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Pose-Free Structure from Motion Using Depth
From Motion Constraints

Ji Zhang†, Mireille Boutin††, Member, IEEE, and Daniel G. Aliaga∗

Abstract—Structure from motion (SFM) is the problem of
recovering the geometry of a scene from a stream of images taken
from unknown viewpoints. One popular approach to estimate the
geometry of a scene is to track scene features on several images
and reconstruct their position in 3D. During this process, the
unknown camera pose must also be recovered. Unfortunately
recovering the pose can be an ill-conditioned problem which, in
turn, can make the SFM problem difficult to solve accurately. We
propose an alternative formulation of the SFM problem with fixed
internal camera parameters known a priori. In this formulation,
obtained by algebraic variable elimination, the external camera
pose parameters do not appear. As a result, the problem is
better conditioned in addition to involving much fewer variables.
Variable elimination is done in three steps. First, we take the
standard SFM equations in projective coordinates and eliminate
the camera orientations from the equations. We then further
eliminate the camera center positions. Finally, we also eliminate
all 3D point positions coordinates, except for their depths with
respect to the camera center, thus obtaining a set of simple
polynomial equations of degree two and three. We show that,
when there are merely a few points and pictures, these “depth-
only equations” can be solved in a global fashion using homotopy
methods. We also show that, in general, these same equations
can be used to formulate a pose-free cost function to refine SFM
solutions in a way that is more accurate than by minimizing
the total reprojection error, as done when using the bundle
adjustment method. The generalization of our approach to the
case of varying internal camera parameters is briefly discussed.

I. INTRODUCTION

A core challenge of today’s computer technology is to be
able to accurately simulate large 3D environments that contain
complex structures. On the one hand, it is very costly to set up
an experiment that will provide enough precise data to be able
to reconstruct the 3D structures accurately. On the other hand,
manually creating a 3D model is time consuming. So there
is a great need for a simple and low-cost automatic system
that would be able to acquire the photogrammetric information
of the scene (surface texture, color, reflectance, etc.) and to
virtually recreate its effects. Recreating the photogrammetric
effects relies, in parts, on precisely knowing the shape and
position of the surfaces contained in the scene. In other words,
one needs to know the geometry of the scene to be able to
model it in a realistic fashion.

Copyright (c) 2011 IEEE. Personal use of this material is
permitted. However, permission to use this material for any other
purposes must be obtained from the IEEE by sending a request to
pubs-permissions@ieee.org. This research was funded in parts by
NSF grant 0434398. †jeffrey zhangji@yahoo.com, Bloomberg LP,
††mboutin@purdue.edu, School of Electrical and Computer Engineering,
Purdue University, ∗aliaga@cs.purdue.edu, Department of Computer Science,
Purdue University.

(a) Conditioning of BA

(b) Conditioning of depth-only SFM

(c) Conditioning for BA at d = 10

(d) Conditioning for depth-only SFM at d = 10

Fig. 1: Conditioning of the SFM problem.
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SFM formulation No. of variables Comp. Time
Standard (Eq. 1) 36 > 2 weeks
Angle-free (Eq. 8 ) 27 39m25s
Pose-free (Eq. 11) 24 3h35m16s
Depth-and-pose-only (Eq. 22) 21 13m18s
Depth-and-translation-only (Eq. 23) 12 12m44s
Depth-only (Eq. VIII-A ) 9 1m49s

TABLE I: Computation time comparison of homotopy-
based solution for different SFM formulations.

A common way of obtaining the geometry of the scene is to
acquire images using a camera and to track features on these
images. In theory, given enough observations of each tracked
features and assuming these are generic, their 3D position
(along with the camera poses) can be recovered. Indeed, one
can write down a system of equations relating the tracked
feature positions to their images. In a generic situation and
with enough pictures/points, this system has a unique solution
(up to an unknown global rigid motion and rescaling of the
scene in the case of a camera with fixed internal parameters.)
We say in theory because, in practice, accurately computing
the position of the 3D features, the so-called problem of
structure from motion (SFM), is very difficult. While many
numerical schemes have been proposed for SFM, they often
display numerical instabilities. One important source of these
instabilities is the presence of the unknown camera pose
parameters inside the equations to be solved. In particular,
the set of possible 3D feature positions can change drastically
when a small change in the camera orientation is made. So the
camera orientation must be very precisely determined in order
to get an accurate estimate of the 3D position. But it is often
impossible to accurately compute the camera orientation from
the pictures. For example, experimentation has shown that a
translation along the x axis of the camera plane can easily
be confused with a rotation along the y axis of the camera
plane. Error analysis of this phenomena have been carried
out by several authors (e.g., [1] and [25]). In particular, it
was shown in [8] that the two most popular classes of 3D
motion estimation algorithms (those optimizing the epipolar
constraint from point correspondence and those minimizing
the negative depth based on the normal flow) cannot, in
general, distinguish between rotation and translation. This is
an inherent problem related to the shape of the cost function
that is being minimized, and thus is not related to the specific
numerical algorithm used for optimization.

