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Many applications in computer graphics require detailed 3D digital models of real-world environments. The automatic and semi-automatic 
modeling of such spaces presents several fundamental challenges. In this work, we present an easy and robust camera-based acquisition approach 
for the modeling of 3D scenes which is a significant departure from current methods. Our approach uses a novel pose-free formulation for 3D 
reconstruction. Unlike self-calibration, omitting pose parameters from the acquisition process implies no external calibration data must be 
computed or provided. This serves to significantly simplify acquisition, to fundamentally improve the robustness and accuracy of the geometric 
reconstruction given noise in the measurements or error in the initial estimates, and to allow using uncalibrated active correspondence methods to 
obtain robust data. Aside from freely taking pictures and moving an uncalibrated digital projector, scene acquisition and scene point 
reconstruction is automatic and requires pictures from only a few viewpoints. We demonstrate how the combination of these benefits has enabled 
us to acquire several large and detailed models ranging from 0.28 to 2.5 million texture-mapped triangles. 
 
Categories and Subject Descriptors: I.3 [Computer Graphics], I.3.3 [Picture/Image Generation], I.3.7 [Three-dimensional Graphics and 
Realism], I.4.1 [Digitization and Image Capture].  
General Terms: modeling, acquisition, image-based 
Additional Key Words and Phrases: computer graphics, modeling, acquisition, image-based rendering, pose-free. 
 

1. INTRODUCTION 
The acquisition and modeling of complex real-world 
scenes is an ambitious goal pursued by computer 
graphics. Such 3D models are used by a wide range of 
applications, such as telepresence, virtual reality, and 
interactive walkthroughs. Manual methods rely on 
interactive modeling tools which, despite recent 
advances, remain very time-consuming for large and 
detailed 3D spaces. Automatic methods, active or 
passive, are able to capture large spaces but must 
combat issues such as establishing correspondences, 
estimating camera pose, and providing robust 
computational methods. Often, computer graphics 
cares about the resulting colored model and the issues 
of correspondence establishment and pose-estimation 
are only a means to an end. In a general effort to 
simplify and improve the automatic pipeline, previous 
methods have placed emphasis on different portions of 
the process and thus enable trading dependency on one 
aspect for freedom in another aspect. 
The key inspiration of our work is that of eliminating 
from the 3D modeling formulation dependence on 
camera-pose related parameters. This yields a 
fundamental change to the traditional formulation used 
for 3D reconstruction and modeling. Our work is 

different from all previous methods which might 
compute or require a priori estimates of camera pose 
and then use the traditional pose-included formulation. 
In general, this class of previous methods either makes 
assumptions about the scene or uses sufficiently 
accurate initial guesses in order to attempt converging 
on a viable scene structure and pose configuration for 
the given set of observations.  
In sharp contrast, we have created a mathematical 
framework for eliminating camera rotation, camera 
position, or both parameter types from the 3D 
modeling process and present an active acquisition 
method that is easy to use and fundamentally more 
robust. Given an internally calibrated camera (i.e., 
focal length is known), our new formulation of 3D 
reconstruction is equivalent to the standard pose-
included formulation for minimizing pixel re-
projection error in the sense of arriving at the same 
reconstruction but the external parameters of camera 
position and camera rotation are deemed unnecessary 
and thus algebraically eliminated; e.g., the relative 
position and orientation of the capture device placed at 
multiple locations does not need to be estimated, 
recovered, or computed in any way. The removal of 
pose parameters makes the numerical computation 
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significantly more robust and well-conditioned, 
although at the expense of an increase in the number of 
equations and computation time. However, even in the 
presence of large errors in the initial measurements 
(e.g., errors in initial pose estimates, 3D scene point 
guesses, or 2D scene point projections), our approach 
is able to recover the scene structure with almost an 
order of magnitude more accuracy as compared to the 
traditional pose-included formulation. Altogether, our 
new formulation improves acquisition and modeling 
when using either active or passive methods. 
In this paper, we use our new mathematical 
formulation for 3D reconstruction and an active 
acquisition process based on structured-light to 
automatically obtain multi-viewpoint models of 3D 
environments. Our pose-free mathematical formulation 
consists of polynomial equations of the same degree as 
the traditional pose-included equations, imposes no 
constraints on scene geometry, and can be used in 
similar optimizations of a full-perspective camera (e.g., 
bundle adjustment [Triggs et al. 2000]). Acquisition 
consists of an operator alternating between taking 
pictures and moving an uncalibrated digital projector. 
For picture taking, we use an internally calibrated 
camera-pair (e.g., a stereo rig). The camera pair 
enables computing coarse depth estimates from 
individual viewpoints. While there are several ways to 
obtain depth-enhanced images (e.g., Swiss Ranger, 
depth-from-defocus, etc.), we use a camera pair, acting  
as an atomic unit, because the same structured-light 
patterns used to obtain coarse depth estimates, can also 
be used to generate correspondences between images 
captured from multiple viewing locations. However, no 
position or rotation information between the scene, 
projector, and camera-pair is needed; in fact, they may 
be freely located during capture and no absolute or 

relative pose information is computed in any way. 
Moreover, aside from physically moving the 
acquisition-device and projector, model reconstruction 
is fully automated.  
Furthermore, our method can also create a multi-
viewpoint model without having to determine or 
compute the relative poses of the acquisition-device. In 
fact, with our method there is no need to perform an 
explicit alignment process; i.e. no iterative closest point 
(ICP) algorithm is needed to register the multiple 
models. Rather in the same reconstruction 
optimization, we directly solve for the multi-viewpoint 
scene structure. 
Finally, our approach also supports the projective 
texture-mapping of high-resolution colors images onto 
the geometry despite not having pose information. To 
demonstrate our method, we have created 3D texture-
mapped models of several real-world scenes ranging 
from environments of 1 to 10 meters in diameter, with 
the picture-taking process consuming only 30-60 
minutes, and reconstruction producing meshes of 0.28 
to 2.5 million triangles. Our results include a sensitivity 
analysis comparing our formulation to the pose-
included formulation and an analysis of the well-
conditioning of the numerical computations. Both our 
visual and quantitative results clearly show the 
significant improvements that are achieved by our 
methodology, in addition to the unquantifiable 
advantage of not needing to assume pose can be 
recovered.  
Our main contributions are 
• a formulation for 3D reconstruction free of camera 

rotation, camera position, or both parameters, 
• an accurate and robust acquisition method for 

obtaining models of 3D environments of arbitrary 

c)

b)

Figure 1. 3D Scene Modeling. (a) We present a new pose-free modeling framework where the operator alternates between freely taking 
pictures and moving an uncalibrated digital projector while forgoing any pose estimation effort or computation. This enables easy, robust, 
and accurate capturing of (a) large scenes assembled from multiple acquisitions in a single global reconstruction. Our approach produces (b) 
texture-mapped geometric models and (c) captures dense and high-detailed scene information. 

a)
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size by alternating between freely taking pictures 
and moving a digital projector, and 

• an optimization algorithm for reconstructing a 
single global model of the scene despite using 
separate acquisitions from multiple and unknown 
viewpoints. 

