we would like to study how to compute the 
intensity intervals for these regions. Third, we would like 
to perform multi-viewpoint captures to which our me-
thod can be straightforwardly applied. Finally, we seek to 
extend our intensity interval idea to structured-light sys-
tems using multi-grayscale patterns, multi-color patterns, 
and multi-parameter imaging. This involves establishing 
bounds for each parameter instead of the current two (i.e. 
black and white).  
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