
Automatic Deep Inference of Procedural Cities
from Global-Scale Spatial Data

XIAOWEI ZHANG, Purdue University
ALY SHEHATA, Purdue University
BEDRICH BENES, Purdue University
DANIEL ALIAGA, Purdue University

a) Satellite Image

b) Segmented Image d) Google Earth Modelc) 3D Urban Procedural Model

Fig. 1. Our method automatically generates a 3D urban procedural model (c) for the urban region from
a segmented and labeled satellite image (a, b). We obtain, as compared to ground truth, a visually and
statistically similar procedural model of a synthetic city that at a distance resembles results obtained by
comprehensive reconstruction processes such as Google Earth (d).

Recent advances in big spatial data acquisition and deep learning allow development of novel algorithms
that were not possible several years ago. We introduce a novel inverse procedural modeling algorithm for
urban areas that addresses the problem of spatial data quality and uncertainty. Our method is fully automatic
and produces a 3D approximation of an urban area given satellite imagery and global-scale data including
road network, population, and coarse elevation data. By analyzing the values and the distribution of urban
data, i.e., distances between parcels, buildings, setbacks, population, and elevation, we construct a procedural
approximation of a city at a large-scale. Our approach has three main components: 1) procedural model
generation to create parcel and building geometries, 2) parcel area estimation that trains a set of neural
networks to provide initial parcel sizes for a segmented satellite image of a city block, and 3) an optional

Authors’ addresses: Xiaowei Zhang, zhan2597@purdue.edu, Purdue University; Aly Shehata, ashehat@purdue.edu, Purdue
University; Bedrich Benes, bbenes@purdue.edu, Purdue University; Daniel Aliaga, aliaga@cs.purdue.edu, Purdue University.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0004-5411/2019/8-ART $15.00
https://doi.org/10.1145/1122445.1122456

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

https://doi.org/10.1145/1122445.1122456

2 X. Zhang, A. Shehata, B. Benes, D. Aliaga

procedural model optimization that can use partial knowledge of overall average building footprint area and
building counts to improve results.

We demonstrate and evaluate our approach on cities around the globe with widely different structure and
automatically yield procedural models with up to 91, 000 buildings, and spanning up to 150 km2. We obtain
both a spatial arrangement of parcels and buildings similar to ground truth and a distribution of building sizes
similar to ground truth; hence yielding a statistically-similar synthetic urban space. We produce procedural
models at multiple scales, and with less than 1% error in parcel and building areas in the best case as compared
to ground truth, and 5.8% error on average for our test cities.

CCS Concepts: •Computingmethodologies→Computer graphics; Imagemanipulation; Shapemod-
eling.

Additional KeyWords and Phrases: procedural modeling, uncertain spatial data, deep learning, urban modeling,
content creation, satellite imagery, 3D modeling

ACM Reference Format:
Xiaowei Zhang, Aly Shehata, Bedrich Benes, and Daniel Aliaga. 2019. Automatic Deep Inference of Procedural
Cities from Global-Scale Spatial Data. J. ACM 37, 4 (August 2019), 28 pages. https://doi.org/10.1145/1122445.
1122456

1 INTRODUCTION
Spatial urban models are of growing importance today for urban and environmental planning,
geographic information systems, urban simulations, and as content for entertainment applications.
An urban model typically consists of a network of road geometry defining a set of city blocks,
buildings, and additional details such as water bodies. However, creating models of realistic urban
spaces is time consuming and labor-intensive. Recent advances in big spatial-data acquisition and
novel algorithms in deep learning have opened new opportunities for solving the problems in
large-scale spatial data and for urban data in particular.
Amongst the multiple approaches to create such 3D urban models, procedural modeling and

urban reconstruction are popular methodologies. Procedural modeling defines a set of rules and
parameters to generate content (e.g., [13, 36]) and it has been successful in application to urban
spaces (e.g., [32, 44, 49, 58]). However, rule creation is an iterative labor-intensive process and
it is not easy to make a procedural model mimic a particular city or style as can be done with
urban reconstruction. Various methods have addressed large-scale image-based and sensor-based
reconstruction (see survey [28]), but urban reconstruction requires a detailed acquisition throughout
the entire urban space from many ground-level, aerial-level, or both vantage points. Further, such
reconstructions must cope with data uncertainty in the form of resolution limitations, labeling
errors, occluded structures, challenging automation, and other inaccuracies.

Our key inspiration is while satellite images cover a large space, they do not contain significant
geometric detail of individual buildings. Nevertheless, we can observe statistical features of a city
(e.g., mean and distribution of parcels and buildings both in terms of location and in terms of
size). These features translate to a distinct appearance of the city at a large scale (e.g., city-specific
combinations of locations of high-rise buildings and of smaller buildings). Thus together with
assumptions about urban structure, we can infer urban geometrical details. In our paper, we propose
a method that uses satellite imagery and global-scale population and elevation data as input to
a deep-learning based automatic method for producing a statistically-similar and synthetic city-
scale 3D urban model as output. The result is the ability to almost instantly create a plausible
synthetic large-scale 3D urban model (Figure 1). Our method is aimed at content creation and urban
planning – it is not suitable for creating an as-accurate-as-possible replica as needed, for example,
in ground-level visual navigation.

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Automatic Deep Inference of Procedural Cities
from Global-Scale Spatial Data 3

Our automatic approach consists of three main components: 1) parcel area estimation, 2) proce-
dural model generation, and 3) an optional procedural model optimization. Rather than limiting
ourselves to a satellite-based photogrammetric reconstruction using the few pixels capturing the
details of each building’s walls and roof, our components infer a procedural model containing
plausible details that are not present in the source imagery and yielding altogether a complete
parameterized model. Our approach is the first to perform such an automatic inverse modeling from
only satellite and global scale data in just a few minutes. Further, our methodology is a starting
point for modeling urban areas worldwide for urban design in city planning and simulation and for
content generation in entertainment applications.
The output of our method is a large spatial procedural city model consisting of 3D buildings

distributed over the target area and registered in place with the road network. We demonstrate
our approach on various cities with widely different structure, in particular Chicago, Dublin,
Hong Kong, Jacksonville, New Orleans, Paris, San Francisco, and Toulouse, automatically yielding
procedural models with up to 91, 000 buildings, and spanning up to 150 km2. We performed both
quantitative and qualitative comparisons. Overall, our results include 3D urban procedural models
at multiple scales having less than one percent error in the best case. Our quantitative evaluation
shows that we obtain, as compared to ground truth, a statistically-similar city in terms of the
mean building count and building area and their distribution. In addition, we show how well our
method compensates for segmentation inaccuracies and occlusions yielding a better city model
than directly using the segmentation data for constructing building models. Moreover, our optional
optimization component further improves parcels, building outlines, and building geometries in the
urban area (e.g., from 2.3× to 30× improvement). By means of a user study, we show a qualitative
similarity as well as comparisons between our 3D output of different areas to the corresponding
areas in Google Earth. In addition, we show preliminary results of using our approach for urban
planning and modeling and for content generation.

Our main contributions include:

• An automatic approach to generate a 3D urban procedural model, based on a segmented and
labeled satellite image, that is statistically and visually similar to the target urban area.

• A novel inverse modeling method to decompose a city into city blocks where for each city
block we estimate procedural model parameters using classification and parameter estimation
deep neural networks. This process is guided by an a priori analysis of typical parcels and
building sizes and followed by an optional optimization stage to improve the similarity
between the synthetic model and the segmented and labeled satellite image.

• A novel algorithm to complete uncertain data by generating parcels, building outlines, and
building geometry. Our method uses the output of the aforementioned procedural model
parameter estimation process and an analysis between population, elevation, and building
size and spacing to determine building types and geometry.

2 RELATEDWORK
The three main areas related to our work include 1) urban reconstruction and rendering, 2) (forward)
procedural modeling, and 3) inverse procedural modeling.

Urban Reconstruction focuses on creating big urban spatial datasets from ground level, aerial,
and satellite sensors. Most 3D urban reconstruction efforts use ground-level or aerial data. The
survey by Musialski et al. [28] provides a comprehensive summary. Schoeps et al. [40] provide a
recent benchmark of multi-view stereo results in general. Vanegas et al. [47] automatically created
L-systems that reconstruct the building envelopes of 3D Manhattan buildings observed in a pair
of aerial images. Shan et al. [41] produce urban reconstructions using aerial and ground-level

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

4 X. Zhang, A. Shehata, B. Benes, D. Aliaga

Pipeline

Parcel
Generator

Parcel Area Estimation

Parcels…

Bldgs…

Data
Creator

PM Generation

NNs Outline/
Height

OSMS&L Satellite
Image

Block Extractor

Type Geometry

Building Generator

Urban
3D PM
Model

Training

PopulationElevation

PM Optimization
(optional)

Parameter Changer Error Calculator

Fig. 2. Our approach consists of a procedural model generation component, a parcel area estimation compo-
nent that is setup during offline processing, and an optional procedural model optimization component. The
block extractor receives as input the segmented and labeled satellite image (S&L), while the Building Generator
receives the parcel output as well as information about the block’s estimated elevation and population.

images. Hou et al. [19] exploit planarity to obtain multi-view depth maps. Duan and Lafarge [12]
focus on stereo reconstruction from calibrated wide-baseline satellite images. They obtained 2.5D
reconstructions for building tops that can be observed and corresponded in both images. This
is particularly challenging for smaller buildings and residential areas. Also, occlusion (e.g., by
vegetation or neighboring buildings) might severely hinder reconstruction ability.

Another group of methods exploit LIDAR data as well as aerial imagery. For example, Yi et al. [59]
and Poullis and You [35] produce models from LIDAR data. Bonczak et al. [7] uses both LIDAR and
city administrative data to obtain an urban model. Park et al. [33] and Zhang et al. [61] propose
learning-based point-cloud classification approaches including the estimation of building height
and mass. Zhou and Neumann [62] model rooftops and building walls using both LIDAR and aerial
imagery. Some researches focus on tool building, such as Verdie et al. [52] that present methods to
generate various level-of-details starting with a mesh or output of an urban reconstruction method.
Another example is Agarwal et al. [1] that provides tools to improve efficiency and accuracy of
interpolating LIDAR data. However, these methods require hard to obtain per-city LIDAR datasets
and further, even if obtained, might lack information about significant parts of the city due to
occlusion or lack of sampling.