2. RELATED WORK 
The challenges encountered during the modeling of 3D 
scenes have been tackled in different ways. Laser-
scanning devices obtain dense samples of a scene from 
a single viewpoint. However it is still extremely 
difficult to produce a complete and colored model of a 
large object or environment. Moreover, laser devices 
acquire single-viewpoint samples that must be 
combined to capture more surfaces, often do not obtain 
color data in the same pass, and frequently require 
significant post-processing (e.g., [Levoy et al. 2000; 
Williams et al. 2003]). Recently, some works have 
combined active range finding with calibrated camera-
based observations (e.g., [Zhu et al. 2008; Diebel and 
Thrun 2006]). These works address the different 
problem of how to turn a low-resolution depth image 
into a higher resolution one by also exploiting 
conventional camera images. While our current method 
uses active depth estimation, it is not fundamental to 
our method. The depth estimates could be obtained 
passively as well. Nevertheless, our formulation could 
be integrated with the aforementioned hybrid 
approaches for 3D reconstruction and would remove 
the need for their pose estimation. 
Classical 3D reconstruction uses correspondence 
and/or camera poses to obtain either camera motion 
and sparse structure or dense structure assuming known 
camera poses (Figure 2); e.g., structure-from-motion 
[Nister 2003; Pollefeys et al. 2004; Tomasi and Kanade 
1992] or multi-view stereo reconstruction [Seitz et al. 
2006]). Our work is related to dense multi-view stereo 
and dense structure-from-motion in the sense of 
producing almost one depth value per pixel but the 
standard mathematical formulation used to express the 
3D reconstruction is nonlinear. Thus, at the end the 

solution is improved/refined by numerical 
optimization, for example with a bundle adjustment of 
initial guesses [Triggs et al. 2000]. Further, these 
methods typically assume, or compute themselves, 
camera pose. Unfortunately, pose estimation is known 
to be challenging because of ambiguities and 
sometimes fundamental ill-conditioning (i.e., small 
variations in the pictures can yield large variations in 
the estimated pose) [Fermüller and Aloimonos 2000]. 
This yields numerical instabilities in the bundle 
adjustment which are typically combated by trying to 
provide an initial guess that is sufficiently accurate or 
imposing constraints on the scene. Our approach 
provides a new formulation which can be used in a 
similar bundle adjustment setting, yielding optimum 
estimates, but provides significantly higher robustness 
to error in the initial estimates. 
Lightfields [Levoy and Hanrahan 1996] and 
Lumigraphs [Gortler et al. 1996] pursue an alternate 
simplification to scene modeling that omits the need to 
explicitly establish correspondences between images 
(Figure 2 bottom) rather than omitting the need to 
provide pose. Although correspondences can be 
estimated via one of several methods, eliminating the 
dependence on correctly establishing correspondences 
has provided significant freedom and subsequent 
research in computer graphics. These methods 
synthesize novel views directly from a very large and 
dense set of captured images. Although Lightfields and 
Lumigraphs have been demonstrated for environments 
of various sizes (e.g., [Shum and He 1999; Aliaga and 
Carlbom 2001; Buehler et al. 2001]), all of these efforts 
do require estimating camera pose (or assume it is 
provided) and do not produce a detailed 3D geometric 
model of the scene. 
Accurately estimating pose is a challenging task 
addressed by several hardware-based and vision-based 
methods. Hardware devices can be installed in an 
environment (e.g., magnetic-, acoustic-, or optical-
based trackers) but require an expensive and custom-
installed infrastructure. Vision-based approaches rely 
on the robust tracking of natural features or on the 

Our Approach 

Figure 2. Camera-based 3D Acquisition Challenges. Standard reconstruction takes pictures, establishes correspondences, estimates pose, 
and reconstructs the geometry and color of the scene. Some efforts, such as Lightfields/Lumigraphs, avoid establishing correspondences by 
taking a very large number of pictures but do not produce a geometric model. In contrast, our approach completely removes pose parameters 
and enables improved geometric reconstruction as well as simple and robust correspondences for producing a geometry and color model. 

Take Pictures 

Establish Correspondences 

Estimate Pose 

Reconstruct Geometry+color 
model 

Lightfields/Lumigraphs 
Color model 

Geometry+color 
model 

Standard Reconstruction 
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placement and tracking of artificial landmarks in the 
scene. Even assuming good features, differentiating 
between translation and rotation changes is difficult 
and makes pose estimation an extremely difficult 
problem. Self-calibration methods rely on features and 
on either assumed scene or geometry constraints to 
estimate camera parameters [Hemayed 2003; Lu et al 
2004]. While convergence to an approximate pose is 
sometimes feasible, it is difficult and not always 
possible [Sturm 2002]. In our approach, we completely 
remove any dependence on assuming accurate self-
calibration is achievable (Figure 2 top).  
Although not fundamental to our method, our current 
work uses structured light but it also improves it by 
integrating a pose-free formulation. Most structured 
light approaches (e.g., [Scharstein and Szeliski 2003]) 
assume a pre-calibrated setup. However, some self-
calibrating approaches have been proposed. 
Nevertheless, to date they use pose-included 
formulations and thus convergence to the correct pose 
is not guaranteed. For example, Furukawa and 
Kawasaki [2005] alternate moving camera or projector 
(but not both) and use a large baseline (e.g., camera-
projector distance is similar to camera-scene distance) 
to capture nearby tabletop objects. This large baseline 
helps their outside-looking-in reconstructions. 
Moreover, the large difference between camera poses 
enables using only crudely-estimated pose parameters 
(and projector focal length). But, they indicate 
sometimes obtaining unstable solutions for distant 
scenes (e.g., inside-looking-out scenes like ours) and 
thus need additional capturing and processing. For 
large scenes, in particular inside-looking-out models, 
wide baseline setups are not practical. In our approach, 
baselines are small (e.g., on the order of one meter in 
ten meter-size rooms) and we demonstrate both inside-
looking-out and outside-looking-in reconstructions. 
Removing pose parameters from reconstruction has 
been partially addressed in previous literature. In some 
early work, Tomasi [1994] obtained a camera-rotation-
free structure-from-motion formulation for a 2D world 
using tangent of angles. Werman and Shashua [1995] 
claimed the existence of third-order equations to 
directly reconstruct tracked feature points but did not 
provide the general form of these equations. 
This work of this article builds upon our previous 
workshop and symposium publications where we 
proposed formulations with less pose parameters and of 
same degree as the standard formulation [Aliaga et al. 
2007, Zhang et al. 2006]. We in addition present a 
pose-free active acquisition system based on structured 
light, extend the approach to support the acquisition of 
multi-viewpoint models, and provide a detailed 
sensitivity analysis and inspection of the improved 
numerical conditioning of our methodology. To the 

best of our knowledge, our work is the first to 
completely remove camera position and camera 
rotation parameters, to successfully use this improved 
formulation to capture large and complex real-world 
3D environments, and to perform an analysis of the 
improved performance.  

3. POSE-FREE FORMULATION 
Our mathematical framework provides a way to 
remove parameters from the standard 3D 
reconstruction equations. As we show, our equations 
are derived from the standard formulation and are, in a 
sense, equivalent to the pose-included equations but the 
need for pose parameters (either position, rotation, or 
both) has been eliminated and instead replaced with 
additional equations. While parameter elimination is 
often possible by increasing the degree of the 
polynomial expressions, our approach obtains new 
formulations that are of the same degree as the original 
equations. Thus, we are removing a more fundamental 
ambiguity in the equations which is what leads to our 
improved performance. To arrive at our new 
formulations, we discover invariants in the projective-
space equivalent of 3D reconstruction equations. Using 
algebraic manipulations, we first obtain a formulation 
free of camera rotation parameters and then, after 
further manipulation, a formulation also free of camera 
position parameters. 

3.1 First Step: Rotation Invariance 
In order to discover a set of rotation-invariant 3D 
equations equivalent to the standard formulation for 3D 
reconstruction, we first express the problem as a group 
transformation where the group parameters include the 
parameters to eliminate (i.e., the camera rotation 
parameters). Then, we find a set of invariants using the 
moving frame elimination method which results in a 
functionally independent generating set of invariants. 
Functionally independent means they are not redundant 
and being a generating set implies that any other 
reconstruction equation set which is independent of 
camera rotation can be derived from these equations. 
Further, it turns out that by working in projective 
space, rather than Euclidean space, the invariants of 
this group action turn out to be simple polynomial 
functions, as opposed to rational functions as it would 
be the Euclidean case.  
We express the standard 3D reconstruction equations 
as a group transformation and parameterize it by a 
rotation ௝ܴ as well as by translation ௝ܶ and a scalar ߣ௜௝. 
The corresponding equations are 

௝ܥ ൌ ௝ܴሾ0 0 െ1ሿ் ൅ ௝ܶ       ሺ1ሻ 

௜ܲ ൌ ௝ܴ ቎൥
௜௝ݔ
௜௝ݕ
0
൩ ൅ λ୧୨ ൭൥

x୧୨
y୧୨
0
൩ െ ൥

0
0
െ1

൩൱቏ ൅ ௝ܶ       ሺ2ሻ 
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where 

௜௝ߣ ൌ
ฮܥ௝ െ ௜ܲฮ

ԡሾݔ௜௝ ௜௝ݕ െ1ሿ்ԡ       ሺ3ሻ 

and ൫ݔ௜௝,  ௜௝൯ represents the 2D coordinates of the 3Dݕ
scene point ௜ܲ observed on the image plane of a camera 
at ܥ௝, and for ݅ ൌ 1. . ܰ scene points and ݆ ൌ 1.  ܯ.
camera images. Without loss of generality, we assume 
in this article a focal length of one, canonical camera 
center at ሾ0 0 െ1ሿ் and looking towards ൅ݖ, no 
radial distortion, no skew, and square pixels. 
Collectively, these assumptions help to simplify the 
mathematical formulations, but are not limitations. 
To yield polynomial invariants, we rewrite the 
aforementioned equations in projective space. In 
particular, we obtain  