One way to try to improve the accuracy of a computation
is to overconstrain the solution. In the case of SFM, one can
attempt to obtain a better estimate of the 3D feature positions
by considering a large number of pictures simultaneously. The
method of bundle adjustment (BA) is a refinement step for
SFM which allows one to do so in a global fashion. (We
shall describe this method more in details in the next section.)
The term bundle refers to the ray of light linking the 3D
tracked features to the camera center. Adjusting the bundle is
accomplished by minimizing a cost function that quantifies the
total reprojection error of the tracked features. This is done by
iteratively improving the guesses for the 3D feature positions
and the camera pose parameters. Typically, all the pictures
available and all the features tracked are used for this step.
In practice, when the initial guess is close to the solution,

BA indeed often improves the SFM solution. Unfortunately,
in general the computations may diverge or fail to converge in
a reasonable number of iterations. Even when the algorithm
converges, the accuracy of the solution obtained may not be
satisfactory. Experiments have shown that the total amount
of motion (rotation and translation) between the pictures is
the most important factor in being able to recover structure
accurately [13]. For example, if all the pictures are taken from
the same side of the object and with a similar camera angle, it
is difficult to accurately recover the depth of each object point
with respect to the camera center. This is because, in the case
of SFM solutions that estimate all external motion parameters,
the projections of the translational and rotation errors on the
image are perpendicular to each other, and the rotation around
the Z axis has the least amount of ambiguity [8]. Thus, in
order to resolve the ambiguity in the object point positions
through bundle adjustment, the Z axes of the pictures taken
into account should not be too similar to each other. This will
be investigated in more details in Section IV.

One obvious solution to improving the conditioning of SFM
would be to remove the camera pose parameters from the
problem. For example, one could think of simply measuring
the camera pose. Unfortunately, accurately measuring the pose,
especially the camera orientation, is difficult and requires a
nontrivial experimental setup. An alternative solution, which
is the one we are pursuing in this paper, is to algebraically
remove the pose estimation problem from SFM, that is to say,
to manipulate the set of equations that need to be solved for
SFM until all camera pose parameters have been eliminated.

Algebraically removing variables from a set of equations
amounts to projecting the constraints they define onto lower-
dimensional subspaces. For the case of polynomial equations,
systematic elimination techniques based on the concept of
Gröbner bases have been developed and implemented in sym-
bolic computation software such as MacCaulay [9], Singular
[10], and Magma [4]. But the computational complexity of
these algorithms remains a major obstacle, especially in the
case where the coefficients of the polynomials are unspecified.

The theory behind these algebraic tools was used in [24]
to recast several SFM problems in a simpler setting. For
example, by counting dimensions, they obtained constraints
on the number of points tracked and the number of pictures
that guarantee that a zero-dimensional solution to the SFM
problem exists. They also used Gröbner bases to show that,
with seven tracked feature points and two views, each of
the 3D features coordinates can be obtained by solving a
third order polynomial in one variable (yielding at most three
possible solutions, in accordance with [7]). But to the best
of our knowledge, these polynomials are not known in their
general form. For a 2D world, however, Tomasi and Shi [22]
[21] proposed a pose-free formulation of SFM which exhibits
good noise immunity. This formulation is in terms of tangent
of angles, thus not polynomial, and the extension to 3D is, as
stated by the authors “technically less than straightforward”.