In contrast to aerial or ground-level data, satellite provides much more coverage but with many
other challenges. While great progress has been made, as seen in the work of Facciolo et al. [14] who
won the 2016 IARPA Multiview Stereo 3D Mapping Challenge to produce 3D models from satellite
imagery or Rupnik et al. [38] which improves upon the Facciolo et al work, there is a significant
gap even with the latest satellite resolutions – moreover, because of distance and occlusion usually
only the roof of urban structures is generally observed.
Even once a model is produced significant challenges exist with regards to organizing the

information for rendering. For example, Robles-Ortega et al. [37] focus on occlusion-culling in
order to provide fast rendering for web-services of large urban models. Ole Vollmer et al. [53]
present aggregation techniques to support on-demand level-of-detail generation. While these works
produce impressive results they do not center on the creation of the urban model itself.

Procedural Modeling generates 3D models by using a set of rules, atomic elements, and
parameter values. An example are L-systems that have been successfully applied to vegetation [36],

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

Automatic Deep Inference of Procedural Cities
from Global-Scale Spatial Data 5

noise-based methods used for textures and clouds [13], and procedural models in virtual worlds [44].
Urban procedural modeling can be dated back to the seminal work of Parish and Müller [32]. While
this paper focused on whole city models, later works have focused on particular elements such as
buildings [26, 58], façades [5, 27, 42, 60], roads [9, 15], and layouts [24]. Cities are living structures
and the complicated relationship of their habitants has been captured by various works including
Gwenola and Donikan [17] who studied animation in cities and various works that attempted to
simulate temporal changes of city geometry from underlying behavioral models [16, 34, 48, 57].
We refer the reader to surveys of urban procedural modeling (e.g., [49] and [2]). In general, the
aforementioned methods require manual labor to design the procedural models.

Inverse Procedural Modeling attempts to find procedural representations of input models
and it has been applied in various fields, such as vegetation [56], 2D road geometry [3], 2D vector
structures [55], and 3D unstructured data [6]. One family of inverse procedural modeling approaches
takes advantage of stochastic optimizations such as Metropolis optimization of L-system usage [46]
and Markov Chain Monte Carlo optimization to find urban structures with desired properties [50].
Recently, Demir et al. [10, 11] used similarities in architecturals models to inversely generate
procedural models. Nishida et al. [30] used deep learning to automatically infer urban procedural
models corresponding to user sketches. Kelly et al. [22] described a method to fuse street-level
imagery, GIS footprints, and a coarse 3D mesh to produce 3D urban building mass and facade
models. We highlight that the work of [3] analyzes the distribution of road intersections and
road geometry to create a procedural road geometry that is statistically-similar to the source data.
However, there is no treatment of parcels or buildings in their work. In general, while statistical
approximations have been done, to our knowledge none pursued inverse building modeling at the
scale of satellite imagery to produce large urban spatial datasets.

3 OVERVIEW
Data Sources. Our approach takes as input various geospatial products, summarized in Table 1.

First, our method uses geo-registered segmented and labeled satellite images. In general, we assume
the labels of building and non-building. If possible we can use road labels as well in the satellite
images. At the global-scale, building layout information or city-level GIS data is not available (i.e., it
is available for certain large cities but not for all). Many satellite image segmentation methods exist,
such as [20, 31, 43, 54] as well as commercial solutions such as eCognition [4]. These methods can,
with a varying degree of accuracy, recognize and extract features from satellite images of anywhere
in the world. However, these approaches do not produce 3D urban geometry, but rather produce a
best-guess classification for each pixel in the image. For our method, we assume as input satellite
images that have been segmented and labeled using an approach similar to the ones mentioned
above. Second, we also use Open Street Maps (OSM) [18] to obtain roads, unless segmentation
provides road labels. Third, our method also uses publicly-available geo-registered global height
data [29] and, fourth, our system exploits publicly-available global population data [8], which we
already have for the globe. These datasets are very coarse: for example, the height data is a sample
every 30 meters with a vertical accuracy of about 5 meters.

Table 1. Summary of Data Sources.

Data Name Data Source Resolution Scale
Road Vector Open Street Maps [18] – Most cities
Elevation Data JAXA [29] 30 meters Global
Population Data LandScan [8] 1 km Global
Satellite Data – 1 m Some cities

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

6 X. Zhang, A. Shehata, B. Benes, D. Aliaga

Processing. During automated processing, our approach (Figure 2) automatically produces a 3D
urban procedural model. As a preprocess, the parcel area estimation component uses an analysis of
the relationship between parcel sizes and building sizes in two large cities to train a classification
network and a set of parcel area estimation networks that will be used for all our test cities. These
deep neural networks are trained to take in a segmented and labeled satellite image of a city
block and produce an estimated parcel area which will be used to help with building creation. We
highlight that parcel boundaries are not directly visible in a satellite image. Hence, the use of this
trained network, instead of directly using the segmented images, is to obtain the average parcel
area despite the presence of noise, classification errors, and occlusion in the segmented imagery.

At runtime, the procedural generation component produces a model of the parcels and buildings
for each city block. Individual city blocks are extracted from the segmented and labeled imagery.
Then, by using estimated parcel sizes (by the aforementioned parcel estimation component) and
the geo-registered global elevation and population datasets, building generation computes for each
parcel the building type, building height, and setback values, and subsequently the 3D building
geometry. Ultimately, a model of the entire urban area is produced and desired urban morphology
values can be calculated.

As a third (optional) step at runtime, the procedural optimization component improves the similar-
ity between the synthetic city and the target city in the satellite images. This component iteratively
compares synthetically generated average building footprint areas with the actual average building
footprint areas for at least a fraction of the city. The optimizer alters a set of calibration parameters
until convergence. Our experiments show that by knowing the average building footprint area of
at least a small random fraction of the urban region (e.g., 5%) the synthetic model is on average 4x
more similar to the actual city in terms of building area and building counts, resulting in a better
3D urban procedural model output.

Variables. Our subsequently defined approach makes use of the following variables (Table 2).

Table 2. Variables and their meanings.

variable meaning
B a segmented and labeled satellite image
bi a city block image of B
A the parcel area estimator
ai the average parcel area size for each parcel of a block bi estimated by A
S a synthetic image
si a synthetic block image of S
PG the parcel generator
pi j a synthetic parcel j in a block si
qi j the number of parcels produced for si
BG the building generator
ti j the building type of pi j
hi j the building height of pi j
St,i j the triple of setback ranges corresponding to of ti j
mi j the building geometry model of pi j

4 PARCEL AREA ESTIMATION
The goal of this component is to set up parcel area estimation function A which estimates the
average parcel area size for each parcel implied by a segmented and labeled satellite image of a

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

Automatic Deep Inference of Procedural Cities
from Global-Scale Spatial Data 7

S&L Satellite
Image 𝐵𝐵

Parcel Area
Estimation A

𝑏𝑏𝑖𝑖

𝑎𝑎𝑖𝑖

. . .

𝑑𝑑

Parcel NNsClassify NN

Training

Satellite Image

Fig. 3. Parcel Area Estimation. During preprocessing, synthetic parcel training dataset is created and used
to train a parcel classification neural network (NN) and several parcel area estimation neural networks. At
runtime, the parcel area estimation functionA receives city block satellite images bi and estimates the average
parcel area ai .

city block (Figure 3). There is currently no existing global parcel data-set or a standard means of
obtaining parcel information for all urban areas. Further, while parcel data for well-known mega-
cities may be available through public city sources, even then it may not match the existing building
layout. We therefore use this parcel area estimation component to approximate the parcel layout
of a block, without relying on obtaining parcel data from the city. However, using satellite image
segmentation and labeling into building, non-building, and road is a challenging task. Even the
best methods result in some amount of mis-classification and occlusion. Also, frequently portions
of segmented parcels and buildings are covered by vegetation or occluded by other structures.
Moreover, the parcel boundaries are not actually visible nor labeled. Regardless, we seek to produce
a procedural approximation of an urban area that has similar parcels and buildings. To accomplish
A, we use deep neural networks that infer the parcel area based on the size and distribution of
(noisy) labeled building pixels.

4.1 Canonical Representation
We use a canonical representation of city blocks which facilities data creation and training because
the neural network will classify and estimate parameters for a fixed-resolution labeled input
image. Since city blocks in the satellite-image can be of many different shapes and sizes, we
compute a tightly fitted oriented bounding box (OBB) for each city block. Then, we scale and
rotate the longest axis of the OBB to fit within a predetermined image resolution (e.g., that used for
our neural-network based classification and parameter estimation) that allows arbitrarily shaped
city blocks to be processed. After parcel area classification and estimation have been done, the
synthetically-created parcel is unrotated and unscaled.

Further, we make two simplifying assumptions about parcels: i) we assume the parcels within a
single city block are of about the same area; and ii) we assume each parcel in the city block has zero
or one building with an outline receded from the parcel boundary by three potentially different
setback values: front, rear, and side. An analysis of Chicago and San Francisco tells us the single
building per parcel assumption is true for 90.65% and 93%, or 91.8% of the parcels on average. The
front setback is used when the edge of the canonical parcel touches a road. The rear setback is
opposite to the front setback and a side setback is used otherwise.

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

8 X. Zhang, A. Shehata, B. Benes, D. Aliaga

4.2 Training Data Creation
We use our canonical representation and an analysis of two real-world cities (i.e., Chicago and
San Francisco) to determine the typical parcel size range and relationship of parcel and building
sizes in order to generate synthetic training data. Parcel and building outline data is obtained from
OSM and we compute histograms of city parcel areas and of front, side, and rear setback values
(see Figure 22 and Figure 23 in Appendix Section B). For each of the setback types, we compute
the average value relative to parcel area. While optimized building setback ranges are used during
model generation and optimization, training data is created using the aforementioned fixed relative
setback values. To create the block images d for training, we randomly sample parcel area sizes
within the observed parcel size range and use the fixed triple of setback values to generate synthetic
images.