൤ ଴ܹ௝ܥ௝
଴ܹ௝

൨ ൌ ൤ ௝ܴ ௝ܶ
0 1

൨ ቎
0
0

െݓ଴௝
଴௝ݓ

቏        ሺ4ሻ 

൤ ௜ܹ௝ ௜ܲ௝

௜ܹ௝
൨ ൌ ൤ ௝ܴ ௝ܶ

0 1
൨

ۏ
ێ
ێ
ێ
ۍ
൦

௜௝ݔ௜௝ݓ
௜௝ݕ௜௝ݓ
0
௜௝ݓ

൪ ൅ ௜௝ߣ ൮൦

௜௝ݔ௜௝ݓ
௜௝ݕ௜௝ݓ
0
௜௝ݓ

൪ െ ቎
0
0

െݓ଴௝
଴௝ݓ

቏൲

ے
ۑ
ۑ
ۑ
ې
 

ሺ5ሻ 
where ଴ܹ௝  and ௜ܹ௝ are the projective coordinates for the 
left-hand-side of equations (1) and (2) and ݓ଴௝ and ݓ௜௝ 
are the projective coordinates for the right-hand-side of 
equations (1) and (2). 
We define an invariant to be a function that takes the 
same values on the orbits of a group. We exploit that 
the projection of the 3D scene points onto a camera’s 
image plane is itself a possible solution to the 3D 
reconstruction (in projective space). Thus, the 
invariants of the group take on the same value when 
evaluated using points on the image and when 
evaluated using points on the object. Each invariant 
known yields an equation relating the image points to 
the object points. Since the invariant does not depend 
on the camera pose, the equation itself does not depend 
on the camera pose.  
In order to obtain a generating set of invariants ܬ ,ܫ, and 
 of the group transformation corresponding to ܪ
equations (4) and (5), we use Fels-Olver version of the 
classical moving frames elimination method [Fels and 
Olver 1998]; namely 

ሻכሺܫ ൌ ఠ೔ೕ

ఠ೔ೕିఠబೕ

ఠభೕ

ఠభೕିఠబೕ
ܳ௜௝ · ܳଵ௝  (݅ א ሾ1, ܰሿ) 

ሻכሺܬ ൌ ఠ೔ೕ

ఠ೔ೕିఠబೕ

ఠభೕ

ఠభೕିఠబೕ
ܳଵ௝ ൈ ܳ௜௝ · ܳଵ௝ ൈ ܳଶ௝ (݅ א ሾ2, ܰሿሻ 

ሻכሺܪ ൌ ఠ೔ೕ

ఠ೔ೕିఠబೕ

ఠభೕ

ఠభೕିఠబೕ
ܳ௜௝ · ܳଵ௝ ൈ ܳଶ௝  (݅ א ሾ3, ܰሿ) 

ሺ6ሻ 
where (כ) are the parameters of the invariant functions. 
This method consists in setting a canonical point on 

each orbit (e.g., the camera center at [0 0 -1], the 
camera viewing direction along a pre-defined vector, 
etc.) and in finding an expression for the group 
transformation that maps any given point of the orbit to 
that canonical point. That transformation is called the 
“moving frame”. Applying the moving frame to the 
parameters of any other function yields an invariant. 
Applying the moving frame to the coordinates of our 
space yields a set of functionally independent 
generating invariants. 
Hence, the parameters of the invariant functions are 
either values in canonical image space (e.g., ߱଴௝ ൌ
,଴௝ݓ ߱௜௝ ൌ ௜௝ and ܳ௜௝ݓ ൌ ሾݔ௜௝ ௜௝ݕ 0ሿ் െ ሾ0 0 െ1ሿ்) 
or values in world space (e.g., ߱଴௝ ൌ ଴ܹ௝, ߱௜௝ ൌ ௜ܹ௝ and 
ܳ௜௝ ൌ ௜ܲ െ  ௝). The points ଵܲ and ଶܲ, and their respectiveܥ
canonical image space projections correspond to 
“anchor points”. The same anchor points do not need to 
be in all images but each pair of anchor points must 
span a sequence of images. For example, we could 
automatically divide a captured image sequence into 
subsequences of images and find at least two anchor 
points per subsequence. 
To obtain the rotation-invariant equations representing 
a 3D reconstruction, we equate the invariants (ܬ ,ܫ, and 
 using the world-space points on the left-hand side to (ܪ
the same corresponding invariants using the scene 
point image projections on the right-hand side. 
Algebraically, using equations (6) with perform the 
substitutions ߱଴௝ ൌ ଴ܹ௝, ߱௜௝ ൌ ௜ܹ௝ and ܳ௜௝ ൌ ௜ܲ െ  ௝ andܥ
then equate the resulting expressions to equations (6) 
substituted using ߱଴௝ ൌ ,଴௝ݓ ߱௜௝ ൌ ௜௝ and ܳ௜௝ݓ ൌ
ሾݔ௜௝ ௜௝ݕ 0ሿ் െ ሾ0 0 െ1ሿ். The right-hand side now 
consists of the known scene point projections and thus 
becomes a set of constants. The projective coordinates 
can be arbitrarily chosen, hence we choose ௜ܹ௝ ൌ 1 and 
଴ܹ௝ ൌ ଴௝ݓ ൌ 2. The result is a set of equations without 

rotation parameters that after further algebraic 
rearrangement can be written as 

ܳ௜௝ · ܳଵ௝ ൌ  ଵ௝݇ଵ௜௝ߣ௜௝ߣ
൫ܳଵ௝ ൈ ܳ௜௝൯ · ൫ܳଵ௝ ൈ ܳଶ௝൯ ൌ ଵ௝ଶߣଶ௝ߣ௜௝ߣ ݇ଶ௜௝      ሺ7ሻ 

ܳ௜௝ · ൫ܳଵ௝ ൈ ܳଶ௝൯ ൌ  ଵ௝݇ଷ௜௝ߣଶ௝ߣ௜௝ߣ

where 

݇ଵ௜௝ ൌ ൥
௜௝ݔ
௜௝ݕ
െ1

൩   · ൥
ଵ௝ݔ
ଵ௝ݕ
െ1

൩ 

݇ଶ௜௝ ൌ ቎൥
ଵ௝ݔ
ଵ௝ݕ
െ1

൩ ൈ ൥
௜௝ݔ
௜௝ݕ
െ1

൩቏ · ቎൥
ଵ௝ݔ
ଵ௝ݕ
െ1

൩ ൈ ൥
ଶ௝ݔ
ଶ௝ݕ
െ1

൩቏ 

݇ଷ௜௝ ൌ ൥
௜௝ݔ
௜௝ݕ
െ1

൩ · ቎൥
ଵ௝ݔ
ଵ௝ݕ
െ1

൩ ൈ ൥
ଶ௝ݔ
ଶ௝ݕ
െ1

൩቏ 
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௜௝ߣ ൌ
௜௝ݓ

௜௝ݓ െ ଴௝ݓ
ൌ

ฮܥ௝ െ ௜ܲฮ

ะ൥
0
0
െ1

൩ െ ൥
௜௝ݔ
௜௝ݕ
0
൩ะ
. 