As we shall show in the following, it turns out that pose-free
formulations of SFM with fixed internal camera parameters
can be obtained using some basic algebraic manipulations
along with some simple facts from invariant theory, instead of
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Gröbner bases. The idea of using invariant theory for param-
eter elimination was initially suggested by Bazin and Boutin
in [3]. In this paper, we carry this approach further in order
to obtain a fully pose-free formulation of SFM (theirs only
removed angles) while maintaining a low-degree polynomial
formulation (theirs was in terms of rational functions). We go
even further and eliminate several object points coordinates
as well, conserving only the depths of the object points with
respect to the each camera center. This has the effect of
significantly improving the conditioning of the SFM problem.
Indeed, as we show in the following, our equations in the depth
parameters can be used to formulate a cost function that can be
used to refine solutions obtained with other SFM methods. Our
experiments indicate that the refined solution is significantly
more accurate than if it had been refined by minimizing
the total reprojection error. However, like total reprojection
error minimization, our method can be sensitive to point
mislabeling, so for practical application, an implementation
following a RANSAC framework would probably be best.

Another effect of our proposed elimination is to significantly
reduce the number of variables involved in the problem, and
thus its complexity. In particular, this allows us to solve small
size SFM problems directly (i.e., without any initial guess
for the solution, and obtaining all solutions at once) using
homotopy methods. While fully numerical approaches are per-
haps faster than approaches involving symbolic computations
for solving SFM problems in practice, this this opens up the
possibility to analyze small SFM problems (e.g., degeneracy,
number of solutions, etc.) including non-generic ones.

Other authors have successfully used symbolic-numerical
technique to solve SFM-related problems with fewer variables.
For example, a three-view triangulation was obtained in [6]
by computing a Groebner basis so to rephrase the problem
as a joint-eigenvalue problem. A similar approach is used to
solve for the pose parameters between two views in [20]. The
same problem can also be solved by using a Groebner basis
to eliminate all but one variables from a given SFM problem
(i.e., with numerical coefficients- as opposed to variable in
our case), thus obtaining a degree 13 polynomial in a single
variable [17]. Other work is focused on the estimation of other
camera parameters (e.g., [15]). However, our work appears to
be the first where symbolic-numerical techniques are shown
to be effective for recovering the object in a pose-free fashion.

This paper is organized as follows. We begin by stating
the standard mathematical formulation of the SFM problem
in Sect. II. The Bundle Adjustment (BA) method, in relation
to our proposed new SFM formulation, is summarized in
Sect. III. In Sect. refsection:conditioning, we demonstrate
the extent to which conditioning issues are common using
numerical experiments and show that the pose-free method
we are about to propose addresses this problem. In Sect. V,
we eliminate the camera rotations from the SFM equations and
obtain a camera-angle free formulation of SFM. In Sect. VI,
we further eliminate the camera centers to obtain a fully pose-
free formulation of SFM. The coordinates of the object points
are eliminated in Sect. VII, yielding our new proposed SFM
formulation in terms of the depths only. A global solution
method based on homotopy for our SFM formulation in terms

of depths is discussed in Sect. refsection:homotopy, including
a comparison of the complexity associated with other SFM
formulations within the context of homotopy methods. In
Sect. IX, we use our SFM formulation in terms of depth to
propose a (external camera) pose-free cost function for refining
initial guesses for the SFM problem. A statistical interpretation
of our approach is given in Sect. X and the generalization to
the case where the internal parameters of the camera vary is
discussed in Sect. XI. We conclude in Sect. XII.

II. STRUCTURE FROM MOTION (SFM)
Denote by N the number of features tracked on a sequence

of images numbered from 1 to J . Let P1, . . . , PN ∈ R3

represent the 3D coordinates of the feature points, and let
(x1j , y1j), . . . , (xNj , yN,j) represent the 2D coordinates of
their projection on image j, for j = 1, . . . , J . The relationship
between the 3D features and their projection on the images can
be written as xij

yij
1

 = cijMj

(
Pi
1

)
, for all i, j, (1)

where Mj is a 3-by-4 matrix (called the projection matrix)
containing the camera parameters for the j-th image, and cij
is a positive real number representing the depth of feature i
from image j. One can write Mj as the product of two matrices

Mj = KjBj ,
where Kj is a 3-by-3 matrix containing the internal camera
parameters, and Bj = (Rj ,−RjCj) is a 3-by-4 matrix
containing the external camera parameters: Rj , a 3D rotation
matrix, and Cj , the camera center position for the the camera
center of the j-th image. When the camera is internally
calibrated, one can assume that Kj is the identity. We shall
make this assumption from now on, until generalizing to the
projective camera case in Section XII.