4.3 Training
We seek to obtain a robust parcel area estimator such that area(d) = A(d). Parcel areas vary
significantly (see Figure 22) which makes it challenging for a single neural network to predict the
parcel areas for any city block image. Instead, we perform a non-uniform quantization of the range
of parcel sizes. We sort the analyzed parcel areas by size, divide the entire parcel area range into
multiple bins, and train one network per bin. To define the bins, we find bin boundaries so that
each bin has about the same number of parcels in the analysis cities. However, having multiple
bins requires both a classifier neural network (to determine to which bin does a city block belong)
and a parameter estimation neural network (to determine the actual parcel areas). As we show
in Section 7, the accuracy resulting from using a different number of bins varies notably and we
choose the best answer (i.e., three bins) for all results.
We use convolutional neural networks (CNN) as the frameworks for our classifier and parcel

area estimators. For the classifier CNN model, without loss of generality, we use the BVLC AlexNet
architecture [23] except for changing the number of outputs of last fully-connected layer to be the
number of our estimation neural networks and initialize the network with a pre-trained network
obtained from the Caffe Model Zoo [21]. Those initial weights are obtained by training with over a
million training images so as to learn to discriminate features [39]. We fine-tune the network using
60, 000 training images to achieve high accuracy after 10, 000 iterations and mostly converging
after 2, 000 iterations. For each parcel area estimation CNN, we use a modified AlexNet architecture
in order to fit our regression problem and use 120, 000 images for training. We modified the number
of outputs in the last fully-connected layer of AlexNet, and also change the loss function to an
Euclidean loss function. Training occurs over 100,000 iterations and is mostly converged after
40, 000. We found this architecture to yield overall an average error of only 24m2 in estimating
parcel areas (parcel areas range from about 20 to 20, 000m2). Note that the same trained set of
networks is used for all cities (and results) in this paper.

5 PROCEDURAL GENERATION
Given a target area, this component successively generates a model of the parcels and buildings for
each city block. Once all blocks are processed, a full 3D urban procedural model is output.

5.1 Urban Model
The urban procedural model is rendered in several layers. First, our method partitions a segmented
and labeled satellite image B of an urban area into a set of city block images bi . Given B as input,
this decomposition is achieved by converting the also geo-registered OSM road vectors into a
graph G and then searching for all simple loops in G. Dead-end roads are ignored in our current

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

Automatic Deep Inference of Procedural Cities
from Global-Scale Spatial Data 9

implementation. Each detected loop geometry дi segments a city block satellite image bi out of
B and is assumed to have a set of parcels, each with egress (i.e., an urban modeling and planning
term that implies the parcel has street access by at least one parcel edge touching a surrounding
road). We also render as a ground-plane the original (unsegmented) satellite image that contains
the ground cover such as water bodies, grass, and dirt.
Then, we use parameterized rules to subdivide city blocks into one of two parcel styles (Sec-

tion 5.2). After, we use parameterized rules to create buildings (Section 5.3). Moreover, we can
optionally render additional hypothetical details such as window frames, trees, lamp posts, and
grass. See an example in Appendix Section C.

𝑝𝑝𝑖𝑖𝑖𝑖

𝑎𝑎𝑖𝑖

Type 1 Style

Type 2 Style

𝑠𝑠1 𝑠𝑠2 𝑠𝑠4

𝑏𝑏1 𝑏𝑏2 𝑏𝑏3 𝑏𝑏4

𝑝𝑝1,1 𝑝𝑝1,2

𝑏𝑏𝑖𝑖

𝑠𝑠3

𝑏𝑏1

𝑏𝑏2

𝑏𝑏3 𝑏𝑏4

𝑎𝑎𝑖𝑖

𝑏𝑏𝑖𝑖

Type 1 Style

Type 2 Style
𝑝𝑝𝑖𝑖𝑖𝑖

𝑠𝑠1
𝑝𝑝1,1 𝑝𝑝1,2 𝑠𝑠2

𝑠𝑠4𝑠𝑠3

Fig. 4. Parcel Generation. Our method takes as input a city block satellite image bi as well as the estimated
parcel area ai in said image and generates a parcel subdivision in one of two styles. Then, the parcels pi j are
output to form the synthetic blocks si .

5.2 Parcel Generation
For a synthetic city block image si , our procedural parcel generator PG generates parcels pi j (i.e.,
synthetic parcel j in city block i). The set of si ’s form a synthetic image S . Given an extracted
city block satellite image bi , we estimate the average parcel area size ai (e.g., in square meters)
for each parcel in this block by using our neural network parcel area estimator A (i.e., ai = A(bi)).
Afterwards, we use a recursive subdivision algorithm to generate synthetic parcels (Figure 4). Our
parcel generation method is inspired by [51] who proposed a generalized block subdivision method,
following urban design guidelines, able to reproduce the parcel shapes and city blocks observed
in many cities. Based on that work, we support two parcel subdivision types shown in Figure 16.
Type 1 subdivision produces parcels whose front-side is along a street and rear-side is adjacent to
another parcel of the same type, and type 2 subdivision creates city blocks that can have interior
empty space (i.e., parcels with no buildings).
The parcel generator PG subdivides the block geometry дi by recursively splitting a tightly fit

oriented bounding box (OBB) of the current block partition until we obtain parcels no larger than ai .
If the generator enforces all parcels to have egress, it results in the first of the aforementioned
subdivision types. Otherwise, this approach produces the second of the aforementioned types
which has parcels in the interior of the city block. But, in all cases buildings are only placed in
parcels having egress. Each recursive iteration uses either the longest or the shortest axis of the
OBB to split the surrounding block geometry (e.g., initially дi).

Altogether our procedural parcel generator performs the task

si = {pi1,pi2, ...piqi } = PG (дi ,A(bi)) ,

where qi is the number of parcels produced for si .

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

10 X. Zhang, A. Shehata, B. Benes, D. Aliaga

Figure: Given a parcel and a building type, the
Building Generator creates building geometry by
selecting setback values (SBFront, SBRear, and SBSide)
within a range of values determined by building type.

In caption: s^f_i E [S^f_{min,i}, S^f_{max,i}].
Etc.

𝑆𝑆𝑖𝑖

𝑃𝑃𝑖𝑖,𝑗𝑗

𝑆𝑆𝑖𝑖𝑆𝑆

𝑆𝑆𝑖𝑖𝑆𝑆

𝑆𝑆𝑖𝑖 𝐹𝐹𝑆𝑆𝑖𝑖 𝑅𝑅

Building Geometry

𝑚𝑚𝑖𝑖𝑗𝑗

𝐵𝐵𝐺𝐺

𝑡𝑡𝑖𝑖𝑗𝑗 ℎ𝑖𝑖𝑗𝑗

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑅𝑅𝑅𝑅𝑃𝑃𝑅𝑅

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

Fig. 5. Building Generation. Our approach receives a target parcel pi j , computes the building type ti j and
building height hi j from global elevation and population data, uses setbacks to define the building outline,
and generates a building geometrymi j . The setbacks SFi , S

S
i , S

R
i are sampled from per-building-type setback

ranges.

5.3 Building Generation
Our building generator BG defines one or none 3D building geometries for each parcel pi j inside
a synthetic city block si . To create building geometry modelmi j , the generator uses both global-
scale population and global-scale elevation data to compute the building type within each parcel.
It also uses a per-building-type triple of typical setback ranges (front, rear, and side setback
ranges) (Figure 5). Then, the elevation data, building type, and setback ranges are used to create an
appropriately sized procedural building model.
To estimate building height hi j for parcel pi j , our technique uses the elevation data E that

represents the sum of terrain height and man-made structures. To compute elevation ei j for
building height estimation, we let ei j = E(pi j) − Emin where the first term is the global elevation
data for the given parcel and Emin is the minimum elevation within the vicinity of the urban area
(i.e., the terrain height). Next, ei j is rescaled to the range [0,Hmax]. The value Hmax is, by default,
the maximum building height of a typical city, or is a single number provided as input for a target
urban area. Thus, the final building height estimation is hi j = (E(pi j) − Emin)Hmax , which provides
a good estimation when there are no significant terrain elevation changes throughout the input
area.
Our method uses six procedural building types based on the Local Climate Zones (LCZ) classi-

fication by [45]. LCZ defines a culturally independent global-scale classification for urban areas.
LCZ is being increasingly adopted because it captures the urban fabric in a much more precise way
than prior land-use/land-cover classifications. In particular, it defines all urban areas to belong to
one of ten possible zones (in total, LCZ defines 17 types including non-urban areas). The zones
vary by the density of buildings as well as their heights. We use population data to estimate the
density of a parcel. Thus, our six types are all combinations of low/mid/high rise with dense/sparse,
i.e., : 1) Low Rise Sparse, 2) Low Rise Dense, 3) Mid Rise Sparse, 4) Mid Rise Dense, 5) High Rise
Sparse, and 6) High Rise Dense. Further, we define a typical front, rear, and side setback range for
each building type; e.g., [SFmin,k , S

F
max,k], [S

R
min,k , S

R
max,k], [S

S
min,k , S

S
max,k] for k ∈ [1, 6].

To determine the building type ti j for a parcel, we split the building height range into three
percentiles corresponding to: Low Rise, Mid Rise, and High Rise Buildings. Using the population
data of a parcel P(pi j), we further split each percentile into two percentiles to define sparse vs.
dense areas. The result is the classification scheme for the listed six building types.

Finally, we compute an appropriate building geometry modelmi j based on the building’s height
and the setbacks associated with the building’s type. Succinctly, our procedural building generator

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

Automatic Deep Inference of Procedural Cities
from Global-Scale Spatial Data 11

performs the task

mi j = BG (pi j ,hi j , ti j , St,i j),

where St,i j is the triple of setback ranges corresponding to each of the defined building types ti j .

6 PROCEDURAL MODEL OPTIMIZATION
The optional optimization component improves the similarity between a synthetic city and the
target city in the satellite images. The component iteratively compares synthetically generated
average building footprint areas with the actual average building footprint areas for at least a
fraction of the city. The optimizer alters a set of calibration parameters until convergence.

6.1 Calibration Parameters
We improve similarity between the synthetic and the actual city by altering the parcel area ranges
used during parcel area estimation and the per-building-type setback ranges. Parcel area estimation
(Section 4) partitions the possible parcel areas into multiple bins; then, parcel area estimation
returns a number between zero and one which is mapped to the parcel bin range (e.g., [20, 300]
square meters for the first bin). If the number of buildings in si is different from that in bi , then
the city block deviates from the current assumed ratio between parcel size and building size. One
way to improve is to generate smaller/larger parcels and thus alter the number of buildings. We
accomplish this by shifting the bin boundary between adjacent parcel area bins. For example,
given three parcel area bins we can shift the boundary between the first two and also the last two
parcel bins. In general, for Z parcel area bins, this implies Z − 1 calibrated boundaries; i.e., αu for
u ∈ [1,Z − 1]. To alter the size of the buildings, we scale the setback ranges of all types by β so
as to be larger or smaller in order to change building outlines and subsequently the 3D building
geometry.
In addition, the parameters can be defined at a global scale (e.g., one set for the entire city) or

at various local scales (e.g., different sets for different parts of the city). The former provides an
intuitive global optimization while the latter enables improved local adaptability at the cost of
more optimization parameters. To this end, we compute a quadtree subdivision of the urban area.
The root node represents the top-level aggregation of the urban area and subsequent quad tree
levels are progressively tighter aggregations. This flexibility enables us to tradeoff between global
adaptation and more costly local adaptation. As is expected, our system performs better at larger
levels of aggregation than at smaller ones – more details in the results section.