Finally, to yield equations of the same degree as the 
standard equations, when used in a bundle-adjustment 
style setting, we use a superset of the first equation set 
of (7). The second and third equation sets yield 
equations of degree three and four respectively. 
However, the expanded version of the first set of 
equations can be compactly written as  

൫ ௜ܲభ െ ௝൯ܥ · ൫ ௜ܲమ െ ௝൯ܥ െ  ௜భ௜మ௝      ሺ8ሻܭ௜మ௝ߣ௜భ௝ߣ

where 

௜భ௜మ௝ܭ ൌ ൥
௜భ௝ݔ
௜భ௝ݕ
െ1

൩   · ൥
௜మ௝ݔ
௜మ௝ݕ
െ1

൩ 

for ݅ଵ, ݅ଶ א ሾ1,ܰሿ and ݆ א ሾ1,ܯሿ and each equation is of 
degree two. The expanded equation set (8) contains all 
the solutions of (7) plus a few more. However, the 
expanded system is still zero-dimensional (for generic 
exact coefficients). The extra solution is just a 
reflection of the solution in (7). It will not be a problem 
if (8) serves as the cost function in a minimization 
process because the solutions are far away from each 
other and easily distinguishable. Thus, equation set (8) 
can be used to setup a (typically) over-constrained 
nonlinear optimization for finding a 3D reconstruction 
without needing any knowledge of camera rotation. To 
solve (8) directly, the solution can be put back into the 
equations in (7) and the extra solution can be omitted. 
In practice, this is not necessary. 
Given a sparse set of reconstructed points over the 
image set (i.e., via optimization of equations (8)), we 
can reduce the equations to a linear system. This allows 
using linear least squares to solve for most scene points 
very quickly and still without any rotation parameters. 
More details of this option are in [Aliaga et al. 2007]. 

3.2 Second Step: Position+Rotation Invariance 
The next step is to further remove the need for 
estimating camera positions during 3D reconstruction. 

Based on the uniqueness of ݅ଵ and ݅ଶ, we divide all the 
equations in (8) into three sets and combine them in 
such a way as to algebraically cancel the parameters ܥ௝. 
In particular, from (8) we obtain 

௜భ௜మ௝ܨ ൌ ൫ ௜ܲభ െ ௝൯ܥ · ൫ ௜ܲభ െ ௝൯ܥ െ  ௜భ௜భ௝    ሺ9ሻܭ௜భ௝ߣ௜భ௝ߣ

௜భ௜మ௝ܩ ൌ ൫ ௜ܲభ െ ௝൯ܥ · ൫ ௜ܲమ െ ௝൯ܥ െ  ௜భ௜మ௝    ሺ10ሻܭ௜మ௝ߣ௜భ௝ߣ

௜భ௜మ௝ܪ ൌ ൫ ௜ܲమ െ ௝൯ܥ · ൫ ௜ܲమ െ ௝൯ܥ െ  ௜మ௜మ௝    ሺ11ሻܭ௜మ௝ߣ௜మ௝ߣ

which can be combined as ܨ െ ܩ2 ൅  and produce ܪ
ܳ௜భ௝ · ܳ௜భ௝ െ 2ܳ௜భ௝ · ܳ௜మ௝ ൅ ܳ௜మ௝ · ܳ௜మ௝ െ 

൫ߣ௜భ௝
ଶ ௜భ௜భ௝ܭ െ ௜భ௜మ௝ܭ௜మ௝ߣ௜భ௝ߣ2 ൅ ௜మ௝ߣ

ଶ ௜మ௜మ௝൯ܭ ൌ 0      ሺ12ሻ 

where ܳ௜௝ ൌ ௜ܲ െ  ௝. After simple algebraicܥ
cancellations, we obtain the following equation set 

ฮ ௜ܲభ െ ௜ܲమฮ
ଶ െ ሺߣ௜భ௝

ଶ ௜భ௜భ௝ܭ െ ௜భ௜మ௝ܭ௜మ௝ߣ௜భ௝ߣ2 ൅ ௜మ௝ߣ
ଶ ௜మ௜మ௝ሻܭ ൌ 0 

ሺ13ሻ 
that is now void of any camera position parameters. 
We can also place equation (13) into an optimization 
framework in order to find a 3D reconstruction without 
any parameters for, or assumptions about, camera 
position and camera rotation.  

3.3 Optimization 
In a generic case, given enough images and 
correspondences, equation sets (8) and (13) are over-
constrained, in which case we can reconstruct scene 
points defined up to a rigid transformation including a 
rescaling of the size of the scene (e.g., the 7 parameters 
of world-space position, rotation, and scale of the 
acquired model). An optimization of the rotation-
invariant equations (8) is useful when camera position 
information is available (e.g., via a global-positioning 
system, a laser-positioning system, etc.). In this article, 
we focus on the full pose-free formulation. Thus, the 
optimization consists of finding the values for ௜ܲ and 
 ௜௝ in equation set (13) using, for example, a sparseߣ
nonlinear least squares or conjugate gradient method. 
The equations to minimize are 

෍ ෍ቀฮ ௜ܲభ െ ௜ܲమฮ
ଶ െ ሺߣ௜భ௝

ଶ ௜భ௜భ௝ܭ െ ௜భ௜మ௝ܭ௜మ௝ߣ௜భ௝ߣ2

ெ

௝ୀଵ

ே

௜భ,௜మୀଵ

൅ ௜మ௝ߣ
ଶ ௜మ௜మ௝ሻቁܭ

ଶ
.  ሺ14ሻ 

For a scene of ܰ scene points and ܯ images, there are 
3ܰ ൅  unknowns (three coordinates for each scene ܯܰ
point and one value for ߣ for each observation of each 
scene point). Equation set (14) defines at most ܰሺܰ െ
1ሻ/2 constraints for each image, because a total of ܰ 
points provide us with ܰሺܰ െ 1ሻ/2  scene point pairs. 
However, these equations are not all independent. As 
depicted in Figure 3, assuming that the overall scale of 
the scene is known, four scene points provide 6 
independent equations. When adding another scene 
point, we only get 3 more independent equations. Thus, 

a) b) 

Pi2
 (xi1j, yi1j) 

Pi1
 

Cj 

Figure 3. Pose-free Formulation. (a) Two scene points and the 
image’s COP define a triangle in space where the distance 
between scene points can be written independent of the COP. (b) 
Scene points are paired into independent equations yielding 6 
equations for 4 points, 9 equations for 5 points, 12 equations for 6 
points, and (3N-6) equations in general for a single image 
observing N scene points. 

(xi2j, yi2j) 
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ܰ points provide us 3ܰ െ 6 independent equations in 
one image. For ܯ images, there are a total of ሺ3ܰ െ
6ሻܯ independent equations. Thus, the system is over-
constrained when 

ሺ3ܰ െ 6ሻܯ ൒ 3ܰ ൅  ሺ15ሻ      ܯܰ
This inequality is satisfied by either a minimum 
number of images or by a minimum number of scene 
points. For example, given only 3 images and at least 6 
points or given only 4 points and at least 6 images 
yields a well-defined arrangement of scene points. In 
practice, both of these cases are easily satisfied. 

4. ACQUISITION 
Given our new pose-free formulation, acquisition 
consists of simply pointing an uncalibrated digital 
projector at the scene and taking a cluster of pictures 
using our acquisition device freely placed at three or 
more viewpoints and then recovering scene geometry 
(Figure 4). A single laptop, connected to the 
acquisition device and to the projector, renders all 
patterns and takes all pictures automatically. The 
projector creates active correspondences that are used 
by our method. Once picture-taking is complete, a 
second automated process uses the dense set of 
corresponded points to obtain a model of the geometry 
of the scene. Reference images are then projected onto 
the model, yielding a dense 3D texture-mapped model. 

4.1 Active Correspondence 
While numerous passive correspondence algorithms 
have been proposed, active correspondence approaches 
have the advantage of added robustness [Ribo and 
Brander 2005; Salvi et al. 2004]. Ideally, an active 
system irradiates light that covers each surface point 
with a unique spatial or temporal pattern. Since our 
approach does not depend on pose information, the 
active system’s performance does not hinge on its 
accurate calibration with respect to the camera. 
Moreover, the patterns and/or location of the active 
system can change once enough images of the same 
scene points have been acquired. 

Our system uses an uncalibrated structured-light setup 
and a spatio-temporal pattern to encode sampled scene 
points uniquely. The projector automatically cycles 
through a binary pattern of horizontal and vertical 
stripes and their complementary patterns. Figure 5a 
contains a few of the initial vertical stripe patterns 
projected onto an example scene. The sequence of ܤ 
binary patterns (and its complements) defines a ܤ-bit 
gray-code sequence for each projector pixel. While the 
acquisition device is at the same (unknown) location, it 
captures a view of the scene with each of the 2ܤ 
projected patterns. After all patterns are projected and 
captured, the classification chooses the brighter pixel 
of the associated pattern and its complement to 
determine if the pixel is on or off for each bit of the 
gray-code [Scharstein and Szeliski 2003]. Thus, pixels 
at the intersection of horizontal and vertical stripes are 
uniquely labeled and robustly corresponded.  

