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Abstract—Interactive visualization of architecture provides a way to quickly visualize existing or novel buildings and structures. 
Such applications require both fast rendering and an effortless input regimen for creating and changing architecture using high-level 
editing operations that automatically fill in the necessary details. Procedural modeling and synthesis is a powerful paradigm that 
yields high data-amplification and can be coupled with fast rendering techniques to quickly generate plausible details of a scene 
without much or any user interaction. Previously, forward generating procedural methods have been proposed where a procedure is 
explicitly created to generate a particular content. In this article, we present our work in inverse procedural modeling of buildings and 
describe how to use an extracted repertoire of building grammars to facilitate the visualization and quick modification of architectural 
structures and buildings. We demonstrate an interactive application where the user draws simple building blocks and using our 
system can automatically complete the building “in the style of” other buildings using view-dependent texture mapping or non-
photorealistic rendering techniques. Our system supports an arbitrary number of building grammars created from user subdivided 
building models and captured photographs. Using only edit, copy and paste metaphors, entire building styles can be altered and 
transferred from one building to another in a few operations, enhancing the ability to modify an existing architectural structure or to 
visualize a novel building in the style of others. 

Index Terms— Display Algorithms, Image-based Rendering, Modeling Packages, and Visualization systems and software. 
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1 INTRODUCTION

The interactive visualization of architecture and buildings 
provides a way to see current structures as well as future 
tentative structures and changes to existing buildings. The 
input regimen, display algorithms, and technology should 
ideally be intuitive, fast and realistic, and transparent to the 
user. Computing power and graphics technology has ad-
vanced significantly in recent years supporting the fast ren-
dering of complex architectural scenes. 
However, a common design challenge for such interactive 
visualization applications is to require little effort by the 
user to create or to alter architecture and buildings. Ideally, 
the system must be able to create interesting and consistent 
alterations to the structures from only a few specifications 
on part of the user. Thus, an interactive visualization pro-
gram must include a component that at least semi-
automatically infers details of the structures being observed 
and changed. The inferred details are then used to fill-in the 
structures and produce interactive renderings of potentially 
new architectural structures. 
Procedural modeling and synthesis is a powerful paradigm 
that can be coupled with an interactive rendering program 
for architecture to generate plausible details of a model 
without much or any user interaction. Procedural methods 
have the advantage of exhibiting a high-degree of detail 
amplification; e.g. using only a small number of parame-
ters, significant plausible details can be synthetically gener-
ated. However, since a small change in the parameters can 
cause huge changes in the resulting model, it is extremely 
difficult to determine a good set of procedures and parame-
ters. Nonetheless, promising results have been demon-
strated in several restricted arenas such as fractal-based 

compression and L-systems for procedurally generating 
plants [1]. Furthermore, pre-specified grammars have been 
used to generate plausible cities [2] and some architectural 
structures [3, 4].  
In this article, we describe an interactive system that en-
ables both creating new buildings in the style of others and 
modifying existing buildings in a quick and intuitive man-
ner. In a first step, our system provides tools to the user for 
mapping photographs of an existing building to a simple 
geometric model and for subdividing a building into its 
basic external features (e.g., floors, windows, doors, trim, 
brick, wood, etc). In a second step, the system automatically 
creates a representative grammar that captures the repeti-
tive patterns and particularities present in the building and 
its features. This grammar essentially captures the style of 
the building and enables us to transfer the style to new un-
subdivided models of potentially very different shapes. In a 
third and interactive step, users draw a desired new build-
ing configuration using simple building blocks and the sys-
tem uses the grammar to automatically subdivide the new 
building configuration. This results in a new and complete 
building or a modified version of a captured building, both 
in the style of the original.  
The new building can be rendered using a view-dependent 
texture mapping of image fragments from the captured 
photographs, or using a stylized procedural rendering (e.g., 
pen-and-ink) of the terminals of the grammar. Moreover, 
the redundancy among the images of the building can also 
be used to automatically fill occluded and poorly sampled 
areas of the image set, as well as to equalize the color and 
lighting between images and surfaces of the model.  
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Finally, we include tools to specify trees, ground, and sky 
yielding a complete architectural scene in minutes yet sup-
porting completely changing the style of the buildings at 
any moment. The user can instantaneously copy and paste 
new building-styles and apply most affine transformations, 
including uniform and non-uniform scaling, to the building 
configurations. The grammar is interactively reapplied and 
continuously adjusts to the size and shape of the building 
configuration. We present the results of using our system to 
sketch, modify, and render new buildings created in the 
style of existing real-world buildings.  
The contributions of our work include 

• an algorithm to construct a grammar from a subdi-
vided building model and to use the grammar to 
fill-out new building configurations with the cap-
tured architectural details, 

• a system to interactively create new buildings in 
the style of existing real-world buildings using 
view-dependent texture mapping, 

• a method to create and interactively edit non-
photorealistic stylized renderings of novel and ex-
isting architectural structures, and 

• rendering techniques for drawing new buildings 
omitting occlusions in the original data and equal-
izing lighting and shading. 