Hence altogether, the calibration parameters are the set

cmn = {α1,α2, ...αZ−1, β},

wherem represents the level in the octree (with c0 being the set for the root node) and n = {1, 2, 3, 4}
is the quadtree node child index. A global optimization optimizes the set c0. A local adaptation at
the first level of a quadtree subdivision of the urban area optimizes c11, c12, c13, and c14, and so forth.

6.2 Optimization Loop
To perform an optimization, we select the urban area and the quadtree level at which to perform
aggregation to compute calibration parameters. Then, we assume to have the overall average
building footprint area and estimated building count for each of the quadtree areas (i.e., two scalar
values for global optimization, eight scalars for optimizing at the first quadtree subdivision level).
Our optimization engine uses Powell’s method to minimize a weighted sum of the similarity

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

12 X. Zhang, A. Shehata, B. Benes, D. Aliaga

between number of buildings and building outline area. In particular,

en =
|count(si j) − count(bi j)|

count(bi j)
(1)

ea =
|area(si j) − area(bi j)|

area(bi j)
,

wherewn is the weight for the number of buildings error en andwa is the weight for the building
area error ea . The functions count() and area() compute the count and area of buildings, respectively,
in the provided city block.

Thus, our overall optimization task is

arдmincmn (wnen +waea) , (2)

for a desired quadtree aggregation level m (and for all valid values for n). Note that each time
calibration parameters are changed, the synthetic city block si must be recomputed (i.e., starting
with bj and the current calibration parameters cmn , new parcels pi j and buildingsmi j are computed).
The optimized parameters are then used during parcel area estimation of the entire urban area.
The improvements yielded by this component are shown in the results section.

7 IMPLEMENTATION AND RESULTS
Our system is implemented in C++ while using several open source libraries including Boost,
CGAL, Qt, OpenCV, and OpenGL. The majority of our results are generated on a desktop computer
with Intel i7-8700 clocked at 3.20 Ghz, 32 GB of DDR4 RAM, and NVIDIA GeForce 1080. Our neural
network training is performed on a Intel 2.4GHz XEON computer with several NVIDIA GTX TITAN
XP boards each with 12GB of DDR4 RAM.

The overall performance time is divided into generation, offline training, and optimization time.
For all our tests, procedural model generation takes about 1.5 to 2 minutes to automatically generate
a 3D urban model from the satellite imagery spanning approximately 64 km2. The training time
for our parcel area estimation networks is about 3-5 hours for the classifier network and 12-15
hours for each parcel area bin network. The training only needs to be done once for all cities. Our
optional procedural model optimization takes 1-2 hours to do a global optimization for 64 km2 and
5-12 minutes to do one local optimization covering 4 km2.
Our test cities include Chicago, Dublin, Hong Kong, Jacksonville, New Orleans, Paris, San

Francisco, and Toulouse. For each, we pick a representative 8x8 km2 area. The number of buildings
in each urban area varies from 10,415 buildings in Jacksonville dataset to 91,000 buildings in Dublin
dataset. We obtain the height of the tallest building in each from the city website, and the value for
Hmax in the cities in the order listed is {442, 67, 484, 189, 212, 231, 326, 67} meters, respectively.

7.1 Visual Results
Figures 6, 20 and 21 qualitatively show our results. First, Figure 6 starts with a satellite image, its
segmented and labeled version, and OSM road vectors, and then our method identifies each city
block. Procedural model generation starts with the initial parcel area estimate provided by the
neural networks and iteratively optimizes the solution by using global elevation, global population
data, and a feedback loop. The final procedural model is output and can be visually compared to
Google Earth.
Second, for our multiple test cities Figures 20 and 21 compares various views of our 3D urban

model to corresponding views obtained from Google Earth. Notice the qualitative similarity. In
addition, our accompanying video shows several virtual flyovers above the synthetic city models.

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

Automatic Deep Inference of Procedural Cities
from Global-Scale Spatial Data 13

Satellite Image

Elevation Data Population DataOSM Road

Synthetic Model
Top View

3D Proc. Model – Bird’s Eye View

S&L Satellite Image

Fig. 6. Visual Pipeline. Our method uses a satellite image and its segmented version, together with OSM,
elevation and population data, to create a 3D procedural model.

7.2 Numerical Results

0

10

20

30

40

50

0 2 4 6 8 10 12 14 16 18 20 22 24

A
ve

ra
ge

 B
ui

ld
in

g
Er

ro
r (

%
)

Iteration Number

Chicago San Francisco
New Orleans Jacksonville
Dublin Hong Kong
Paris Toulouse

Chicago San Francisco
New
Orleans Jacksonville Dublin

Hong
Kong Paris Toulouse

1.79653 8.01184 0.345024 0.121203 12.12031 1.2 13.61 4.93199 4.57758

Final Average Error (%) – To be added in caption

Fig. 7. Global Optimization. The progressive re-
duction of our error function during optimization
of the calibration parameters c0, resulting in im-
proved parcels and buildings.

0

5

10

15

20

1 2.5 5 7.5 10 15 20 100A
ve

ra
ge

 B
ui

ld
in

g
Er

ro
r (

%
)

Fraction of the Sampled Buildings(%)

Chicago Paris

Fig. 8. Partial Knowledge of Average Building
Footprint Area. The graph shows how knowing
the overall average building area for a random
subset of the buildings affects the final building
error after optimization. For Paris and Chicago,
between 5 and 10% is a good trade off point.

Figures 7 and 8, and 9 show numerically the improvement with various forms of our model
optimization. Figure 7 shows our cities during optimization at the global aggregation level (i.e.,
optimizing calibration parameters co). The vertical axis is the average of relative building-area
difference and relative building-count difference over the entire region (called average building
error). The error reduction is also summarized in Table 3.
If the overall average building footprint area and building count is not available for the entire

region, then it is sufficient to have the area/count for a small fraction of the targeted area. For
example, Figure 8 explores the benefit of knowing the overall footprint area (and estimated count)
of different percentages of the urban area; often just a few percent (e.g., 5-10%) is enough to obtain
considerable benefit from this optimization component and almost identical to knowing the overall
averages.

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

14 X. Zhang, A. Shehata, B. Benes, D. Aliaga

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

Chicago New Orleans San Francisco Jacksonville

Globally Optimized

Locally Optimized

a) b)

Fig. 9. Local Optimization. Using a subset of our cities, we show how a local optimization (e.g., calibration
parameters c2k) further reduces our error function. a-left) Depicts the building error difference as a heatmap
over the urban area (Chicago) using global optimization. a-right) Depicts the corresponding building error
differences but using local optimization. b) A bar graph comparing building errors resulting from global vs.
local optimization for a subset of cities.

Table 3. Global Optimization. Initial vs Optimized Average Building Error.

City Initial Avg Error Optimized Avg Error
(25 iterations)

Chicago 13.1 1.8
San Francisco 34.3 8.0
New Orleans 13.5 0.3
Jacksonville 41.9 12.1
Dublin 36.9 1.2
Hong Kong 32.9 13.61
Paris 26.7 4.9
Toulouse 10.9 4.6
AVERAGE 26.3 5.8

Figure 9 shows the error resulting from a local optimization (i.e., two levels down in the quadtree,
so the 16 c2∗ calibration parameters are computed). The color-coded heatmap on the left side of
Figure 9a shows the average building error for each of the 16 tiles over Chicago resulting from
using a global optimization. The heatmap on the right side of Figure 9a shows the corresponding
building errors but after using a local optimization. In this case, the local optimization achieves
a significant reduction overall with the total average error (i.e., the average of all 16 tiles) going
from 20.12% to 9.75%. However, some tiles did in fact have an increase in error due to the local
optimization converging to a wrong local minimum. In Figure 9b, we see the total average error
using locally optimized versus a globally optimized calibration parameters for several of our test
cities. While local optimization requires some more calibration data, it allows our model to be more
similar to the actual city layout not only from a distance, but also from a closer perspective.

7.3 Statistical Comparisons
We compare the statistical distribution of generated building area and a spatially-varying mean
of generated building count and building area to ground truth. Figure 10 and Table 4 compare
distributions of building area using Kolmogorov-Smirnov Testing. Table 5 performs a t-test to show
similarity of values over space.

Figure 10 depicts the cumulative distribution functions (CDFs) for the synthetic models and for
the ground truth of our cities – notice their similarity. The CDFs are computed from a histogram of

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

Automatic Deep Inference of Procedural Cities
from Global-Scale Spatial Data 15

Chicago Building Area
Distribution (CDF)

Jacksonville Building Area
Distribution (CDF)

New Orleans Building Area
Distribution (CDF)

San Francisco Building Area
Distribution (CDF)

Dublin Building Area Distribution
(CDF)

Hong Kong Building Area
Distribution (CDF)

Paris Building Area Distribution
(CDF)

Toulouse Building Area Distribution
(CDF)

0 500 1000

Building Area

0

0.5

1

Buildings - Generated

Buildings - Truth

0 500 1000

Building Area

0

0.5

1

Buildings - Generated

Buildings - Truth

0 500 1000

Building Area

0

0.5

1

Buildings - Generated

Buildings - Truth

0 500 1000

Building Area

0

0.5

1

Buildings - Generated

Buildings - Truth

Fig. 10. Cumulative Distribution Function (CDF) Comparison. Observe the similarity between the CDF for
the synthetic models and for the ground truth of our cities.

Table 4. Building area distribution similarity test shows that
with significance level α = 0.05 the distributions are similar
if we use a building area granularity of at least 14 to 26m2.
At significance level α = 0.01 the granularity reduces to 10
to 22m2. Dim is the square root of area and represents the
one-dimensional granularity.

α = 0.05 α = 0.01
City Area [m2] Dim [m] Area [m2] Dim [m]
Chicago 14.2 3.8 11.1 3.3
Jacksonville 14.3 3.8 10.2 3.2
New Orleans 31.1 5.6 22.4 4.7
San Francisco 26.6 5.2 17.5 4.2
Dublin 26.3 4.1 19.1 4.3
Hong Kong 19.5 4.4 15.3 4.0
Paris 19.3 4.4 14.2 3.76
Toulouse 21.4 4.6 15.2 3.9
AVERAGE 21.6 4.5 15.6 3.9

Table 5. Building Number and Area Simi-
larity Test.We show that with significance
level α = 0.01 the number of buildings
and building area errors over different re-
gions of our cities are not statistically dif-
ferent than ground truth. Note: only San
Francisco building area does not pass the
test at this significance level.