4.2 Depth Estimation 
Approximate depth estimates, and thus the scales ߣ௜௝, 
for the observed scene points can be obtained by one of 
numerous methods. As we will show, our 
reconstruction formulation is very robust to noise; thus, 
a highly accurate depth estimate is not required. 
Methods such as depth-from-defocus (e.g., [Favaro and 
Soatto 2005; Zhang and Nayar 2006]) augmented with 
robust outlier handling would yield a single-camera 
solution for estimating per-pixel depth but would 
potentially need to acquire several images at different 
focus settings and thus increase capture time. Instead, 
we use as our atomic acquisition device a compact pair 
of rigidly-connected cameras. The camera-pair is 
internally calibrated once and the cameras are placed as 
close together as practical (about a few centimeters 
between cameras bodies – just enough for the cables).  
The depth estimates to be obtained are coarse because 
the two cameras have a very small baseline as 
compared to the distance to the scene. Since the 
employed projector is already cycling through the 
structured light patterns to establish correspondences 
between multiple acquisition-device locations, the two 
cameras of the acquisition device simply capture 
images at the same time. The image-space 
displacements of corresponding scene points from one 
camera to the other camera inside the device provide 
coarse scene point depth estimates, without increasing 
the overall capture time. Given the baseline between 
the camera centers and the corresponded 2D pixels 
obtained via structured light, the two rays through the 
corresponded pixels are shot into the scene and 
triangulation is used to estimate the 3D point best 
approximating their intersection. Figures 5b and 5d 
show the initial scene point estimates computed from 
structured light. One of the two cameras internal to the 

View #3  

View #1  
Projector  

View #2  

Figure 4. Image Capture. An operator simply points an 
uncalibrated projector at the scene and takes pictures from 3 or 
more viewpoints. From this, our method creates a 3D model of 
the scene. 
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acquisition device is chosen as the representative 
center-of-projection and its image, with corresponding 
depth-estimates, is used for further processing. 
An alternative setup for obtaining depth would be to 
use the projector and only one camera as the 
acquisition device, as is the case with standard 
structured-light. However, since neither device is 
calibrated, we could not obtain depth estimates unless 
we calibrate the pair of devices. This, however, would 
prevent the flexibility of freely moving the acquisition 
device and/or projector during capture. 

4.3 Scene Reconstruction 
Given values for ܰ and ܯ that satisfy the inequality of 
Equation (15), we recover the 3D information of the 
scene by numerically solving for the unknown scene 
points ௜ܲ and generalized disparities ߣ௜௝ in equations 
(14). Although we solve for ߣ௜௝, they are typically 
discarded after being computed. A spatial hierarchy is 
used to organize the scene points and to significantly 
reduce computation time. The result is the recovery of 
a dense set of scene points observed in as little as three 
images. The dense points are easily triangulated in 
image space and later texture-mapped. 

Initializing the Optimization 
To obtain initial values for the scene points and for the 
disparities, recall that our formulation only cares about 
the relative distances between scene points and thus the 
absolute location of the scene points is irrelevant. 
Hence, we arbitrarily pick the world coordinate system 
of one of the acquisition devices and use it and its 
estimated depths to the scene points as the initial 
positions. Given the depth estimates computed as 
described in Section 4.2, the initial ߣ values for each 
scene point and per image are calculated using 
Equation (3). 
Figures 5b-e contain example scene points before and 
after an optimization. If points are observed from near 
the camera/projector, they seem accurate, as expected. 

However, viewing the points from a sideways viewing 
angle (e.g., about 30 degrees and 60 degrees in this 
figure) reveals their inaccuracy. Our optimization 
improves all points to a more truthful and consistent 
position (Figures 5c and 5e). Occluded areas will be 
filled-in as described in Section 5. 

Spatial Hierarchy 
To reduce the computation time of the optimization, 
our system uses a spatial hierarchy of the scene points 
to first optimize a smaller but evenly-distributed subset 
of the scene points and then optimize the remainder of 
the points. Equation set 14 computes a sum of error 
terms where each term involves pairing every scene 
point with every other scene point and over all images. 
This results in O(ܰܯଶ) terms to evaluate in each 
iteration of the optimization. Since our active 
correspondence system produces a very large number 
of scene points (e.g., a 1kx1k projector can produce up 
to 1 million scene points), the cost of a full 
optimization is excessive. Thus, a spatial hierarchy is 
used to choose a subset of A scene points and to reduce 
the number of terms to O(ܣܯଶ ൅ܣܰܯ), e.g., O(ܣଶ) 
point-to-point equations (13) are defined for each of ܯ 
images, and instead of O(ܰܯଶ) equations between all 
other points, only ܣ points are related to the remaining 
O(ܰ) points and for all images, this yielding an 
additional O(ܣܰܯ) equations. Our results show that a 
subset of a few hundred scene points yields similar 
reconstruction accuracy as the full set of terms but at a 
small fraction of the time cost. 
In our system, we use an octtree data structure 
containing all scene points and perform the 
optimization in two phases. In a first optimization 
phase, the top ܣ ൒ 4 points observed in six or more 
images are extracted from the octtree and fully 
optimized. In a second optimization phase, the ܣ scene 
points and their disparities are kept constant and are 
paired with all the remaining ሺܰ െ ሻܣ ൒ 6 scene points 
observed in three or more images, yielding the final 
dense set of points for triangulation. 

a) b) c) d) e)
Figure 5. Reconstruction Sequence. (a) The projector shines binary patterns into the scene in order to robustly compute corresponded pixels. 
(b, d) The relatively lower accuracy of the scene points obtained directly from structured light is clearly visible. (c, e) Our method improves the 
scene point estimates -- observe the grid-like arrangement of scene points (expected result due to the stripe patterns used for correspondence), 
the planarity of the walls and furniture surfaces, and other clearly visible formations; e.g., on the wall is a slightly tilted painting which notably 
appears in (e). (Note: only 1/10th of points are shown.) 
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5. LINKING ACQUISITIONS 
To extend acquisition beyond the surfaces visible by 
one projector, we link together multiple acquisition 
clusters using a single global reconstruction. The 
capture task consists of taking pictures and alternating 
between changing camera and projector locations. 

5.1 Camera-Projector Chains 
Our approach defines a mechanism that links together 
multiple acquisitions of a scene of arbitrary size, 
whereby no additional correspondences must be found 
and no relative or absolute pose is needed or computed. 
The reconstruction process for a single projector at 
most recovers the points visible from the projector’s 
viewpoint. By moving the projector to a different 
location and taking another cluster of pictures of more 
surfaces, our approach can obtain a multi-viewpoint 
reconstruction but does not have to align the range 
maps as a post-process. The key to our linking process 
is to use the acquisition device placed at one or more 
arbitrary locations to capture images for one or more 
acquisition clusters. As we will show, this will enable 
directly producing a multi-view model. 
While there is a vast literature for aligning range maps, 
most techniques pursue a rigid transformation for 
bringing disjoint but overlapping range maps into 
alignment (e.g., Besl and McKay 1992, Johnson and 
Hebert 1999, Huber and Hebert 2003, Rusinkiewicz 
and Levoy 2001). Merrell et al. 2007 merges multiple 
depth maps without needing a rigid transformation but 
assumes calibrated views (i.e., pose is known). 
Furthermore, range maps created and optimized 
separately might have produced different surface 
solutions. Thus, there might not be a rigid 
transformation that brings the maps into tight 
alignment. In the case of Merrell et al. 2007, they use a 
visibility-based methodology to choose the most likely 
solution but their fusion methods can choose the wrong 
one yielding inaccuracies. In contrast, we perform a 
single optimization that does not require choosing 
which samples to use, produces a single coherent and 