2 PREVIOUS WORK 
The modeling and rendering of 3D objects and architectural 
structures has been addressed in several ways in computer 
graphics. Photogrammetric reconstruction and image-based 
modeling and rendering (IBMR) build models from real-
world photographs. Procedural modeling focuses on gen-
erating synthetic models of objects and environments from 
a pre-specified set of rules and terminals defined by a 
grammar. A few interactive sketching systems have been 
proposed for the inverse procedural modeling of plants. 
Our work builds upon these areas of research to develop a 
novel method for architectural visualization. 
Photogrammetric reconstruction and IBMR build a repre-
sentation of the observed objects and enable mapping the 
acquired image data to the representation. In particular, 
Facade [5] has served as the prototype for several commer-
cial packages that reconstruct an approximate geometric 
model with user-assistance and then texture map view-
dependent images [6] onto the model (e.g., [7, 8, 9]). Image-
based modeling and rendering is a partner of capture tech-
niques like photogrammetric modeling, but unlike photo-
grammetric modeling, an IBMR system directly re-samples 
photographs of a static scene to create novel views of the 
acquired object [10, 11, 12, 13] or small environment [14, 
15]. Some efforts have focused on reconstructing large ur-
ban spaces [16] or on reconstructing buildings in particular 

Figure 1. System Overview. Our system enables users to modify and render architectural structures based on grammars extracted from 
various real-world buildings. First, the user creates and subdivides an initial model of the building (a-b), then our algorithm automati-
cally finds repetitive patterns of the building features and constructs a representative grammar. Using an interactive program, the user 
can then view the captured model (c), change the model on the fly producing new models (d) and view stylized renderings (e).  

a) b) c) 

d) e) 
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from images [17]; however, not on quickly creating novel 
buildings, editing existing buildings, and transferring style. 
Procedural modeling is useful for creating objects that ex-
hibit a high-degree of redundancy. For example, L-systems 
have been successful in the modeling of plants [1] and have 
been used for automatic city and building generation [2, 3]. 
Shape grammars, which define rules for the specification 
and transformation of 2D and 3D shapes [18], have also 
been used to model architecture. Wonka et al. [3] and Muel-
ler et al. [4] let a user specify parameters and employ a pre-
specified grammar to automatically generate buildings and 
architecture from a database of given rules and attributes. 
Legakis et al. [19] use cellular patterns to create façade-level 
details for architectural models. While procedural modeling 
provides a means for quickly creating architecture from a 
small number of terminals and rules, the data and proce-
dures are not extracted from an actual real-world city or 
building. 
Some drawing systems have been proposed for the inverse 
modeling of plants and trees. As opposed to forward-
generating procedural plant sketching systems, these sys-
tems infer structure from observed data and build a model. 
For example, Shlyakhter et al. [20] build models of trees by 
fitting a coarse branching proxy to a set of instrumented 
photographs. On the other hand, in our work, we wish to 
infer a grammar for a non-organic structure, such as a 
building, based on acquired photographs. 
Several general and focused sketching systems have been 
presented in the literature for quickly drawing new objects. 
For instance, Zeleznik et al. [21] and Shesh and Chen [22] 
combine synthetic rendering with a pen-based interface to 
create geometry, including simple architecture. Oh et al. 
[23] and Google Sketchup [24] have developed tools for 
sketching buildings. However, these structures are created 
manually and not from existing architecture. 
We seek an interactive visualization application that starts 
with simple building blocks and automatically fills out the 
details of a building with a chosen style. The styles and cor-
responding grammars are obtained from images of real-
world buildings. While some previous work has created 
grammars for individual building facades [25], our focus is 
on quickly generating modifications to entire buildings or 
creating new buildings similar to others.  
The work presented in this article is an extension of our 

conference publication [26]. However, in this article, we 
generalize the system to style grammars composed of a 
hierarchy of production rules. This provides significant 
additional flexibility, including the ability to copy-and-
paste arbitary subsets of the grammar and to rearrange the 
rules within the hierarchy. We also present semi-automatic 
methods to convert terminals to stylized renderings similar 
to pen-and-ink, provide interactive tools for creating land-
scapes (in [26], landscapes were created non-interactively) 
and give a complete description of a system for interac-
tively visualizing existing and new buildings. Our system 
greatly simplifies the visualization of architecture, enables 
fast content creation and editing, and supports instantane-
ously applying entirely new building styles. 