In SFM, one attempts to compute the feature coordinates
Pi’s given the coordinates of the projections pij’s. In Equations
1, the unknowns are the 3D points coordinates Pi’s, the pro-
jection matrices Mj’s and the depth constants cij’s. Observe
that all 3NJ equations contained in this set are invariant under
a simultaneous rigid transformation and rescaling of the 3D
features. Indeed, if P1, . . . , PN , c11, . . . , cNJ is a solution of
Equation 1, then λ(RP1 + T ), λ(RP2 + T ), . . . , λ(RPN +
T ), c11

λ , . . . ,
cNJ

λ is also a solution, for any 3D rotation R,
any 3D translation T , and any positive number λ. Therefore,
one can only reconstruct the geometry of the scene up to an
unknown rotation, translation and rescaling. This means that
we could arbitrarily fix seven of the unknown parameters and
solve for the remaining 3N + 6J +NJ − 7 unknowns.

In a generic situation, Equations 1 form an overdetermined
system of constraints for these unknowns when N and J are
big enough. Because of measurement errors and floating point
arithmetic, it is impossible to satisfy all equations simultane-
ously. So one seeks an approximation of a solution: xij

yij
1

− cijMj

(
Pi
1

)
≈

 0
0
0

 , for all i, j. (2)

III. THE BUNDLE ADJUSTMENT METHOD (BA)
First proposed in the context of photogrammetry by Brown

[5], the bundle adjustment method (BA) was popularized by
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(a) Initial solution guess using the Eight-Point Algorithm.

(b) Solution refined using proposed depth-only equations.

Fig. 2: Giraffe reconstruction using depth-only equations.

Hartley [11] and Triggs et al. [23] in the computer vision com-
munity. BA consists in solving for all the 3D tracked feature
positions and all the camera pose parameters simultaneously
by minimizing a cost function. The cost function typically
used is the sum of the squares of the distances between the
reprojections of the 3D reconstructed feature points and the
observed projections, a quantity called the total reprojection
error, i.e.

C (M1, . . . ,MJ , P1, . . . , PN , c11, . . . , cNJ)

=
∑
i,j

∥∥∥∥∥∥
 xij

yij
1

− cijMj

(
Pi
1

)∥∥∥∥∥∥
2

, (3)

where ‖ · ‖ represents the L2 norm. Note that we view the
constant cij as variables on which the cost function depends
explicitly, even though they are directly dependent on the other
unknowns Pi and Mj .

As one can see, this cost function is the sum of the squared
norms of the left-hand-sides of Equations 2. So one could
attempt to solve this problem using a solution method for
polynomial equations.But the number of variables involved in
this problem makes this approach too slow to be effective, as
will be demonstrated in Section VIII. Instead, the minimiza-
tion is typically performed numerically using the Levenberg-
Marquardt minimization algorithm, as proposed by Hartley in

[11]. Even though the computational cost of this approach
is fairly high given the number of variables to optimize, it
is manageable. Moreover, it can be reduced significantly by
exploiting the sparse structure of the problem, as in [16].

Given a good initial guess, BA can be quite accurate, much
more so than any other SFM method currently available. So,
in practice, BA is almost always applied to the results obtained
with other methods, as a last refinement step. But as we
mentioned previously, the numerical problems created by the
need to estimate the pose are observed in this approach as
well, since the camera pose parameters are an intrinsic part
of the equations to be minimized. In particular, when all the
views are taken from the same side of the object and with a
similar camera angle, BA has difficulty recovering the depth
of the object points accurately. This can be better understood
by studying conditioning of the BA problem, which in do in
the next section.

IV. NUMERICAL CONDITIONING OF SFM
As stated in the introduction, the numerical conditioning of

the traditional formulation of the SFM problem can be poor.
Our claim is that removing the camera pose parameters from

(a) Solution of Figure 2 a) refined using total reprojection error minimization.

(b) Top view of a).