City Num P-Value Area P-Value
Chicago 0.85 0.06
Jacksonville 0.78 0.03
New Orleans 0.90 0.01
San Francisco 0.05 0.007
Dublin 0.76 N/A
Hong Kong 0.10 N/A
Paris 0.06 N/A
Toulouse 0.19 N/A
AVERAGE 0.46 N/A

the building areas. The number of histogram bins affects the granularity with which buildings of
different sizes are considered equal. Thus, we seek to have CDFs considered similar yet produced
from using as many bins as possible.

Table 4 quantitatively measures distribution similarity. For example, at significance level α = 0.05
(5%) the table indicates the two distributions are from the same underlying distribution. This means
that it is extremely likely the distributions are similar if we use a building area granularity of 14 to
26m2 for building areas ranging up to 2500m2.
Table 5 shows that for an adhoc subset of our urban regions the number of buildings and their

sizes is not statistically different than ground truth at least when using the same 16 tiles as for local
optimization. For each tile, we compute the mean number-of-buildings error and mean building-
area error. Then, we use all 16 values in a t-test to determine if the mean of all errors is statistically
different than zero with a significance level of α = 0.01. The test indicates that the mean of all
errors is not statistically different for the cities except for San Francisco building-area error (which

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

16 X. Zhang, A. Shehata, B. Benes, D. Aliaga

would satisfy the test if we used a significance level of α = 0.005 for example). In general, this test
implies that the number of buildings and building areas over different regions of the city average
out to be quite similar to ground truth.

7.4 Segmentation Comparison
We compare the results of our approach to directly extruding the segmented and labelled satellite
image provided as input. One option is to rely on a satellite image segmentation that is very accurate
and includes in-filling for occlusions. However, one of the benefits of our approach is the lack of
this reliance. Table 6 compares our method (using global optimization for several iterations) to
directly extruding the segmented satellite image (using the same initial elevation information we
also take as input). This comparison shows how our method is able to better match ground truth.
Table 6 shows the direct usage of segmentation results in building errors of >100% and 51% in
Chicago and Toulouse, for example. In sharp contrast, our method has building errors of only 8.6%
and 6.8% in the same respective cities. We also show corresponding qualitative comparisons for
Chicago in Figure 11.

Table 6. Segmentation Comparison. We compare solutions for Chicago and Toulouse between directly using
the segmented satellite image and our method. Our method shows considerably lower errors (8.6% and 6.8%).

Chicago Count Area Count Err Area Err Error
Truth 49461 452.8 – – –
Segm. 10387 1667.8 79% 268% 174%
Ours 41765 460.2 16% 2% 8.6%

Toulouse Count Area Count Err Area Err Error
Truth 26045 315.8 – – –
Segm. 12392 469.1 52% 49% 51%
Ours 22954 320.9 12% 2% 6.8%

Supplemental Figure 6:
Segmentation Comparison Images
We compare the results of our approach to directly extruding the segmented and labelled satellite image
provided as input. a) Segmentation and labeling result of using eCognition. b) Ground truth segmentaion and
labeling. c) Our produced procedural model with labeling.

Fig. 11. Segmentation Comparison Images. We compare the results of our approach to directly extruding
the segmented and labelled satellite image provided as input. a) Segmentation and labeling result of using
eCognition. b) Ground truth segmentaion and labeling. c) Our produced procedural model with labeling.

In Figure 12, we go into more detail to show how our trained network estimates parcel areas
despite various levels of erroneous/noisy segmentation and labeling as well as parcel boundaries
not being explicitly visible. For this evaluation, we progressively add a procedural noise to the full
ground-truth segmentation shown in Figure 12a. A noise factor of f % implies pixels near building
boundaries have an f % chance of being mislabeled. Moreover, all pixels within a small radius of
a to-be-mislabeled pixels are also mislabeled. We show noise levels of 10%, 20%, and 40%. After
global optimization, the error function of average parcel and building area error is reduced to 0.9%,
1.2%, and 41%. As seen, up to 20% noise still yields acceptable performance.

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

Automatic Deep Inference of Procedural Cities
from Global-Scale Spatial Data 17

a)

b)

c)

d)

Fig. 12. Parcel Area Estimation Robustness. Our parcel area estimation function is robust to noise in the
segmented and labeled satellite images. a) Shows ground truth segmentation. b,c,d) Show 10%, 20%, 40%
respectively of added noise/misclassification. Regardless, our method was able to recover the areas quite
accurately except at 40% error level.

7.5 User Studies
We also performed two user studies by using Amazon Mechanical Turk (AMT) to qualitatively
evaluate our method. The user studies compare our method (using satellite imagery) to Google
Earth (using their publicly available system that combines satellite imagery, aerial imagery, and
semi-automatic reconstruction – which we effectively regard as ground truth). We also introduce a
third method in each study serving a baseline and/or AMT user confidence estimator.
In the first study, we evaluate the realism of three methods at progressively farther viewing

distances. We individually displayed images of portions of three cities (Chicago, Dublin, and New
Orleans) from close to far viewing distances at oblique angles. We asked each of 320 AMT users a
total of 36 questions. For each question, we displayed an image for five seconds and then the user
was asked to provide a Yes/No answer to whether the image portrays a realistic urban area.

For each city, we generated images from 12 viewing distances spanning approximately 1-8
kilometers at about a 45o downward looking viewing direction. At each distance, we created an
image for each of three approaches: using Google Earth, using our method, and using a synthetic
rendering with the same road structure and background texture as our method but with random
building areas and heights. Since the building parcels (and footprints) are not known, the third
method in this study generates effectively random buildings. At close range this produces a city
model that is obviously not-realistic and thus we use this fact to compute a confidence factor
per AMT user. Although, we used AMT filters to only request work from high-quality users, we
still need to disregard senseless responses. This same third method is also used to judge at which
distance does it no longer matter what building sizes are used (and thus any method works fine).
Further, to overcome potential bias introduced from the difference in rendering color styles from
these these approaches, we used a global color remapping tool to make the color schemes similar.
Figures 13 and 14 show a summary of user study results. In Figure 14, the vertical axis shows

the number of users that responded "yes" to the realistic image question. We use the responses of
the realism question for the first 3 closest images of the random synthetic rendering to obtain a
confidence value for each user (i.e., if the user rates the first few closest random synthetic rendering
images as realistic, which they are very obviously not, then we give the worker a low confidence
value). The horizontal axis is the eye viewing distance as reported by Google Earth; see Figure 13 for
representative images at the different distances. Overall, from close-up users prefer Google Earth
but from about 2.8 kilometers users almost equally rate Google Earth and our synthetic rendering.
When observed from sufficiently far away, all three image types are rated approximately equally.

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

18 X. Zhang, A. Shehata, B. Benes, D. Aliaga

Google Earth Synthetic Random

D
istance 1km

D
istance 3km

Fig. 13. Realism User Study. First row is viewing from 1km dis-
tance. Second row is a distance 3km where our Synthetic image
and Google Earth are considered almost equally realistic but the
synthetic image with random building heights and areas is still
notably less realistic.

0

20

40

60

80

100

0.5 2.5 4.5 6.5 8.5

U

se
rs

 (%
)

Distance (km)

Google Earth Synthetic Random

Fig. 14. Realism User Study Responses.
Based on worker responses observing im-
ages of Chicago, Dublin and New Orleans
in random order, we show how realistic
the different images are considered at in-
creasingly farther distances.

Fig. 15. Preference User Study Images. We show two views of Google Earth images, extruded building-
segmentation images and our synthetic images.

In a second user study, we evaluate the preference of the results from three methods. In particular,
we compare Google Earth, our method, and an extrusion of the buildings using segmented satellite
images (i.e., segmented with eCognition and using the same building height information as our
method). The study also used Mechanical Turk and it involved 100 users who were each asked to
provide a preference for 12 pairwise image comparisons. We choose the same two close-up views
as in Figure 11, created 6 image pair from those two views, and 12 questions in total were created.
Each image pair was shown and the users were asked which do they perceive as more realistic
depiction of the urban area. The image pairs were shown in random order and in random left-right
placement.
Figure 15 shows images from this user study and detailed responses of the user study are in

Table 7. In summary, 84.3% of responses prefer either Google Earth or our method, over the extruded
segmentation-based buildings. Further, a t-test reveals that at a significance level of α = 0.05, there

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

Automatic Deep Inference of Procedural Cities
from Global-Scale Spatial Data 19

is no statistical difference between the preference of Google Earth or our method over the extruded
segmentation-based method (i.e., p-value = 0.064).

Table 7. Preference User Study Responses. We show responses to all 12 questions of our user study. In each,
it is a pairwise comparison among Google Earth, our synthetic method, and extruded segmentation-based
buildings.

Question Google Earth Ours Segmentation
Q1 59 42 –
Q2 85 – 16
Q3 – 66 35
Q4 54 47 –
Q5 89 – 12
Q6 – 75 26
Q7 57 44 –
Q8 81 – 20
Q9 – 65 36
Q10 60 41 –
Q11 85 – 16
Q12 – 72 29
Total(#) 570 452 190
Total(%) 47% 37.3% 15.7%

7.6 City Block Subdivision
Figure 16 shows the interplay of procedural model generation and city block subdivision types. In
general, our system can separately compute a 3D urban model using each of the two city block
subdivision types and select the best fitting one, or the user can pre-select the type. However, the
weightswn andwa for optimizing the number of buildings and building area, respectively, affect the
fit. For example, Figure 16a (type 1) and Figure 16b (type 2) show a closeup result using weights of
wn = wa = 0.5 for both types in Jacksonville. Figure 16c shows the ground truth, while Figure 16d
use the weights ofwn = 0.2 andwa = 0.8, respectively, for type 2 which yielded the overall smallest
optimization error – for other cities, we use type 1. Nonetheless, in our results we typically use
wn = wa = 0.5 and leave to future work an automatic way to determine the best weights.

a) b) c) d)

Fig. 16. Subdivision Styles. Our method supports two block subdivision styles. a) Type 1 subdivision. b) Type 2
subdivision. c) The ground truth buildings. d) This synthetic solution uses type 2 andwn = 0.2 andwa = 0.8.