3 BUILDING GRAMMARS 
A typical building contains a regular structure that can be 
exploited to automatically detect patterns in its configura-
tion and construct a representative grammar. A building 
consists of several floors; each floor is divided into various 
faces and each face consists of several windows surrounded 
by trim and wall material. Within a single building there 
can be groups of differently shaped floors, a variety of win-
dow styles and trims, and several types of wall material 
such as brick, stone, etc. Our algorithm exploits this typical 
global structure and captures the significant local details. In 
this section, we first describe how to incorporate a new 
building into the system. Then, we create the grammar and 
derive new instantiations enabling the modification of ex-
isting buildings or the creation of new ones. 

3.1 User Specification 
To add a new real-world building to the system, the user 
must map edges in captured images to a scene graph sub-
divided into basic building features. The scene graph crea-
tion and edge mapping is done once using a graphical user 
interface (GUI). No attention need be paid to the dimen-
sions of the scene or camera pose, as these will be recovered 
by the system via an optimization. This specification pro-
vides information that will be used to automatically detect 
patterns in the structure of the captured building. 
Our system provides tools to quickly build a model from a 
collection of photographs (Figure 2a) and from parameter-

Figure 2. Building Specification. (a) Photographs of the building are taken. (b) A simple model of the scene is created. (c) Model edges 
are matched to image edges. The model parameters and image parameters are computed automatically via an optimization process. 

a) 

b) 

c) 
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ized geometric building blocks organized into a hierarchical 
scene graph (Figure 2b). Each node of the graph contains a 
block, and each edge of the graph represents a transform 
specifying the position and orientation of a block relative to 
its parent or child. Each block is composed of a small set of 
vertices and a simple geometrical structure (e.g., box, cylin-
der, pyramid, etc.). The completed model will have the di-
mensions and pose of each block. Our system also supports 
constraining block size, position, or alignment in relation to 
other blocks. This reduces the total number of parameters 
and leads to a more robust optimization. 
Once the model is created, it is matched to the image set. 
For each image, the user employs our GUI to mark the visi-
ble part of prominent image edges and map them to the 
corresponding model edges (Figure 2c). We do edge corre-
spondence, as opposed to point correspondence, because 
they are more likely to be at least partially visible in a given 
image. In fact, the occluded regions of the buildings are 
marked as such and will be ignored. Also, it is by no means 
necessary to mark every visible edge. Starting with an un-
detailed model and only a few images and edges, the sys-
tem incrementally improves camera pose estimation and 
structure recovery. To compute the scene parameters, we 
define an error function based on the discrepancy between 
the user-marked (observed) edges and the model edges as 
viewed by each camera. By minimizing this error function, 
we recover the parameter values that align the model edges 
most closely to the observed edges. 
The user then subdivides the model into features and fea-
ture groups. Figure 1b shows a subdivision and labeling 
scheme for an example building where each feature group 
is rendered in a unique color. Block subdivision is per-
formed to divide the building into floors. Surface subdivi-
sion is used to divide the building facade into labeled fea-
ture groups representing, for instance, brick, trim, win-
dows, and entries. In addition, it is necessary to indicate 
whether each feature group is of a fixed size. For example, 
windows, door, and trim are of fixed sized, while brick re-
gions are not fixed in size. This tells the system that the 
brick can be repetitively tiled or cropped on a novel face, 
while the windows and doors should remain the same size. 

3.2 Grammar Parsing and Derivation 
Using the subdivided model, the system automatically 
finds the repetition of building features and creates a collec-
tion of production rules and terminals that represent the 
captured building. For parsing, all buildings are assumed 

to be organized in the following manner. First, the blocks of 
a building specification are sorted from bottom to top. 
Unless otherwise specified, the first two subdivided blocks 
and the last subdivided block are considered the base, 
ground-floor and roof, respectively. The intermediate floors 
are labeled as repeatable floors. Second, each floor consists 
of an ordered sequence of faces and each face is formed by 
an array of columns. Third, a column may correspond to a 
single terminal or to a group of vertically stacked terminals.  
This organization defines a hierarchy of production rules 
where the grammar terminals consist of images of basic 
building features (e.g., windows, trim, brick, stone, etc.). 
Thus, the grammar has the following general form:  

Grammar parsing automatically obtains the particular in-
stantiations of these general rules and terminals for a cap-
tured building. These rules describe the basic ways in 
which an element (e.g., model, floor, face or column) can 
grow, shrink, and be adapted to any given collection of 
building blocks. The process of deriving a completely new 
building entails determining which production rules to 
apply and how many times to repeat them. Thus, given the 
original un-subdivided building blocks or a new set of 
building blocks, the blocks can be automatically subdivided 
into floors, faces, columns, and terminals yielding a new 
and similar-in-style building. In the following sections, we 
describe how to create the instantations of these rules. 