Fig. 3: Giraffe reconstruction by reprojection error mini-
mization.
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the problem generally improve its conditioning. In the follow-
ing, a depth-only formulation of SFM problem which does not
include any (external) camera parameters, will be derived. In
order to justify the need for this new SFM formulation, we
first show that situations for which the condition number of
BA is undesirably high are quite common.

To show this, we placed the camera center at the origin
and generated objects consisting of 5 points drawn uniformly
at random within a unit cube centered at (0, 0, d), for d =
10, 11, . . . , 1000. The variable d is viewed as the ”distance”
from the object to the first camera center. Fifty objects were
generated for each distance and two pictures were taken for
each object. The first picture was taken with the object in
its initial position, and the second picture was taken after
translating the object by a vector (0.5, 0.5, 0.5) and rotating it
by π/4 radians in the x-y plane. We evaluated the condition
number of the Hessian matrix of the total reproduction error
(Equation III) for this pair of pictures at the true object
coordinates and camera parameters. The results are plotted
in Figure 1 a). As one can observe, the condition number
increases in a more or less quadratic fashion as the distance
of the object to the first camera center increases. The histogram
of the 50 condition numbers obtained for the smallest distance
(d = 10) is plotted in Figure 1 c): as one can see, the condition
number varies between 590 and 670. Similar results were
obtained when the camera orientation between the two views
was drawn uniformly at random between zero and π/4.

For comparison, we obtained the condition number of the
Hessian matrix for the least squares version of one of the
depth-only formulations we shall propose later (the first ten
equations of (VIII-A)). As one can see in Figure 1 b), the
condition number appears to be independent of the distance to
the object, and is significantly less than for the standard SFM
formulation; the average condition number for our proposed
formulation is about 31, while that of the standard form of the
SFM problem is more than 1.9×104. The histogram of the 50
condition numbers obtained for the smallest distance (d = 10)
is plotted in Figure 1 d): as one can see, the vast majority of
the condition numbers obtained were below 50, although for
a few exceptional objects, they were in the 300 range. Such
a variation in the condition number is to be expected, as the
conditioning is also influenced by the closeness of the points of
the object, and our random object selection procedure did not
put any constraint on the distance between the object points.
But overall, the improvement on the conditioning provided by
our method is quite significant. Note that similar results were
obtained when the camera orientation between the two views
was drawn uniformly at random between zero and π/4.

V. ORIENTATION-FREE SFM
In this section, we eliminate the rotations Rj from Equations

1 under the assumption that Mj = (Rj ,−RjCj) (i.e., when
the internal camera parameters are fixed). This will provide us
with an equivalent formulation of the problem of SFM which
allows us to solve for the object points and the camera centers
without solving for the camera angles. If needed, the camera
angles can be recovered a posteriori.

Let us divide Equation 1 by cij , and let γij = 1
cij

. We have
γijpij = MjPi = RjPi −RjCj , for all i, j, (4)

Reprojection error: 0.003675mm

Reprojection error: 0.003509mm

Reprojection error: 0.004219mm
Fig. 4: Illustration of the small reprojection error of Fig. 3

where pij = (xij , yij , 1)
T . In other words, the vector Pi−Cj

and the vector γijpij are related by a rotation Rj . One can
observe that this is an action of SO(3), the group of rotations
in 3D, and use the invariants of this group action to eliminate
the Rj’s, in a similar fashion as in [3]. Alternatively, one can
also eliminate the R′js by simple algebraic manipulation. For
simplicity, this is the approach that we shall take. There are
many ways to do this. For example, for any i and ī among
1, . . . , N , observe that we have

γijpij = Mj

(
Pi
1

)
, γījpīj = Mj

(
Pī
1

)
.

Taking the dot product of the left-hand-sides and right-hand-
sides of these two equations, respectively, yields

γijγījpij · pīj =
(
PTi , 1

)
MT
j Mj

(
Pī
1

)
,
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=
(
PTi , 1

)( RTj
−CTj RTj

)
(Rj ,−RjCj)

(
Pī
1

)
,

=
(
PTi , 1

)( I3×3

−CTj

)
(I3×3,−Cj)

(
Pī
1

)
,

= (Pi − Cj) · (Pī − Cj) .
We thus obtain the camera-orientation-free equations:

γijγījpij · pīj = (Pi − Cj) · (Pī − Cj) , for all i, j. (5)
Observe that this equation can also be obtained using a
geometric argument, as the dot product between the two
vectors is unchanged under a simultaneous rotation of both
vectors.