7.7 Parcel Area Estimation
We evaluated the accuracy of obtaining the average parcel area size per city using our method
by comparing to ground truth data for Chicago, San Francisco, and New Orleans as shown in
Tab. 8. Recall that parcel boundaries are not directly observable, so we use our trained parcel area
estimation network to approximate parcel areas. To illustrate performance more comprehensively,

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

20 X. Zhang, A. Shehata, B. Benes, D. Aliaga

we split the city into various region sizes as we did for local optimization of building areas (Sect. 7.2)
and our user study (Sect. 7.5) – see Tab. 9. Although estimation error increases as region sizes
get smaller, they are still reasonable at a subdivision level of 6 × 6. This shows that our approach
is suitable for distant viewing such as in our user study (Sect. 7.5) and generates statistically
similar cities. Further, as a quick experiment we performed an optimization similar to that for local
building area optimization (Sect. 6) and at the same level of subdivision (i.e., 4 × 4). This made
parcel estimation error even smaller: the errors went down from 8.14% to 4.13% for Chicago, from
11.40% to 5.09% for San Francisco, and from 12.20% to 4.65% for New Orleans. Further analysis and
improvements of parcel local optimizations are left as future work.

Table 8. Parcel Size. We show the average parcel size performance by comparing our method with the ground
truth for several cities .

City Parcel Size of Truth [m2] Parcel Size of Ours [m2] Relative Error
Chicago 618.81 600.62 2.94%

San Francisco 849.96 798.39 6.01%
New Orleans 585.70 615.61 5.11%

Table 9. We show the average parcel size performance in different region levels ranging from splitting the
whole city into 2 × 2 grid cells to individual blocks. Error is computed using the average of relative parcel-size
errors per cell in a specific grid. Further, We place in parenthesis the error after applying a local optimization
for a specific region level (i.e., 4 × 4).

Chicago Error
2 ×2 5.86%
4 ×4 8.14% (4.13%)
6 ×6 12.00%
8 ×8 17.20%
Blocks 45.90%

San Francisco Error
2 ×2 7.04%
4 ×4 11.40% (5.09%)
6 ×6 17.30%
8 ×8 23.00%
Blocks 46.50%

New Orleans Error
2 ×2 7.44%
4 ×4 12.20% (4.65%)
6 ×6 17.80%
8 ×8 22.30%
Blocks 49.20%

10

30

50

70

90

110

130

0%

5%

10%

15%

20%

25%

1 bin 2 bins 3 bins 4 bins 5 bins

Ar
ea

 E
rr

or

Cl
as

sif
y

 E
rr

or

Classifier Estimation

93.57

27.06
23.85

33.45 35.87

0

20

40

60

80

100

1 bin 2 bins 3 bins 4 bins 5 bins

A
re

a
er

ro
r

a) b) c)

Ground
Truth 1-Bin 2-Bins 3-Bins 5-Bins

Fig. 17. Number of Bins. a) We show tradeoff between classifier neural network (NN) error and parcel area
NN error as you increase number of bins. b) This graphs shows combined result of using both NN types. c)
Example parcel generations using parcel area estimation with a different number of bins. Overall three bins is
clearly the best compromise.

The effect of the number of parcel area bins used by Section 4 is shown in Figure 17. Using a test
data set, Figure 17a shows how with an increasing number of bins the classifier error increases, as
would be expected. However, the parcel area estimation error decreases with more bins – because
each bin has a small range of areas to predict. Figure 17b shows the overall performance (both

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

Automatic Deep Inference of Procedural Cities
from Global-Scale Spatial Data 21

classification and parcel area networks are used). The performance seems clearly best for the 3 bins
setup – thus we use such a trained set of neural networks in all our examples. Figure 17c visually
shows parcels generated using the initial parcel area estimates from setups with different numbers
of bins. In general, the 3 bins case seems to visually work better. Note that for the 5 bins images, a
misclassification occurred. If such a misclassification had not occurred, the result might be similar
to the 3 bin case.

7.8 Application Examples

Original Chicago Chicago after editing

Fig. 18. Urban content generation. This figure shows
how we can quickly generate and edit plausible city-
scale models based on real-world cities. Fig. 19. Sky-View Factors. We show for Hong Kong

(top) and Toulouse (bottom) the similarity of our auto-
matically computed sky-view factor to that obtained
by the lengthy semi-automatic method of using [25]
and Google Earth Street View images.

Table 10. Urban Morphology Distribution Test. Our ks-test shows that our two urban morphology values
pass the test at significance levels α=0.05 and 0.01. For area weighted building height Ah the test passes with
a granularity of at most 6.8m for α=0.05 and 4.1m for α=0.01. Similarly, for building surface to plan area ratio
Ar , the test passes with a granularity of at most 0.18 for α=0.05 and 0.04 for α=0.01.

α = 0.05 α = 0.01
Parameter Dim Dim
Ah 6.8 4.12
Ar 0.18 0.04

As applications, we show three tentative uses. Figure 18 demonstrates how a model of Chicago
produced by our system can be edited to produce a different but detailed model of the same area.
In this case, the user only need "paint" a new building height and population dataset layer; then
our model is regenerated in 2 minutes. Table 10 demonstrates an example computation of urban
morphology values useful for urban planning/urban climate studies. An urban planning collaborator
from Hong Kong provided us with ground truth area weighted building height (i.e., building height
times its area) and building surface to plan area ratio (e.g., building surface area to parcel area). Our
collaborator then used our synthetic model to compute the corresponding values. Using a similar

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

22 X. Zhang, A. Shehata, B. Benes, D. Aliaga

ks-test as with results in Section 7.3, we show that our computed urban morphology values yield a
distribution of values that is statistically similar to ground truth at either α=0.05 and 0.01. Figure 19
shows the sky-view factor computed for Hong Kong and Toulouse. The sky-view factor is the
percentage of sky visible from, in this case, the roads (i.e., it factors in occlusions produced by the
buildings) – it is an indicator often used in urban planning. The figure shows the similarity of our
automatically computed result to the typical lengthy semi-automated solution, such as the method
of using [25]. This method uses up to several million ground level images, from Google Earth
Street View, to compute many sky-view factors per city. Our results show qualitative similarity
and further analysis and improvements for sky-view computation are left as future work.

8 CONCLUSION
We presented an automatic novel inverse procedural method for urban modeling that is suitable
for large distance views and generates statistically-similar cities. The key idea behind our approach
is a procedural model that is capable of generating parcels from city blocks and populating them
with buildings. The parameters of the procedural model are initialized by neural networks that
have been trained on real-world data and then improved via a procedural model optimization loop.
Our method can generate a complete 3D model of a city only from an input satellite image and
OSM using our global building height and population datasets.
The main application of our approach is the quick automatic generation of large cities that are

similar to real ones statistically and visually from a distance. Our approach is a starting point
for modeling urban areas worldwide for content generation in entertainment and simulation
(Section 7.8). In addition, many practical fields, such as urban planning, emergency responses, or
weather modeling communities require a city’s urban morphology. While some well-known cities
might have dedicated teams able to create models, this tedious work does not scale to all cities.
Our method enables automatically creating a 3D model suitable for such urban morphologies. Our
method has already been chosen by a large international effort for precisely this purpose, including
dozens of well-known researchers from around the globe.

Nonetheless, our method has various limitations. First, while we attempt to use as small a set of
input data as possible, it is still difficult to get the data for all possible cities. The second limitation
is the procedural model used. While we support two types of block subdivisions, there are more
options (see Vanegas et al. [51]) and automatically determining which one to use is a challenge.
Similarly, our method uses six predefined building styles that do not cover all possible buildings.
There are several avenues of future work. Our approach assumes the OSM road vector and

the segmented satellite results were provided. One future work could be developing such neural
networks to generate those data in order to reduce the amount of input data required by current
system. In addition, the simplifications we use (e.g., only convex buildings, one building per parcel,
etc.) may have significant visual effects. Further, our method does not support landmark buildings
and it can be easily detected by the viewers. While our user study gives us some qualitative feedback,
a more exact quantification is a task for future work. Another task is extending our building types
to be geo-specific. We could either perform building typology studies (e.g., via crowdsourcing) or
we can try to cluster and infer building types from global scale data and imagery.

9 ACKNOWLEDGMENTS
This research was funded in part by National Science Foundation (NSF) grant #10001387 CHS:
Small: Functional Proceduralization of 3D Geometric Models, by NSF grant #1835739 U-Cube: A Cy-
berinfrastructure for Unified and Ubiquitous Urban Canopy Parameterization, by the GS501100001809
National Natural Science Foundation of China under Grant No: GS501100001809 61273304 21 and,
Young Scientists’ Support Program.

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

Automatic Deep Inference of Procedural Cities
from Global-Scale Spatial Data 23

(a) Chicago - Synthetic (b) Chicago - Aerial

(c) New Orleans - Synthetic (d) New Orleans - Aerial

(e) San Francisco - Synthetic (f) San Francisco - Aerial

Fig. 20. Example Models. We show several 3D urban procedural models and similar views using Google Earth
output. We used a global color remapping tool to make the color schemes similar.

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

24 X. Zhang, A. Shehata, B. Benes, D. Aliaga

REFERENCES
[1] Pankaj K. Agarwal, Alex Beutel, and Thomas Mølhave. 2016. TerraNNI: Natural Neighbor Interpolation on 2D and 3D

Grids Using a GPU. ACM Trans. Spatial Algorithms Syst. 2, 2, Article 7 (June 2016), 31 pages. https://doi.org/10.1145/
2786757

[2] Daniel G. Aliaga, İlke Demir, Bedrich Benes, and Michael Wand. 2016. Inverse Procedural Modeling of 3D Models for
Virtual Worlds. In ACM SIGGRAPH 2016 Courses (SIGGRAPH ’16). ACM, New York, NY, USA, Article 16, 316 pages.
https://doi.org/10.1145/2897826.2927323

[3] Daniel G. Aliaga, Carlos A. Vanegas, and Bedrich Benes. 2008. Interactive example-based urban layout synthesis. ACM
Trans. Graph. 27, 5 (2008), 1–10. https://doi.org/10.1145/1409060.1409113

[4] Martin Baatz, Ursula Benz, Seyed Dehghani, Markus Heynen, Astrid Höltje, PPeter Hofmann, Iris Lingenfelder, Matthias
Mimler, Malte Sohlbach, Michaela Weber, and Gregor Willhauck. 2004. eCognition user guide. Definiens Imaging
GmbH, Munich, Germany (2004).