Face Productions 
A face F of a captured building is represented by a produc-
tion rule containing symbols for each individual column 
and geometric information for determining precisely how 
many repetitions of each column to use when creating a 
novel face of arbitrary size. Consider the face in Figure 3a 
which is subdivided into nine columns. Two columns in a 
face are considered similar if the labels of their respective 
terminals match one-to-one. Thus, the pictured face has 
only three unique types of columns and can be written as F 
= ABCBCBCBA (Figure 3b). Repetitions of similar groups of 
columns are combined and represented by borrowing the 
Kleene star notation from regular expressions. Hence, we 
write as a possible production rule “F → A(BC)*BA”, which 

Model M  → (base)(ground){ S0 S1 … SN-1 }(roof) 

Floor S  → { F1 F2 … FM } 

Face F   → { C1 C2 … CP } 

Column C → { T1 T2 … TR }. 

B B C C B 

Figure 3. Face Productions. Patterns detected in a face are used to infer a grammar and build new faces. (a) An original face from a 
captured building. (b) A subdivision of the face yielding grammar F = ABCBCBCBA = A(BC)*BA. (c) A new stretched face filled-out 
automatically using the inferred production rule. 

a) b) c) 

A B C A 
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implies the pattern BC can be repeated an arbitrary number 
of times. 
While many different forms of repetitive patterns can occur, 
our system searches for repeating pairs of elements. In 
practice, we have found this to yield fairly compact and 
flexible production rules. Having large repeating groups of 
elements makes it difficult to accommodate to small build-
ing configurations changes. Further, in order to keep ap-
proximately the same distribution of features, we ignore 
repetitions of the form AA. For example, if A represents 
brick and B corresponds to a window, then an approxi-
mately similar distribution of windows on a face occurs by 
repeating AB. On the other hand, repeating AA creates 
more brick and decreases the density of windows on a face 
of a building. Based on these observations, our algorithm 
obtains a compact production rule for face F by first scan-
ning the string and marking each reoccurring pair of the 
form AB (but not AA). Then, adjacent repeated instances of 
a marked pair are replaced with a single instance and the 
Kleene star is added to all marked pairs. 
Consider the following typical derivations produced by our 
system: 

The first example represents a very common and straight-
forward situation where repeating pairs have been com-
bined yielding a compact rule. If we derived the rule 
(ABA)*B(ABA)* for this example, it would goes against the 
alternating AB pattern and would also make the rule less 
flexible by requiring elements of greater width to be 
squeezed into a face of arbitrary size. In the second exam-
ple, the repeated pattern AA is not merged based on our 
observation. Otherwise this would have resulted in the rule 
(AA)*B(AA)*B(AA)*, which is likely to be much less visually 
interesting when stretched.  
While it is certainly possible to detect higher-level patterns 
in a face and perform different groupings, obtaining rules 
that maintain coherent structure over multiple floors is dif-
ficult and thus should be imposed by the user through mul-
tiple levels of face subdivision. Consider the facades of two 
floors where pattern 3 is directly below pattern 1 (C might 
represent a door, while B represents a window). Using a 
higher-level rule for only pattern 1 (or pattern 3) might ruin 

the vertical coherence between the two floors by adding 
extra instances of columns to the associated floor of a novel 
building. Our set of rules does not attempt to infer high-
level and multi-floor structure but, in practice, yields good 
coherence and compactness in a variety of situations.  
To apply the production rule of face F to a novel and arbi-
trarily larger face F’, we must determine the number of 
repetitions of each repeatable column and a scale factor for 
columns of variable width. We calculate a common multi-
plier k for all repeating columns such that the remaining 
width is filled as much as possible without overflowing. 
Using a single common multiplier preserves the symmetry 
and balance of the face structure. The remaining width of F' 
is filled by adding at most one more repetition of each re-
peating column. The configuration that yields a scale factor 
for the variable width columns closest to one is chosen.  
Mapping a face F to a novel and smaller face F’ yields two 
possible scenarios. If the new face F’ is larger than or equal 
to face F without any repeating patterns, then the same 
method from the previous paragraph can be used. Other-
wise, we calculate a scale factor for the columns of variable 
width that makes the size of F equal to F’. If no such scale 
factor exists, we choose to omit the smallest features of F 
until it is smaller than F’ and then calculate the scale factor 
for the columns of variable width.  
Figure 3c shows the results of the application of a face pro-
duction rule to a novel face. The novel face remains true to 
the original style. Section 4 describes in more detail how the 
rendering of novel faces is accomplished. 