Another way to remove the matrices Rj’s from the equa-
tions is to take three pictures, say i, ī and ĩ, and to observe
that the volume spanned by the three corresponding picture
points satisfies, by Equation 4,

γijγījγĩjpij ·pīj×pĩj = Mj

(
Pi
1

)
·Mj

(
Pī
1

)
×Mj

(
Pĩ
1

)
.

Since the volume spanned by three vectors v1, v2, v3 ∈ R3 is
the same as the volume spanned by Rv1, Rv2, Rv3, for any
rotation R ∈ SO(3), the right-hand-side of the above equation
can be replaced by

RTj Mj

(
Pi
1

)
·RTj Mj

(
Pī
1

)
×RTj Mj

(
Pĩ
1

)
=
(
I3×3,−Cj

)( Pi
1

)
·
(
I3×3,−Cj

)( Pī
1

)
×
(
I3×3,−Cj

)( Pĩ
1

)
= (Pi − Cj) · (Pī − Cj)× (Pĩ − Cj). (6)

We thus obtain another set of camera-orientation-free equa-
tions:

γijγījγĩjpij · pīj × pĩj
= (Pi − Cj) · (Pī − Cj)× (Pĩ − Cj), for all i, j. (7)

Putting together Equations 5 and V, we obtain the following
system of equations, where no rotation matrix appears:

γijγījpij · pīj = (Pi − Cj) · (Pī − Cj),
γijγījγĩjpij · pīj × pĩj = (Pi − Cj) · (Pī − Cj)

×(Pĩ − Cj),
for all i, ī, ĩ = 1, . . . , N and all j = 1, . . . , J . However, this
system contains some obviously redundant equations. This is
because, for any v1, v2 ∈ R3 which are not collinear, the set
{v1, v2, v1 × v2} forms a basis for R3. Thus, assuming that
P1 − Cj and P2 − Cj are not collinear, all equations written
above can be obtained from the a smaller system of equations,
such as

γijγ1jpij · p1j = (Pi − Cj) · (P1 − Cj),
γijγ2jpij · p2j = (Pi − Cj) · (P2 − Cj), (8)

γijγ1jγ2jpij · p1j × p2j = (Pi − Cj) · (P1 − Cj)
×(P2 − Cj),

for all i = 1, . . . , N and all j = 1, . . . , J .

We claim that, for N ≥ 4 and wherever there exists i0, j0
such that Pi0 − Cj0 , P1 − Cj0 , P2 − Cj0 are not coplanar,
Equations 8 forms a complete set of camera-orientation free
equations, in the sense that solving this system for all Pi’s and
all Cj’s is equivalent to solving Equations 1 for all Pi’s, all
Cj’s and all Rj’s and forgetting the actual values of the Rj’s.

The proof, which already appeared in [26], is reproduced in
Appendix I for completeness.

Note that other authors have exploited the idea of using
camera-orientation-free SFM equations, but never a complete
set. For example, the cosine of the angles used in the equations
of the pyramid method [27] can be obtained by taking the
ratio of some of Equations contained in our system. However,
the latter does not form a complete set since the degree-
three equations contained in our system cannot be recovered
from the pyramid method equations. In other words, the initial
system describing SFM prescribes constraints that are not
encoded in the pyramid method equations.

Note also that while Equation 8 forms a complete set, it does
not contain any redundant equation (i.e. it is a minimal set) in
the case where J = 2 . But while minimality is interesting
from a theoretical perspective, in practice the asymmetric
role played by the different picture points may cause some
numerical problems. In certain circumstances, it may thus be
preferable to symmetrize this system with respect to the point
indices before solving it. More precisely, more equations can
be obtained by replacing the first and second point indices by
other point indices in order to insure that i = 1 and i = 2 do
not play a more significant role than the other i’s.