[5] Fan Bao, Michael Schwarz, and Peter Wonka. 2013. Procedural facade variations from a single layout. ACM Trans.
Graph. 32, 1, Article 8 (Feb. 2013), 13 pages. https://doi.org/10.1145/2421636.2421644

[6] Martin Bokeloh, Michael Wand, and Hans-Peter Seidel. 2010. A connection between partial symmetry and inverse
procedural modeling. (2010), 1–10. https://doi.org/10.1145/1833349.1778841

[7] Bartosz Bonczak and Constantine E. Kontokosta. 2019. Large-scale parameterization of 3D building morphology in
complex urban landscapes using aerial LiDAR and city administrative data. Computers, Environment and Urban Systems
73 (2019), 126 – 142. https://doi.org/10.1016/j.compenvurbsys.2018.09.004

[8] Eddie A Bright, Amy N Rose, and Marie L Urban. 2012. LandScan 2012. (2012).
[9] Guoning Chen, Gregory Esch, Peter Wonka, Pascal, Müller, and Eugene Zhang. 2007. Interactive procedural street

modeling. ACM Trans. Graph. 27, 3 (2007), 35. https://doi.org/10.1145/1278780.1278822
[10] Ilke Demir, Daniel G. Aliaga, and Bedrich Benes. 2015. Coupled Segmentation and Similarity Detection for Architectural

Models. ACM Trans. Graph. 34, 4, Article 104 (July 2015), 11 pages. https://doi.org/10.1145/2766923
[11] Ilke Demir, Daniel G. Aliaga, and Bedrich Benes. 2016. Proceduralization for Editing 3D Architectural Models. In Intl.

Conf. on 3D Vision (3DV). 194–202. https://doi.org/10.1109/3DV.2016.28
[12] Liuyun Duan and Florent Lafarge. 2016. Towards large-scale city reconstruction from satellites. In Proc. of the European

Conference on Computer Vision (ECCV). Amsterdam, Netherlands.
[13] David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven Worley. 2003. Texturing and Modeling

(3rd ed.). Academic Press, Inc., Orlando, FL, USA.
[14] Gabriele Facciolo, Carlo de Franchis, and Enric Meinhardt-Llopis. 2017. Automatic 3D Reconstruction from Multi-date

Satellite Images. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 1542–1551.
https://doi.org/10.1109/CVPRW.2017.198

[15] Eric Galin, Adrien Peytavie, Nicolas Maréchal, and Eric Guérin. 2010. Procedural Generation of Roads. Comp. Graph.
Forum 29, 2 (2010), 429–438.

[16] Ignacio Garcia-Dorado, D G Aliaga, and S V Ukkusuri. 2014. Designing large-scale interactive traffic animations for
urban modeling. In Comp. Graph. Forum, Vol. 33. Wiley Online Library, 411–420.

[17] Thomas Gwenola and Stephane Donikian. 2000. Modelling virtual cities dedicated to behavioural animation. Comp.
Graph. Forum 19, 3 (September 2000), 71–80.

[18] Mordechai Haklay and Patrick Weber. 2008. Openstreetmap: User-generated street maps. IEEE Pervasive Computing 7,
4 (2008), 12–18.

[19] Yaolin Hou, Jianwei Peng, Zhihua Hu, Pengjie Tao, and Jie Shan. 2018. Planarity constrained multi-view depth
map reconstruction for urban scenes. ISPRS Journal of Photogrammetry and Remote Sensing 139 (2018), 133 – 145.
https://doi.org/10.1016/j.isprsjprs.2018.03.003

[20] Jing Huang and Suya You. 2016. Point cloud labeling using 3d convolutional neural network. In Pattern Recognition
(ICPR). IEEE, 2670–2675.

[21] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and
Trevor Darrell. 2014. Caffe: Convolutional Architecture for Fast Feature Embedding. In ACM Intl. Conf. on Multimedia
(MM ’14). ACM, 675–678. https://doi.org/10.1145/2647868.2654889

[22] Tom Kelly, John Femiani, Peter Wonka, and Niloy J. Mitra. 2017. BigSUR: Large-scale Structured Urban Reconstruction.
ACM Trans. Graph. 36, 6, Article 204 (Nov. 2017), 16 pages. https://doi.org/10.1145/3130800.3130823

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classification with Deep Convolutional
Neural Networks. In NIPS (NIPS’12). USA, 1097–1105. http://dl.acm.org/citation.cfm?id=2999134.2999257

[24] Marcus Lipp, Daniel Scherzer, Peter Wonka, and Michael Wimmer. 2011. Interactive Modeling of City Layouts using
Layers of Procedural Content. Comp. Graph. Forum 30, 2 (2011), 345–354. https://doi.org/10.1111/j.1467-8659.2011.
01865.x

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

https://doi.org/10.1145/2786757
https://doi.org/10.1145/2786757
https://doi.org/10.1145/2897826.2927323
https://doi.org/10.1145/1409060.1409113
https://doi.org/10.1145/2421636.2421644
https://doi.org/10.1145/1833349.1778841
https://doi.org/10.1016/j.compenvurbsys.2018.09.004
https://doi.org/10.1145/1278780.1278822
https://doi.org/10.1145/2766923
https://doi.org/10.1109/3DV.2016.28
https://doi.org/10.1109/CVPRW.2017.198
https://doi.org/10.1016/j.isprsjprs.2018.03.003
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/3130800.3130823
http://dl.acm.org/citation.cfm?id=2999134.2999257
https://doi.org/10.1111/j.1467-8659.2011.01865.x
https://doi.org/10.1111/j.1467-8659.2011.01865.x

Automatic Deep Inference of Procedural Cities
from Global-Scale Spatial Data 25

[25] Ariane Middel, Jonas Lukasczyk, Ross Maciejewski, Matthias Demuzere, and Matthias Roth. 2018. Sky View Factor
footprints for urban climate modeling. Urban Climate 25 (1 9 2018), 120–134. https://doi.org/10.1016/j.uclim.2018.05.004

[26] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc van Gool. 2006. Procedural modeling of buildings.
ACM Trans. Graph. 25, 3 (July 2006), 614–623. https://doi.org/10.1145/1141911.1141931

[27] Pascal Müller, Gang Zeng, Peter Wonka, and Luc van Gool. 2007. Image-based Procedural Modeling of Facades. ACM
Trans. Graph. 26, 3, Article 85 (July 2007). https://doi.org/10.1145/1276377.1276484

[28] Przemyslaw Musialski, Peter Wonka, Daniel G Aliaga, Michael Wimmer, Luc van Gool, and Werner Purgathofer. 2013.
A survey of urban reconstruction. In Comp. Graph. Forum, Vol. 32. Wiley Online Library, 146–177.

[29] Konstantinos G Nikolakopoulos. 2017. Evaluating ALOS AW3D30 data. In Fifth International Conference on Remote
Sensing and Geoinformation of the Environment (RSCy2017), Vol. 10444. International Society for Optics and Photonics,
1044408.

[30] Gen Nishida, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Adrien Bousseau. 2016. Interactive Sketching
of Urban Procedural Models. ACM Trans. Graph. 35, 4, Article 130 (July 2016), 11 pages. https://doi.org/10.1145/
2897824.2925951

[31] Sakrapee Paisitkriangkrai, Jamie Sherrah, Pranam Janney, and Anton Van-Den Hengel. 2015. Effective semantic pixel
labelling with convolutional networks and Conditional Random Fields. Computer Vision and Pattern Recognition
Workshops (CVPRW), 36–43.

[32] Yoav I. H. Parish and Pascal Müller. 2001. Procedural modeling of cities. In SIGGRAPH ’01: Proceedings of the 28th annual
conference on Computer graphics and interactive techniques. ACM Press, 301–308. https://doi.org/10.1145/383259.383292

[33] Yujin Park and Jean-Michel Guldmann. 2019. Creating 3D city models with building footprints and LIDAR point
cloud classification: A machine learning approach. Computers, Environment and Urban Systems 75 (2019), 76 – 89.
https://doi.org/10.1016/j.compenvurbsys.2019.01.004

[34] Chi-Han Peng, Yong-Liang Yang, Fan Bao, Daniel Fink, Dong-Ming Yan, Peter Wonka, and Niloy J Mitra. 2016.
Computational network design from functional specifications. ACM Trans. Graph. 35, 4 (2016), 131.

[35] Charalambos Poullis and Suya You. 2009. Automatic reconstruction of cities from remote sensor data. In CVPR. IEEE,
2775–2782.

[36] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. 2012. The algorithmic beauty of plants. Springer Science &
Business Media.

[37] Maria Dolores Robles-Ortega, Lidia M. Ortega, and Francisco R. Feito. 2017. Efficient Visibility Determination in Urban
Scenes Considering Terrain Information. ACM Trans. Spatial Algorithms Syst. 3, 3, Article 10 (Nov. 2017), 24 pages.
https://doi.org/10.1145/3152536

[38] Ewelina Rupnik, Marc Pierrot-Deseilligny, and Arthur Delorme. 2018. 3D reconstruction from multi-view VHR-
satellite images in MicMac. ISPRS Journal of Photogrammetry and Remote Sensing 139 (2018), 201 – 211. https:
//doi.org/10.1016/j.isprsjprs.2018.03.016

[39] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Fei-Fei Li. 2014. ImageNet Large Scale Visual Recognition
Challenge. CoRR abs/1409.0575 (2014). arXiv:1409.0575 http://arxiv.org/abs/1409.0575

[40] Thomas Schöps, Johannes L Schönberger, Silvano Galliani, Torsten Sattler, Konrad Schindler, Marc Pollefeys, and
Andreas Geiger. 2017. A multi-view stereo benchmark with high-resolution images and multi-camera videos. In CVPR,
Vol. 3.

[41] Qi Shan, Changchang Wu, Brian Curless, Yasutaka Furukawa, Carlos Hernandez, and Steven M. Seitz. 2014. Accurate
Geo-Registration by Ground-to-Aerial Image Matching. In Proceedings of the 2014 2Nd International Conference on 3D
Vision - Volume 01 (3DV ’14). IEEE Computer Society, Washington, DC, USA, 525–532. https://doi.org/10.1109/3DV.
2014.69

[42] Chao-Hui Shen, Shi-Sheng Huang, Hongbo Fu, and Shi-Min Hu. 2011. Adaptive partitioning of urban facades. ACM
Trans. Graph. 30, 6, Article 184 (Dec. 2011), 10 pages. https://doi.org/10.1145/2070781.2024218

[43] Jamie Sherrah. 2016. Fully Convolutional Networks for Dense Semantic Labelling of High-Resolution Aerial Imagery.
CoRR abs/1606.02585 (2016). arXiv:1606.02585 http://arxiv.org/abs/1606.02585

[44] Ruben M. Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich Benes. 2014. A Survey on Procedural Modelling for Virtual
Worlds. Comp. Graph. Forum 33, 6 (2014), 31–50. https://doi.org/10.1111/cgf.12276

[45] Ian D Stewart and Tim R Oke. 2012. Local climate zones for urban temperature studies. Bulletin of the American
Meteorological Society 93, 12 (2012), 1879–1900.