Floor Productions 
A floor production rule is a description of the outward 
facing surface of a single floor wrapping around a model. 
Each rule consists of several face productions S = {F1, F2, ..., 
FM}, where Fi is connected horizontally to F(i+1) mod M. Each 
face has exactly one left adjacency and one right adjacency. 
The corner orientation between adjacent faces is also 
recorded. It indicates whether the faces meet at an inner 
corner, outer corner, or are continuous. For example, the 
model in Figure 4a contains four floors, including a small 
base floor and three intermediate floors. Each floor surface 
wraps around several blocks and therefore contains several 
different and adjacent face productions and corner 
orientations. 
Our method uses a set of criteria to apply a floor 
production rule to a floor of a novel building. A novel 
model contains the faces S' = {F'1, F'2, ..., F'M’}. The system 

Figure 4. Floor Productions. A model is divided into several floor surfaces that wrap around the building and can be applied to a 
floor of a novel model. (a) A captured building and its floors. (b) A captured model floor. (c) A novel model floor. (d) Face production 
rules from the captured floor applied to the novel floor. 

a) b) c) d) 

A 
B C 

D 
A A 

B 

A 

C 
C 

D 

1. ABABABA → (AB)(AB)(AB)A → (AB)*A 

2. AABAABAA → A(AB)A(AB)AA → A(AB)*A(AB)*AA 

3. ACABABA → AC(AB)(AB)A → AC(AB)*A 
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selects a production rule Fi for each novel face F'j and then 
applies the selected rule to the face as described in the 
previous section. Our system uses a weighted combination 
of the following three criteria to determine the fitness of a 
candidate face production rule to a given novel face: 

• Corner Orientation. A face is frequently character-
ized by the types of corners that surround it; for 
example, an outer corner is likely to have trim or 
decoration, while an inner corner is less likely to. 
Since each face has two adjacencies and there are 
three types of corners, this results in nine catego-
ries of faces. The best candidate production will 
match the novel face in this respect. 

• Size. The candidate production that is closer in size 
to the novel face is more likely to be appropriate. 

• Resolution. If two or more candidate productions 
are appropriate in terms of corner orientation and 
size, the production from the face with the highest 
quality image samples is selected. 

Figures 4(b-d) show the results of applying a captured floor 
production rule to a novel floor. The capitalized letter labels 
indicate the choice of capture face for each novel face. Our 
approach does not consider the image-content of each ter-
minal and thus mirrored-copies of terminals are not used. 
Nevertheless, it can be seen that using the corner orienta-
tion, size, and resolution of each face results in the termi-
nals, including trim, being consistently applied.  

Model Productions 
A model production rule consists of all the aforementioned 
production rules and enables subdividing a given collection 
of building blocks in a single operation. The floors of the 
captured model are stored in a directed graph that usually 
resembles an array. However, in special cases such as a 
breezeway or towers, a single floor can be connected to 
multiple floors. Applying a model production rule to a new 
set of building blocks requires the system to determine 
multipliers for each repeating floor element and then align 
and subdivide each block accordingly. The blocks are first 
sorted in order of height. The tallest block will be used as 
the basis block for determining the number of repetitions 
for each floor. This is computed by determining the multi-
pliers for each repeating floor that result in the closest 
match to the basis block height. The basis block and all its 

connected blocks are then resized and subdivided accord-
ing to the model production rule that matches their vertical 
positions most closely. After subdivision, the floor surface 
connectivity is updated, and the appropriate floor produc-
tion rules are applied to each floor of the novel model. All 
blocks that are attached to the basis block are marked, and 
the algorithm continues with the remaining blocks, if any.  
Figures 5 and 1d shows the application of a captured model 
onto a novel model. It can be seen that the floors have been 
repeated multiple times in order to fill the entire height of 
the new building. The application of the model production 
rules occurs in a fraction of a second, for example, during a 
single copy-and-paste operation performed by the user. 

4 INTERACTIVE RENDERING 
Our system uses view-dependent rendering strategies to 
portray the building structures in real-time. The application 
of the production rules generates the geometry of the build-
ing and its facades. In this section, we focus on drawing the 
terminals of the building grammar. Our approach enables 
photo-realistic rendering using color-equalized view-
dependent projective texture mapping and non-
photorealistic rendering using stylized terminals. Both of 
the rendering strategies are also provided with mechanisms 
to replace occluded regions of the captured structure. 