VI. POSE-FREE SFM
Having eliminated the camera angles from the SFM equa-

tions, we will now eliminate all the camera center coordinates
Cj’s. One can do this using invariant theory by looking at the
SFM equations for each picture index j,

γijpij = RjPij + Cj , for all i = 1, . . . , N,
as describing an action of the special Euclidean group pa-
rameterized by Rj and Cj . The fact that there exists Rj and
Tj mapping each Pij to its corresponding γijpij implies that
each jth point configuration (γ1jp1j , γ2jp2j , . . . , γNjpNj) is
in the same orbit as the point configuration P1, P2, . . . , PN .
The fundamental invariants of the diagonal action of the group
of rotations and translations in R3 (which are are well known
[18]) thus lead to pose-free SFM equations.

Alternatively, one can also obtain the same result through
some basic algebraic manipulations. For example, consider the
following equations from Equation 8:
γ1jγ1jp1j · p1j = (P1 − Cj) · (P1 − Cj),

γ2jγ2jp2j · p2j = (P2 − Cj) · (P2 − Cj),
γ3jγ1jγ2jp3j · p1j × p2j = (P3−Cj) · (P1−Cj)× (P2−Cj),
γijγ1jpij · p1j = (Pi − Cj) · (P1 − Cj), for i = 2, 3, ...N,

γijγ2jpij · p2j = (Pi − Cj) · (P2 − Cj) for i = 3, 4, ...N,

γijγ1jγ2jpij · p1j × p2j =

(Pi − Cj) · (P1 − Cj)× (P2 − Cj) for i = 4, 5, ...N. (9)
Observe that

‖Pi − P1‖2 = (Pi − P1) · (Pi − P1)
= ((Pi − Cj)− (P1 − Cj)) · ((Pi − Cj)− (P1 − Cj)),

= (Pi − Cj) · (Pi − Cj)− 2(Pi − Cj) · (P1 − Cj)

+(P1 − Cj) · (P1 − Cj), for i = 2, 3, ...N.

In the last expression, we have the terms (Pi−Cj) · (P1−Cj)
and (P1 − Cj) · (P1 − Cj), which are respectively the right-
hand-side of The fourth and the first equation of (9). The value
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a) Selected Giraffe Points. Eight-Point Algorithm reconstruction

b) Reconstruction using Eq. 17. c) Reconstruction using Eq. 16.
Fig. 5: Comparison of pose-free reconstruction using a subset versus all depth-only equations.

of the other term, (Pi−Cj)·(Pi−Cj), can be deduced from the
right-hand-side of the 6th equation along with the right-hand-
side of the first and second equation of (9). Thus ‖Pi − P1‖2
can be written in terms of the right-hand-side of the first, 4th,
and 6th equation of (9). Replacing these right-hand-sides with
their respective left-hand-sides, we obtain the camera-pose-
free equation:
‖γijpij − γ1jp1j‖2 = ‖Pi − P1‖2, for i = 2, 3, ...N.

Using similar arguments, we can generate the following set of
camera-pose-free equations:
‖γijpij − γ1jp1j‖2 = ‖Pi − P1‖2, for i = 2, 3, ...N.

‖γijpij − γ2jp2j‖2 = ‖Pi − P2‖2, for i = 3, 4, ...N,

‖γijpij − γ3jp3j‖2 = ‖Pi − P3‖2, for i = 4, ...N, (10)
‖γijpij − γ4jp4j‖2 = ‖Pi − P4‖2, for i = 5, 6, ...N,

(γ4jp4j − γ3jp3j) · (γ1jp1j − γ3jp3j)× (γ2jp2j − γ3jp3j)

= (P4 − P3) · (P1 − P3)× (P2 − P3),

for j = 1, 2, ...J.
These equations could also have been obtained by observing
that the Euclidean norm and the signed triangular area are
unchanged under any orientation preserving rigid motion.

Assuming P4 −P3, P1 −P3, P2 −P3 are not coplanar, this

is a complete equation set (see Appendix II). For N ≥ 5
and J = 2, it is also a minimal equation set, in the sense
that removing any equation from the set would introduce new
(invalid) solutions. For example, removing the first equation
for i = 5 would remove the knowledge of the value of the
quantity ‖P5−P1‖2 from the equations, as this quantity cannot
be recovered from the other right-hand-sides (since there are
two different values of P5 with the same ‖P5 − P2‖2, ‖P5 −
P3‖2, ‖P5−P4‖2). Thus that equation cannot be inferred from
the other equations. Similarly, we cannot remove the second,
third and forth equations. Finally, if the last equation was
removed, for some j0, the system would have two distinct
solutions for (γ1j0 , γ2j0 , γ3j0 , γ3j0), one being the reflection
of the true solution. It thus cannot be removed.