tight mesh, is close to a global consensus, and does not 
require any pose information relating range maps. 
We exploit the dense correspondence that is established 
between two (or more) reconstructions and map the 
data to a single optimization. By increasing the number 
of projectors used, we capture clusters of pictures that 
share viewpoints (Figure 6a). For example, consider 
capturing a cluster ܥ஺ and a cluster ܥ஻ both of six 
viewpoints. After images for the fifth viewpoint of ܥ஺ 
are captured, we position a second projector ܤ at the 
desired location for cluster ܥ஻ and, without moving the 
acquisition device, capture the first set of pictures for 
 ஻. Similarly, we repeat this operation for the sixthܥ
viewpoint of cluster ܥ஺ and, without moving the 
acquisition device, for the second viewpoint of ܥ஻. 
Now, cluster ܥ஺ and ܥ஻ share two viewpoints and we 
capture the rest of the pictures for cluster ܥ஻. The two 
shared viewpoints establish a dense correspondence 
between the labeled and corresponded scene points of 
 ஻. This provides us with informationܥ ஺ with those ofܥ
to robustly and precisely perform the two 
reconstructions simultaneously and to recover 
consistent scene geometry among the two 
reconstructions, all in a single optimization.  
Generalizing our scheme to ܲ projectors yields many 
possible combinations for linking acquisitions. 
Assuming a constant number of images per cluster ܯ, 
the base case of ܲ ൌ 1 enables sharing at most one 
viewpoint between two clusters (Figure 6b). For ܲ ൌ 2, 
the configurations at most resemble a sequence of star-
patterns linked to a neighboring star-pattern via a 
single overlapping cluster (Figure 6c). This setup is 
useful, for example, to capture long sequences of 
clusters or to reduce the amount of occluded surfaces 
by performing multiple captures of the same part of the 
scene. For ܲ ൒ 3, cycles are possible and thus the 
configurations can resemble connected graphs (Figure 
6d). Each cluster corresponds to a node and cluster-
intersections correspond to edges. The maximum 
number of edges incident on each node corresponds to 
the number of intersected clusters ܥ ൑  and the ܯ

Cameras 

a) 

Projector B Projector A 

b) c) d) 

Projectors 

Figure 6. Linking Acquisitions. (a) Our approach links two clusters into a single consistent model by using at least two common viewpoints. 
The linking mechanism generalizes to P projectors. Each cluster is color coded with common viewpoints having multiple colored rings; (b) 
for P=1 and M=6 only one viewpoint can be shared, but (c) for P=2 and M=6 linked star-patterns, and (d) for P≥3 and M=6 linked cycles 
can be produced. 
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maximum length of a cycle is equal to the number of 
projectors. This arrangement is useful to capture 
images using, for instance, projectors around an object. 

5.2 Global Reconstruction 
When using camera-projector chains, we seek a single 
globally-consistent recovery of scene geometry. Each 
cluster, one its own, would provide a solution unique 
up to a rigid transformation and a global scale. To 
ensure a rigid relationship between clusters, the 7 
parameters of this transformation (e.g., 3 translation 
values, 3 rotation values, and one scale factor) must be 
implicitly accounted for during the reconstruction 
optimization. Our approach accounts for these degrees 
of freedom by using distance constraints between scene 
points of the clusters. The optimization does not 
produce a transformation matrix and scaling factor 
between clusters. Rather, the scene points obtained 
during the reconstruction optimization are implicitly 
connected and tightly aligned amongst all clusters. 
By having as few as two images in common between 
clusters, we have enough extra equations to restrict the 
relationship between clusters to be unique. For one 
image in common between two clusters, there are 2ܰ  
scene points observed in the common image. This 
provides 3ሺ2ܰሻ െ 6 ൌ 6ܰ െ 6 independent equations. 
Each cluster has already used 3ܰ െ 6 independent 
equations for its own reconstruction. Thus, there are 
ሺ6ܰ െ 6ሻ െ 2ሺ3ܰ െ 6ሻ ൌ 6 extra equations, which is 
less than the needed 7 equations to match the degrees 
of freedom between clusters. Thus, to produce a single 
global reconstruction, at least two viewpoints must be 
shared between intersecting clusters (Figure 7). The 
optimization proceeds as in Section 4.3 and no rigid 
transformation is actually applied to any of the clusters. 

6. IMPLEMENTATION DETAILS 
Our system uses software written in C/C++ and 
employs off-the-shelf hardware. The acquisition 

devices consist of Optoma EP910 DLP projectors 
(1400x1050 pixels) and two Digital Rebel XTi cameras 
(3888x2592 pixels), all connected to a single laptop. 
The two cameras of the acquisition device are rigidly 
connected and their internal parameters and relative 
positions are calibrated once using standard calibration 
software. Acquisition is remotely-controlled via a USB 
cable and a SDK. Exposure settings are fixed for all 
images except for one reference image per cluster 
captured from the cluster’s viewpoint closest to its 
projector. The reference images are used for coloring 
the scene points of each cluster. 
Scene point outliers are aggressively culled by three 
methods. First, clusters of camera pixels that belong to 
one projector pixel and that span too much image area 
are automatically culled. The remaining clusters of 
camera pixels are used to obtain subpixel-accurate 
point registrations between projector and camera 
pixels. Our method fits edges to the boundaries of the 
strip patterns and computes the intersection of a 
horizontal stripe edge and a vertical strip edge. Second, 
optimized points not sufficiently close to other samples 
are automatically removed as well. Third, large isolated 
clusters of outlying points are quickly removed using 
simple interactive bounding-box culling. 
To obtain a triangulation, we create a 2D Delaunay 
triangulation of each cluster’s scene points in the 
image-space of each cluster’s reference image. 
Excessively large triangles are ignored as well as large 
skinny triangles produced near depth discontinuities. 
All triangulations are rendered simultaneously and 
blended using a custom vertex/shader. To combat 
rendering artifacts due to finite precision z-buffer, the 
custom shader averages triangles that overlap and are 
at a very similar depth from the camera. 

7. RESULTS AND DISCUSSION 
We acquired four example datasets using our system: 
Kitchen, Lab, Corner, and Rabbit (Table 1). The scenes 

Figure 7. Global Multi-
viewpoint Reconstruction. The 
top row shows reconstructed 
scene points and the bottom 
row contains texture-mapped 
triangulations of the same 
scene points. The scene points 
for both clusters were solved 
for in a single reconstruction. 
(a) Reconstruction of cluster A. 
(b) Reconstruction of cluster B. 
(c) Both clusters rendered 
together. 

a) b) c)
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range from 1 to 10 meters in diameter, are captured by 
2 to 4 clusters sharing two viewpoints between clusters, 
and result in 0.14 to 1.2 million points and 0.28 to 2.5 
million triangles each. All clusters contain 6 
viewpoints except for the third cluster of Lab which 
contains 8. At each viewpoint, acquisition temporarily 
captures 81 pictures consisting of 10 projected 
horizontal-stripe patterns, 10 projected vertical-stripe 
patterns, their complements (an additional 20 images), 
repeated for the second camera (an additional 40 
images), and one image of the scene under normal 
room illumination. After creating initial scene points, 
only one reference image per cluster is conserved. For 
one viewpoint, the cameras take about 3 minutes to 
capture and store all images to camera memory. As 
listed in Table 1, we obtain data from 10 to 20 
viewpoints, thus total picture-taking time ranges from 
about 30 to 60 minutes per dataset. 

7.1 Optimization 
The scene points of our datasets are automatically 
recovered using our pose-free formulation. As 
described in Section 4.3, in a first phase, we use an 
octtree to select and then reconstruct a small and well 
distributed set of scene points. Experimentally, we 
found using a few hundred scene points sufficient and 
thus all datasets use 200 points in this phase. Then, in a 
second phase, we fix these points and use them to 
recover the remaining one million or so points per 
dataset. We equally distribute the remaining points 
among a collection of six 900MHz Itanium-based PCs. 
Phase one completes in a few minutes and phase two 
takes approximately 6-8 hours for the largest datasets. 

Figure 8 shows several views of the scene points before 
and after optimization for one only cluster of the 
Kitchen and the Lab datasets. Our approach 
reconstructs a variety of surface types, including planar 
surfaces as is clearly visible in Figures 8c and 8d.  