Projective Texture Mapping 
Our system can render a terminal using color-equalized 
view-dependent textures.  A given terminal is seen in mul-
tiple images captured from different distances and angles. 
Shading and lighting effects will slightly change the cap-
tured colors of a terminal from image to image. Hence, the 
rendering method must approximately equalize the colors 
and brightness of the terminals and select the most appro-
priate samples for the terminals as seen from the current 
viewing distance and angle. 
Color equalization is possible by comparing the color data 
from terminals of the same feature group in different loca-
tions on the model. During subdivision, the user indicates 
which terminal types are to be considered diffuse (e.g., 
brick, stone) and marks one or more of the captured images 
as color keys. Then, the program determines the average 
color of each diffuse group from the color key images. For 
each image, the average color of each diffuse group and for 

Figure 5. Model Productions. The model productions from a captured model are applied to a novel model. (a) The captured model. (b) 
The novel model. (c) The novel model automatically subdivided in the style of the captured model. 

a) b) c) 
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each surface normal is computed. By averaging the colors 
for different surface normals, we equalize shading between 
surfaces as well as colors between images. Equalization is 
performed by color channel shifting. The shift amount for 
each surface in each image is computed as the difference 
between the surface average color and key average color.  
To render each terminal, the system blends between the 
most similar sampled views. In particular, the viewpoint of 
each image is transformed into a coordinate space local to 
the terminal and projected onto the unit sphere in this 
space. During each frame of rendering, a lookup function 
determines the three source views closest to the current 
view in distance and in angle [3]. These views are weighted 
according to distance and angle to give smooth transitions 
during interactive rendering (Figures 1d and 7d). 

Stylization 
The partitioning of the building into discrete terminals also 
enables several forms of stylized rendering (e.g., [27, 28, 
29]). Our system produces interactively editable 
illustrations of buildings drawn in pen-and-ink style [30]. 
Prior to rendering, our system uses a semi-automatic 
stylization procedure to pre-render multiple versions of 
each terminal. The cached images span both resolution-
space and tonal space affording near and far views of the 
buildings and providing stylized shading by smoothly 

varying the apparent brightness of each terminal. 
During grammar creation, the system identifies from 
among the multiple views of each terminal a best image 
sample for each and creates a cache of stylized images of all 
terminals. To the best image samples, we apply a filter 
yielding a thresholded binary image with edges detected. 
Foreground pixels are connected to form a geometrical 
mesh rendered in black over a white background. To create 
images at multiple resolutions but at the same tonal level, 
the mesh is drawn using a line width chosen so that the 
average per-unit area intensity matches that of the original 
image. Terminal images are also generated at different 
tonal levels by using random strokes to “wash out” parts of 
the image and produce light/dark regions (Figure 6a-c). 
Since some terminals are marked as being of variable size 
during model subdivision, the corresponding stylized ter-
minals are made repeatable as well via mirroring and 
blending. At runtime, we select for each terminal the best 
tonal level using a diffuse shading model with distance-
based attenuation.  
Figure 6d shows example stylizations for a novel stretched 
floor. Since our terminal rendering is procedural, we can 
generate crisp and varying tone images for all terminals, 
include repeated terminals, and produce a smooth and 
visually-pleasing stylization at any resolution. 

Figure 6. Stylization. Our method supports procedural stylizations of the terminals of the inferred grammar. (a-c) Low-to-high tonal 
views of stylized terminals. (d) Example rendering of a novel floor of a captured building. Light source is in front of façade and near the 
observer; brighter stylizations are used to resemble highlights. 

a) b) c) 

d) 

Figure 7. Occlusion Removal and Color Equalization. The system uses the redundant samples of the terminal types to automatically fill 
occluded surfaces and equalize their color. (a) Two images from a captured model. (b) A view of the recovered model rendered without 
occlusion removal. (c) The view rendered with occlusion removal (occluded elements in the left image in (a) are automatically replaced 
with elements from the right image in (a)). (d) The same view but with colors normalized as well. 

a) b) c) d) 
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Occlusion Removal 
Our method uses the production rules and multiple 
instances of each terminal type to replace parts of the 
building occluded in the original images. Since in practice it 
is hard to obtain views of a large structure, such as a 
building, completely free of occlusions. this provides 
significant additional flexibilty when capturing images. The 
result is a full rendering of the captured building, using 
either projective texture mapping or stylization, despite 
such views not existing in the original data. 
To accomodate occlusion-free rendering, we render an 
occluded terminal using a selected subset of the image 
samples. For a given terminal T, we define a function 
fitness(T, (Vi, Tj)) to determine the similarity between the 
terminal and its possible replacements from view Vi using 
unoccluded terminal Tj of the same feature group. The 
criteria of the function, in order of importance, are: 

• Model Size. T and Tj  should be as close in size as 
possible (determined by their areas of intersection). 

• Corner Orientation. T and Tj  should have the same 
corner orientation to reduce imaging artifacts. 