[46] Jerry O. Talton, Yu Lou, Steve Lesser, Jared Duke, Radomír Měch, and Vladlen Koltun. 2011. Metropolis procedural
modeling. ACM Trans. Graph. 30, Article 11 (April 2011), 14 pages. Issue 2. https://doi.org/10.1145/1944846.1944851

[47] Carlos A. Vanegas, Daniel G. Aliaga, and Bedrich Benes. 2010. Building reconstruction using manhattan-world
grammars. CVPR (2010), 358–365. https://doi.org/10.1109/CVPR.2010.5540190

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

https://doi.org/10.1016/j.uclim.2018.05.004
https://doi.org/10.1145/1141911.1141931
https://doi.org/10.1145/1276377.1276484
https://doi.org/10.1145/2897824.2925951
https://doi.org/10.1145/2897824.2925951
https://doi.org/10.1145/383259.383292
https://doi.org/10.1016/j.compenvurbsys.2019.01.004
https://doi.org/10.1145/3152536
https://doi.org/10.1016/j.isprsjprs.2018.03.016
https://doi.org/10.1016/j.isprsjprs.2018.03.016
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
https://doi.org/10.1109/3DV.2014.69
https://doi.org/10.1109/3DV.2014.69
https://doi.org/10.1145/2070781.2024218
http://arxiv.org/abs/1606.02585
http://arxiv.org/abs/1606.02585
https://doi.org/10.1111/cgf.12276
https://doi.org/10.1145/1944846.1944851
https://doi.org/10.1109/CVPR.2010.5540190

26 X. Zhang, A. Shehata, B. Benes, D. Aliaga

[48] Carlos A. Vanegas, Daniel G. Aliaga, Bedrich Benes, and Paul A. Waddell. 2009. Interactive design of urban spaces
using geometrical and behavioral modeling. (2009), 1–10. https://doi.org/10.1145/1661412.1618457

[49] Carlos A Vanegas, Daniel G Aliaga, Peter Wonka, Pascal Müller, Paul Waddell, and Benjamin Watson. 2010. Modelling
the appearance and behaviour of urban spaces. In Comp. Graph. Forum, Vol. 29. Wiley Online Library, 25–42.

[50] Carlos A. Vanegas, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Paul Waddell. 2012. Inverse design of
urban procedural models. ACM Trans. Graph. 31, 6, Article 168 (Nov. 2012), 11 pages. https://doi.org/10.1145/2366145.
2366187

[51] Carlos A Vanegas, Tom Kelly, Basil Weber, Jan Halatsch, Daniel G Aliaga, and Pascal Müller. 2012. Procedural generation
of parcels in urban modeling. In Comp. Graph. Forum, Vol. 31. Wiley Online Library, 681–690.

[52] Yannick Verdie, Florent Lafarge, and Pierre Alliez. 2015. LOD Generation for Urban Scenes. ACM Transactions on
Graphics 34, 3 (2015), 15. https://hal.inria.fr/hal-01113078

[53] Jan Ole Vollmer, Matthias Trapp, Heidrun Schumann, and Jürgen Döllner. 2018. Hierarchical Spatial Aggregation for
Level-of-Detail Visualization of 3D Thematic Data. ACM Trans. Spatial Algorithms Syst. 4, 3, Article 9 (Sept. 2018),
23 pages. https://doi.org/10.1145/3234506

[54] Michele Volpi and Devis Tuia. 2017. Dense Semantic Labeling of Subdecimeter Resolution Images With Convolutional
Neural Networks. Geoscience and Remote Sensing, IEEE Trans. on 55, 2 (February 2017), 881–893.

[55] Ondrej Šťava, Bedrich Benes, Radomir Měch, Daniel G. Aliaga, and Peter Krištof. 2010. Inverse Procedural Modeling by
Automatic Generation of L-systems. Comp. Graph. Forum 29, 2 (2010), 665–674. http://dx.doi.org/10.1111/j.1467-8659.
2009.01636.x

[56] Ondřej Šťava, Soeren Pirk, Julian Kratt, Baoquan Chen, Radomír Měch, Oliver Deussen, and Bedrich Benes. 2014.
Inverse Procedural Modelling of Trees. Comp. Graph. Forum 33, 6 (2014), 118–131. https://doi.org/10.1111/cgf.12282

[57] Basil Weber, Pascal Mueller, Peter Wonka, and Markus Gross. 2009. Interactive Geometric Simulation of 4D Cities.
Comp. Graph. Forum (April 2009). http://www.procedural.com/publications/2008_EG_Urban_Simulation/2008.EG.
Weber.UrbanSimulation.Paper.pdf

[58] Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky. 2003. Instant architecture. ACM Trans. Graph.
22, 3 (2003), 669–677. https://doi.org/10.1145/882262.882324

[59] Cheng Yi, Yuan Zhang, Qiaoyun Wu, Yabin Xu, Oussama Remil, Mingqiang Wei, and Jun Wang. 2017. Urban building
reconstruction from raw LiDAR point data. Computer-Aided Design 93 (2017), 1 – 14. https://doi.org/10.1016/j.cad.
2017.07.005

[60] Hao Zhang, Kai Xu, Wei Jiang, Jinjie Lin, Daniel Cohen-Or, and Baoquan Chen. 2013. Layered analysis of irregular
facades via symmetry maximization. ACM Trans. Graph. 32, 4, Article 121 (July 2013), 13 pages. https://doi.org/10.
1145/2461912.2461923

[61] Liqiang Zhang, Zhuqiang Li, Anjian Li, and Fangyu Liu. 2018. Large-scale urban point cloud labeling and reconstruction.
ISPRS Journal of Photogrammetry and Remote Sensing 138 (2018), 86 – 100. https://doi.org/10.1016/j.isprsjprs.2018.02.008

[62] Qian-Yi Zhou and Ulrich Neumann. 2012. 2.5 D building modeling by discovering global regularities. In CVPR. IEEE,
326–333.

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

https://doi.org/10.1145/1661412.1618457
https://doi.org/10.1145/2366145.2366187
https://doi.org/10.1145/2366145.2366187
https://hal.inria.fr/hal-01113078
https://doi.org/10.1145/3234506
http://dx.doi.org/10.1111/j.1467-8659.2009.01636.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01636.x
https://doi.org/10.1111/cgf.12282
http://www.procedural.com/publications/2008_EG_Urban_Simulation/2008.EG.Weber.UrbanSimulation.Paper.pdf
http://www.procedural.com/publications/2008_EG_Urban_Simulation/2008.EG.Weber.UrbanSimulation.Paper.pdf
https://doi.org/10.1145/882262.882324
https://doi.org/10.1016/j.cad.2017.07.005
https://doi.org/10.1016/j.cad.2017.07.005
https://doi.org/10.1145/2461912.2461923
https://doi.org/10.1145/2461912.2461923
https://doi.org/10.1016/j.isprsjprs.2018.02.008

Automatic Deep Inference of Procedural Cities
from Global-Scale Spatial Data 27

A CITY-SCALE VIEWS

(a) Dublin - Synthetic (b) Dublin - Aerial

(c) Toulouse - Synthetic (d) Toulouse - Aerial

(e) Hong Kong - Synthetic (f) Hong Kong - Aerial

Fig. 21. Additional Example Models. Similar to previous figure, We show several 3D urban procedural models
and similar views using Google Earth output.

We show examples of Dublin, Toulouse and Hong Kong in Figure 21. The left column shows the
synthetic models and the right column shows the corresponding Google Earth view.

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

28 X. Zhang, A. Shehata, B. Benes, D. Aliaga

B PARCEL SIZE AND SETBACKS

Supplemental Figure 2:
Parcel Size Histogram

The histogram shows the real parcel sizes for
our analysis cities – Chicago and San
Francisco. We create our synthetic training
data based on the distribution of the parcel
size histogram. We also divide our parcel
estimation bins based on this distribution.

Fig. 22. Parcel Size Histogram.
The histogram shows the real
parcel sizes for our analysis cities
- Chicago and San Francisco.
We create our synthetic training
data based on the distribution
of the parcel size histogram. We
also divide our parcel estimation
bins based on this distribution.

Supplemental Figure 3:
Setbacks Histogram
The histogram shows the real setbacks for our analysis cities – Chicago and San Francisco. We use the average of
these values during training and the various ranges per type as initial setbacks during generation.

Fig. 23. Setbacks Histogram. The histogram shows the real set-
backs for our analysis cities - Chicago and San Francisco. We use
the average of these values during training and the various ranges
per type as initial setbacks during generation.

Our method uses an analysis of the real-world cities Chicago and San Francisco to succinctly
generate synthetic training data. Figure 22 shows a histogram of analysis city parcel areas and
Figure 23 shows a histogram of analysis of setback values.

C VISUAL ORNAMENTS

Supplemental Figure 4:
Visual Ornaments
We can enable additional outputs to enhance our 3D urban procedural model.

Fig. 24. Visual Ornaments. We can enable additional outputs to enhance our 3D urban procedural model.

In Figure 24 we use our system to render additional hypothetical details such as roads, facades,
window frames, trees, lamp posts, and grass. The output is a realistic-similar 3D model.

J. ACM, Vol. 37, No. 4, Article . Publication date: August 2019.

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Parcel Area Estimation
	4.1 Canonical Representation
	4.2 Training Data Creation
	4.3 Training

	5 Procedural Generation
	5.1 Urban Model
	5.2 Parcel Generation
	5.3 Building Generation

	6 Procedural Model Optimization
	6.1 Calibration Parameters
	6.2 Optimization Loop

	7 Implementation and Results
	7.1 Visual Results
	7.2 Numerical Results
	7.3 Statistical Comparisons
	7.4 Segmentation Comparison
	7.5 User Studies
	7.6 City Block Subdivision
	7.7 Parcel Area Estimation
	7.8 Application Examples

	8 Conclusion
	9 Acknowledgments
	References
	A City-Scale Views
	B Parcel Size and Setbacks
	C Visual Ornaments