7.2 Linking Acquisitions 
Since we perform a global reconstruction for one or 
more clusters, the solutions fit together nicely. Figures 
9a-c show views of the Kitchen dataset which contains 
two linked clusters (Figure 9a and 9b). The seam of the 
clusters is almost impossible to see both from a 
viewpoint near the capture location (Figure 9b) and 
from a viewpoint very far from the capture location 
(Figure 9c; close-up and top-down view of the cabinets 
from slightly behind them). Figure 9d contains a close-
up of the filing cabinet in the Lab dataset. A wireframe 
rendering of two overlapping clusters is shown both 
separately and together with blending. These images 
illustrate how well the multiple acquisitions fit together 
even without an ICP process and, of course, without 
any pose information. 
By changing the order of moving cameras and 
projectors as well as the number of projectors, we can 
link clusters in different ways. Figure 10 is an example 
of clusters connected together using only two 
projectors and Figure 11 is an example using three 
projectors. Figures 10a-d show the four clusters of the 
Lab dataset and several example views. Using only two 
projectors, we essentially move one projector past the 
other and progressively construct the multi-view 
model. In addition, combining acquisitions from 
multiple viewpoints enables us, for example, to see 

 

Name Clusters Images Views Points per Cluster Total Points Total Triangles 
Kitchen 2 12 10 288,681 398,600 -- -- 687,281 1,374,499 

Lab 4 26 20 219,506 374,416 261,294 336,524 1,191,740 2,391,694 
Corner 4 24 18 307,247 281,489 323,614 322,806 1,234,156 2,470,165 
Rabbit 3 18 12 58,776 50,834 31,114 -- 140,724 281,340 

Table 1. Datasets. We show a summary of our four datasets. 

b) 
Figure 8. Optimization. Kitchen dataset before and after optimization: (a) triangulation of initial scene points, (b) initial scene points, (c) scene 
points after optimization, and (d) triangulation after optimization. Lab dataset before and after optimization: (e) triangulation of initial scene 
points and (f) triangulation after optimization. In both, observe the reduced noise, planarity of the walls, and surface details. 

a) c) d) e) f)
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both sides of the thin-wall divider near the desk 
(compare Figure 10b to Figure 1a and 1b).  

Figures 10e-h show an alternative capture sequence 
also using two projectors. In the Corner dataset, one 
projector is kept fixed (but still at an unknown 
location) and the other projector moves to capture three 
additional clusters linked to the cluster of the fixed 
projector. This arrangement serves to capture many 
more of the surfaces in the same area of the scene. 
Figures 10e shows the fixed cluster while Figures 7a, 
7b, and 10f show the other clusters. Figures 10g and 
10h show renderings of the dataset from very different 
viewing positions and directions. 
Figure 11 demonstrates how using three projectors 
enables capturing a cycle of clusters. To additionally 
demonstrate the flexibility of our approach to other 
scene types, we place three projectors approximately 
equally-spaced around a small statue and acquire three 
linked clusters. The cycle ensures the first and last 
clusters are in geometric agreement. Although the 
model is not zippered together, the single optimization 
and reconstruction provides tightly fitting meshes that 
we just render simultaneously. Accumulative global 
deformations can occur, but in practice, our method 
provides high accuracy. 

7.3 Analysis 
To analyze and compare the behavior of the standard 
pose-included and our pose-free formulations, we 
perform a sensitivity analysis [Saltelli et al. 2008] and 

c)
b) 

right cluster 

Figure 9. Linking Acquisitions. (a) View of left and right 
clusters. (b) Front view and (c) bird’s eye view of Kitchen 
dataset. (c) Close-up of filing cabinet in Lab dataset. Notice the 
tight fit of the clusters in both examples. 

cluster 1 cluster 2 clusters 1+2 

d) 

a) 

left cluster 

g) 

b)

a) c) d) 

f) e) h) 
Figure 10. Example Datasets. We show an example of linking clusters in two scenes: (a) the four clusters of the Lab dataset, (b-d) several 
views of the Lab dataset from different viewpoints -- observe how both sides of the thin-wall divider are captured (compare Figure 10b with 
Figure 1a and 1b), (e-f) two remaining clusters of the Corner dataset, and (g-h) views of Corner dataset from very different viewpoints. 
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look at the conditioning for numerical optimization. 
Performing an algebraic analysis is difficult because 
the two formulations consist of a different total set of 
equations and different parameters. Instead, we 
evaluate the global behavior of the formulations via a 
sensitivity analysis of perturbing the pixel observations 
and the input parameters and then measuring the effect 
on the final reconstruction. In addition, our 
conditioning analysis gives us insight into the local 
numerical behavior of the two formulations. 

Sensitivity 
To perform a fair side-by-side sensitivity comparison, 
we contrast our pose-free formulation to a standard 
pose-included formulation using an in-common bundle 
adjustment style framework. The exact same 
optimization library is used for both formulations, in 
particular an implementation of Levenberg 
Marquardt’s method for nonlinear least squares 
optimization using analytically computed derivatives. 
We obtained a ground truth model for each dataset by 
using a subset of the scene points and their best 3D 
estimates. Using these values, we fix the scene points 
and compute a perfectly consistent set of camera poses 
and scene point projections. Then, we divide the input 
parameters for the pose-included formulation into three 
unique categories: camera position parameters ܥ௝, 
camera  rotation parameters ௝ܴ, and scene point 
parameters ௜ܲ. For the pose-free formulation, we only 
have one unique category: scene point depth 
parameters ݀௜௝ from which ߣ௜௝ values are computed; 
the initial estimates for the scene points are defined as 
points along the projection rays of an arbitrary camera 
݆ and at a distance ݀௜௝ from the center-of-projection 
and along the +z axis. The pixel locations ൫ݔ௜௝,  ௜௝൯ ofݕ
the observed scene point projections constitute another 
category common to both formulations. 
To analyze the sensitivity of the two formulations, we 
start with the ground truth values and add random 
Gaussian noise to all unique combinations of the 

parameter categories. In Figure 12, we report a 
summary of the most interesting behaviors. In these 
graphs, the horizontal axis is proportional to the 
standard deviation of the amount of Gaussian noise 
added and expressed as a percentage of the maximum 
parameter value. For instance, for positional errors it 
corresponds to a percentage of the world space model 
diagonal and for rotational errors it corresponds to a 
percentage of the maximum rotational error (i.e., 180 
degrees). The vertical axis is proportional to the 
average distance between a sparse but widely 
distributed set of reconstructed scene points (i.e., 
ܰ ൌ 30) and their known ground truth location using a 
dataset with six camera observations (i.e., ܯ ൌ 6). The 
values of the vertical axis are expressed as a percentage 
of the world-space diagonal of each scene. Further, 
each datapoint in the graph is the average of 20 
optimization runs, each using a different random-error-
added set of values for the parameters and/or scene 
point projections. To compensate for global 
translations, rotations, and scaling that might occur 
between the ground truth and the reconstructed model, 
we perform an ICP-based optimization in order to 
compute how to rotate and translate the reconstructed 
points so as to best align with the ground truth (we 
include a global-scale parameter in this optimization as 
well). This results in one linear transformation matrix 
which is applied to the reconstructed scene points 
before comparing them to ground truth. 
In general, our pose-free formulation is significantly 
less sensitive to error in the parameters and pixel 
observations. Figures 12a-b show the results of a subset 
of the tests. For the pose-included formulation, we 
show the effect of introducing increasingly more error 
only to camera positions, only to camera rotations, only 
to scene points, and then to all parameters. As would 
be expected, the pose-included formulation is most 
robust to error when such error is only present in the 
relatively small number of camera position parameters 
(e.g, 3ܯ unknowns). As seen in the graphs, our pose-
free formulation is in fact only slightly less robust to 
noise than the aforementioned case despite the much 
larger number of unknowns (i.e., 3ܰ ൅  .(ܯܰ
Moreover, our formulation as compared to the pose-
included formulation with error in all parameter 
categories is up to an order of magnitude less sensitive 
to error.  
Figure 12c shows the reconstruction errors of the 
Rabbit dataset after increasingly adding error to the 
parameters. This object is small as compared to the 
distance from the camera to the object and occupies a 
small subset of the field-of-view of the camera; 
nonetheless the views of the object are from very 
distinct vantage points. A consequence of this 
configuration is that the scene points are relatively near 

c) b) 
Figure 11. Object Capture. (a) Three linked clusters forming a 
cycle (show as red/green/blue points). (b-c) Full and close-up view 
of statue. 

a) 



ACM Transactions on Graphics, to appear, 2009. 
 