• Image Size. A larger image footprint of Tj  in Vi is 
preferred to eliminate resampling artifacts. 

• Normal. T and Tj ideally share the same normal in 
order to match lighting conditions (mostly 
applicable for projective texture mapping). 

Starting with the best available Tj, the terminals’ image 
samples are added to a set of potential replacements for T. 
Even if no single member of the feature group is sampled 
from all desired angles, it is often possible to obtain a 
complete rendering when the entire group is considered. 
The quality of the final rendering will depend on the 
similarity between the terminals of the group. 
Figure 7 shows occlusion removal and color equalization 
using projective texture mapping. Figure 7a contains two 
original photographs. Figure 7b contains a naïve recon-
struction where trees and bushes obstructing the building 
are unwillingly textured onto the model surface. In Figure 

7c, the occluding objects have been removed from the sur-
face by using image data from other faces. Figure 7d shows 
the same rendering with colors equalized and it is more 
difficult to tell which faces have been replaced. 

5 IMPLEMENTATION DETAILS 
Our Build-by-Number system is implemented in C++ on a 
3.0 GHz PC equipped with 1GB memory. The user interface 
is implemented in Windows Forms using Managed C++ 
(Figure 8). All graphics functionality is implemented in 
OpenGL. We can render scenes with multiple buildings at 
real-time rendering rates. Model recovery is performed by 
minimizing an error function between the edges of the 
model and user-marked edges as in [5]. We perform the 
minimization using an implementation of a nonlinear least 
squares method obtained from the Numerical Recipes in C 
library [31]. View-dependent texture mapping is imple-
mented using OpenGL's projective texture mapping func-
tionality. Alpha blending is used to weight each texture's 
contribution appropriately. We use shadow mapping to 

Figure 9. Stylized Rendering. Our technique supports procedural stylizations, such as pen-and-ink illustrations. (a) A rendering using 
the same stylization level for all terminals. (b) The same view but lighter-colored stylizations are used to represent brighter highlighted 
areas using a diffuse shading model. The light source is near the front-left of the building. (c) Another example rendering with some land-
scaping. 

a) b) c) 

Figure 8. User Interface. The system allows the user to recon-
struct original buildings from images as well as create novel-
buildings. The figure shows the modeling window, imaging win-
dows, and tool windows containing a scene graph visualization 
as well as model parameters.
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prevent the image from being projected onto back-facing 
and occluded polygons. 

6 RESULTS AND EXAMPLES 
With our system we have created several existing and novel 
buildings based on real-world image data. We acquired 
datasets varying from 4 to 16 images for seven different 
buildings: University, Engineering, Music, Administration, 
Office, Apartment, and Corner. Adding a building to the 
visualization system is a one time processing effort taking 
one to two hours to create the model, mark edge corre-
spondences, subdivide the model, mark occluded faces, 
and stylize the terminals. Once a captured building is avail-
able, a novel model can be created and modified on-the-fly 
using projective texture mapping or stylized rendering. 
Using our interactive system, the user can arrange sets of 
connected building blocks from a pre-defined list of solid 
primitives and start sketching buildings. An entire building 
grammar can be applied instantly to a new set of building 
blocks from a captured building with a single copy-and-
paste operation. Alternatively, the user may want to view a 
captured building, change the size and shape of the original 
building, or add landscaping. Handles are provided on the 
building blocks to facilitate their resizing. In the system of 
this article, the building layouts can be augmented interac-
tively with synthetic ground, texture-mapped sky, trees, 
and bushes using our landscape painter. The ground plane 
is divided into small tiles that can be “painted” with grass 
or cement. Similar to an airbrush, a user can draw a cloud 
of leaf billboard textures to produce a bush or tree cluster. 

Figure 9 shows several pen-and-ink style views rendered 
interactively by our system. The buildings use the grammar 
inferred from the University dataset (see Figure 2a for ex-
ample photographs). Figure 9a and 9b contain close-ups of 
a novel building created with this grammar. In Figure 9a, 
the same stylization level is used for all terminals. In Figure 
9b, shading is produced using both diffuse shading and our 
stylized shading model. Lighter-colored stylizations are 
used to represent brighter areas. The point light source in 
this example is located slightly below and to the right of the 
camera. Figure 9c shows a stylized view of the captured 
University building with bushes added at the base. These 
renderings give a sketched feel to the scene yet maintain 
the style of the original structure, require minimal effort by 
the user, and can be interactively changed and navigated. 
Figure 10 demonstrates the use of projective texture map-
ping to render views of the Administration building. Figure 
10a shows one of the original photographs of the building. 
Figure 10b illustrates the recovered original model free of 
occluded surfaces and with color intensity equalized. Fig-
ure 10c contains a novel building created in the style of the 
original in about 15 minutes, including the landscaping. 
Since the new model is more regular than the original, 
some face production rules were applied individually to 
maintain vertical coherence. Instead of copy-and-paste of 
an entire building grammar, our system also affords copy-
ing grammars to individual floors and faces.  
Figures 11-13 illustrate additional buildings and renderings 
produced by our system. Figure 11a shows a rendering of 
the original Office building and Figures 11b-d demonstrate 
a wide range of modifications to the original building. Fig-

Figure 10. Projective Texture Mapping. Our system can also render using color-equalized view-dependent textures. (a) An original image 
of Administration building. (b) Rendering of original building with occlusions removed and colors equalized. (c) Novel building of the same 
style together with landscaping. 

a) b) c) 

Figure 11. Office Building. Our sys-
tem supports visualizing a wide range 
of changes to existing buildings. For 
example, (a) an original recovered 
model of the Office building, and (b-
d) extensions of the building into a L-
shaped and two T-shaped configura-
tions. 

a) b) 

c) d) 
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ure 12a contains an example image of the Music building. 
Figures 12b and 12c show a projective texture-mapped ren-
dering and a stylized rendering, respectively, from ap-
proximately the same viewpoint. Figures 13a-c show pic-
tures of the original (a) and extended versions (b-c) of the 
Apartment building demonstrating how the building might 
look if additional floors and apartments where added. Fig-
ures 13d-e contain a captured photograph and recon-
structed model of the Corner building. The large number of 
occluder objects very close to the ground floor of the build-
ing required an aggressive replacement using only the few 
unoccluded tiles available. Moreover, this building only has 
two facades; yet using our system we can copy-and-paste 
the grammar onto the obscured faces of the building con-
figuration yielding a complete building. Figures 13f-g show 
the adjacently captured photograph and a virtually-
reconstructed corner of the building.  
Finally, Figure 14 shows using our approach to generate an 
in-photograph visualization of building modifications. Fig-
ure 14a contains an original photograph. In Figure 14b, we 
use our system to build a new model. Since during the ini-
tial model creation process, our system determined the 
pose of the camera via the optimization, we can re-project 
the new model onto one of the original images (Figure 14c) 
and obtain a glimpse of the modified building in place. 
While this use of our system does not work for all photo-
graphs and does not account for large occlusion changes, it 
provides a powerful, yet simple to use tool. 

7 CONCLUSIONS AND FUTURE WORK 
We have presented a method to construct a grammar from 
photographed and subdivided buildings, enabling the 
rapid sketching of novel architectural structures in the style 

of the original. Using several captured models, we show 
that novel buildings can be designed very quickly and ren-
dered with realism or style comparable to the original 
structures. We also demonstrated that the extracted proce-
dural rules can be easily adapted to interactive projective 
texture mapping and to non-photorealistic rendering. Fur-
ther, our occlusion removal and color equalization algo-
rithms make it possible to capture even highly occluded 
buildings in varying lighting conditions. The system does 
not require significant user knowledge and thus is friendly 
to both non-expert and advanced users. 
Our system has several current limitations. We assume the 
building and its terminals (e.g., windows, doors, etc.) to be 
static from image to image and for terminals in the same 
group to be identical. While changes due to diffuse illumi-
nation are compensated for, the latter assumption causes 
some minor artifacts during interactive navigation when 
windows in a façade are replaced with other similar-style 
windows yet with different interior content (e.g., shades, 
curtains, etc.). Furthermore, although we found many 
buildings conform to our assumed partitioning and avail-
able building blocks, it is a not always the case (e.g., the 
roof-line arch of Figure 13d). One option is to add more 
fundamental building blocks and/or to break up a building 
into editable parts conforming to our assumed partitioning. 
Looking forward, there are several avenues of future work. 
First, we are exploring combining our system with an 
automated city modeling system. Second, we are investigat-
ing methods to discover higher-level and more abstract 
patterns and styles within a building. Third, we are seeking 
extensions to our approach for generating entire urban 
spaces in the style of some existing city. We believe inverse 
procedural modeling to be a very powerful paradigm and 

Figure 12. Music Building. (a) An original photograph of Music building. (b) Rendering of original model using projective texture map-
ping. (c) Stylized rendering from similar viewpoint with a light source in front of the near building corner. 

a) c) b) 

Figure 13. Apartment and Corner Buildings. (a-c) Using our system, we 
can visualize increasing floors/apartments to an existing building. (d-g) We 
can also generate a complete building from only a corner building by copy-
ing and pasting the grammars. 

d) 
e) 

g) f) 

b) a) c) 
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look forward to significant improvements in model genera-
tion and visualization in computer graphics. 
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