 14

each other and thus the standard formulation is 
particularly sensitive to the accuracy of the initial 
estimates of the scene points. In contrast, our method is 
able to recover a noticeably more correct model of the 
object. This is due in part to the additional equations of 
our method and to the better conditioning of the 
numerical optimization as will be described shortly. 
Figure 12d contains a summary of the reconstruction 
errors of all our datasets, for both formulations, and for 
relatively small error ranges added to the parameters 
(e.g., from 0 to 16% input error). In all cases, it is clear 
that our method exhibits significantly less sensitivity to 

error; the graph lines for our method are grouped 
together at the bottom of the graph. Both approaches 
exhibit a roughly linear behavior with respect to input 
error but the slope generated by our method is 
considerably less.  
Figures 12e-f compare the sensitivity of both 
formulations to when errors are present in the observed 
locations of the scene point projections (e.g., 
structured-light pixel correspondence error) and in all 
input parameters. The error levels for the parameters 
are the same as for the corresponding cases in Figure 
12d. However, the numbers in the horizontal axis 

 
a)                                                                                      b) 

 
c)                                                                                      d) 

  
e)                                                                                      f) 

Figure 12. Sensitivity Analysis. a-b) Report the sensitivity of the reconstruction to gradually more error introduced to the parameters for two 
datasets; pose-included refers to error introduced to all parameter categories of the standard formulation, pose-free refers to our 
formulation, and campos/camrot/point refers to error only added to the corresponding parameter category of the pose-included formulation. 
c) Shows the behavior of the rabbit dataset with parameters increasingly perturbed which, due to its configuration, is particularly sensitive to 
errors in the initial scene point estimates. d) For all datasets, show with parameters increasingly perturbed the reconstruction error of using 
the pose-included formulation and the error obtained using our pose-free formulation. e) For all datasets, show the errors obtained after 
increasing perturbations of all parameters and all pixel observations. f) Shows a close-up of the smaller perturbation range of (e). In Figures 
c, d, e, and f, the graph lines for the pose-free approach are consistently grouped together at the bottom of the graph.  In all cases, our 
method is significantly less sensitive than the pose-included one and by up to an order of magnitude. 
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represent the amount of random Gaussian pixel noise 
added to scene point projections. Similar to the 
previous graphs, our pose-free formulation shows 
significantly more robustness to error. Our formulation 
yields reconstructions 5 to 10 times more accurate than 
the pose-included formulation even when there is error 
in the input parameters and error in each pixel 
observation ranging from about 1 to 40 pixels. As a 
side note, we also tested the effect of only adding error 
to the pixel observations (i.e., all other parameter 
categories are left at their ground truth value). 
However, for errors of 1 to 40 pixels our formulation 
behaved slightly better but both yielded reconstruction 
errors ranging from a small epsilon to 1.5% on average. 

Conditioning 
Figure 13a shows the condition numbers of Jacobians 
(i.e., matrix of partial derivatives) used during the 
nonlinear least squares optimization of both 
formulations. As is often the case during a nonlinear 
optimization (and is the case with the Levenberg-
Marquardt method we use), the Jacobian is used to 
devise a local linear approximation to the system of 
equations and to perform a small step towards the 
solution. We measure the condition number of the 
Jacobian as a way to quantify the conditioning of the 
overall solution finding process – a large condition 
number indicates difficulty in finding the solution 
using finite precision computations.  
For both formulations, the Jacobian is computed 
analytically and its condition number (i.e., ratio of 
maximum to minimum singular values) is computed 
using solution vectors at various distances from the 
true solution. In similar style to the previous graphs, 
the horizontal axis represents amount of error (i.e. 
distance from solution) added to all input parameters, 

expressed as a percentage of the model diagonal. 
Further, each datapoint is the average condition 
number over 20 random trials. The pose-included 
formulation consistently demonstrates large condition 
numbers very near the solution and then a range of 
smaller condition numbers, but still of large absolute 
value, until about 5% error in the parameters. The large 
condition number very near the solution can be 
expected due to values oscillating near zero. 
Nevertheless, our pose-free formulation consistently 
shows drastically better condition numbers near the 
solution and even considerably far from the solution. 
The condition number remains relatively constant (e.g., 
about 100 in these examples), even to higher input 
parameter error not explicitly shown in the graphs. The 
better conditioning of our formulation is one of the 
main reasons our method is more robust to error in the 
input parameters. 
Figure 13b revisits the Rabbit dataset and shows a 
behavior of the condition number that at least partially 
explains the reconstruction behavior observed in Figure 
12c. For this dataset, the Jacobian of the standard pose-
included formulation has a reasonable condition 
number for only a small range near the solution yet our 
formulation exhibits a well-conditioned Jacobian for a 
much larger range. This explains why the 
reconstruction is very sensitive to noise in scene point 
parameters yet our pose-free formulation, having a 
similar number of noisy parameters, is more robust. 

7.4 Limitations 
With regards to limitations, our current system does not 
account for lighting changes from one viewpoint to 
another, some surfaces are not sampled well, and the 
removal of pose parameters comes at the expense of 
additional equations to solve (though the computation 

 
a)                  b) 

Figure 13. Conditioning Analysis. a) We show the condition number of the Jacobian matrices used during the same optimization method 
for the standard pose-included formulation and for our pose-free formulation. Our formulation shows a clearly superior conditioning which 
then leads to better behavior within a numerical optimization. b) We highlight the conditioning numbers for the Rabbit dataset. The 
exhibited condition numbers at least partially explain the behavior of the Rabbit dataset in Figure 12 and show the superior robustness of 
our method. 
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is automatic and highly parallelizable). Surfaces at 
grazing angles, points not observed in three or more 
images, surfaces dominated by indirect lighting effects, 
and dark-colored surfaces are difficult to capture. 
However, if the surface is planar and not too large, the 
neighboring scene points create a triangulation that 
often covers the unsampled area and is texture-mapped. 
This gives the illusion of a proper reconstruction in 
some cases (e.g., the black refrigerator in the Kitchen 
dataset). The additional computational cost can be 
partially mediated by using parallelized optimization 
packages for sparse nonlinear systems. 

8. CONCLUSIONS AND FUTURE WORK 
We have presented a new multi-viewpoint acquisition 
approach that is a significant departure from current 
methods. Aside from physically moving the cameras 
and projectors, scene acquisition and reconstruction is 

automatic and requires taking pictures from only a few 
locations. Our approach uses a novel pose-free 
formulation for 3D reconstruction. Completely 
omitting pose parameters implies no external 
calibration data must be provided or even computed. 
This significantly improves the robustness to error and 
accuracy of the geometric reconstruction and enables 
using simple uncalibrated active correspondence. Our 
approach has produced several texture-mapped models 
of up to 2.5 million triangles. Figure 14 contains 
several additional close-ups of reconstructed scenes, 
both before and after using our pose-free equations and 
from novel viewpoints from far capture viewpoints.  
As future work, we are pursuing three major items. 
First, we seek an incremental and iterative approach. 
This requires real-time structured-light [Rusinkiewicz 
et al. 2002] and optimizing less scene points. Second, 
we are pursuing formulations that further remove the 

Figure 14. Close-up Views.  
Triangulation and texture 
mapping of Kitchen (current 
viewpoint is far from capture 
viewpoints): (a) original points 
before any optimization, (b) after 
pose-included optimization, (c) 
after pose-free optimization. 
Wireframe and texture-mapped 
views: (d) view of subset of 
reconstructed Kitchen, (e-f) close-
up of door stop, (g) close-up of 
door handle. (h) View of 
reconstructed Lab. (i-j) Views of 
reconstructed Corner. 

b)a) c) 

f) 

e) 

h) 

g) 

i) j) 

d) 
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scales ߣ, thus not needing depth estimates. We are 
considering explicitly solving for a base case of point 
configurations using only correspondences. Third, we 
are looking into pose-free re-lighting. In general, we 
believe removing pose parameters is very useful to 
solving many other problems in acquisition and in 
graphics. We look forward to significantly more work 
in pose-free calculations. 
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