The asymmetry of the system with respect to the points
could create numerical problems. To avoid this, one can first
solve the symmetric system
‖γijpij−γījpīj‖2 = ‖Pi−Pī‖2, for i, ī = 1, ...N, j = 1, ...J,
and remove the extra solutions using the remaining equations:

(γ4jp4j − γ3jp3j) · (γ1jp1j − γ3jp3j)× (γ2jp2j − γ3jp3j)

= (P4 − P3) · (P1 − P3)× (P2 − P3), for j = 1, . . . , J.
(11)
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a) BA refinement of Fig. 5b) (no improvement).

b) BA refinement of Fig. 5c) (worse).

c) BA refinement of Fig. 5d) using BA (slightly worse).
Fig. 6: BA refinement of different initial guesses.

VII. DEPTH FROM MOTION (DEPTH-ONLY SFM)

The depth of a 3D point Pi with respect to the camera
center of picture j is given by the value of γij . We will now
eliminate all the remaining variables except the γij’s. To do
this, we observe that the right-hand-sides of all the equations
contained in Equations 10 are all independent of j. Thus, the
left-hand-sides for different j’s must be equal. We thus obtain
the following system of depth-only equations:
‖γijpij − γ1jp1j‖2 = ‖γij̄pij̄ − γ1j̄p1j̄‖2, for i = 2, ...N,

‖γijpij − γ2jp2j‖2 = ‖γij̄pij̄ − γ2j̄p2j̄‖2, for i = 3, ...N,

‖γijpij − γ3jp3j‖2 = ‖γij̄pij̄ − γ3j̄p3j̄‖2, for i = 4, ...N, (12)

‖γijpij − γ4jp4j‖2 = ‖γij̄pij̄ − γ4j̄p4j̄‖2, for i = 5, ...N,

(γ4jp4j − γ3jp3j) · (γ1jp1j − γ3jp3j)× (γ2jp2j − γ3jp3j)

= (γ4j̄p4j̄ − γ3j̄p3j̄) · (γ1j̄p1j̄ − γ3j̄p3j̄)

×(γ2j̄p2j̄ − γ3j̄p3j̄), for distinct j, j̄ = 1, ...J.
With a similar proof as the one presented in Appendix II, one
can show that the above is a complete set of equations. By a
similar argument as for the pose-free equations discussed in
Section VI, one can also show that it is a minimal set for the
case of J = 2 views. One can also work with a symmetrized
equation set such as:

‖γijpij − γījpīj)‖2 = ‖γij̄pij̄ − γīj̄pīj̄)‖2,
for distinct i, ī = 1, 2, ...n, and distinct j, j̄ = 1, 2, ...J, (13)

and later remove the extra solutions by enforcing the remaining
equations:

(γ4jp4j −γ3jp3j) · (γ1jp1j −γ3jp3j)× (γ2jp2j −γ3jp3j) =

(γ4j̄p4j̄ − γ3j̄p3j̄) · (γ1j̄p1j̄ − γ3j̄p3j̄)× (γ2j̄p2j̄ − γ3j̄p3j̄),

for distinct j, j̄ = 1, 2, ...J. (14)
Both Equations 12 and Equations 13-14 are homogeneous

systems of equations, so their solutions are only defined up
to a global scale factor. Since all γij’s are strictly positive,
one can set one of them, say γ11, equal to one and solve for
the remaining ones. Note that once the depth γij’s are known,
then one can recover the 3D points Pi’s linearly by solving
the overdetermined linear system of equations

Pi = γijpij ,
(e.g., by computing the Moore-Penrose pseudoinverse). Hav-
ing set the depth scale by setting γ11 = 1, the 3D object points
are then uniquely determined up to a rotation and a translation.

VIII. GLOBAL POSE-FREE SFM BY HOMOTOPY

Algebraic variable elimination in a polynomial system re-
duces the number of unknowns that need to be taken into
account while solving the system, which can reduce the com-
plexity of the computation. Furthermore, it can open the door
to the use of algebraic-based technique for either analyzing
or solving the system. This is particularly interesting in the
case where numerical techniques do not work particularly well,
such as degenerate or ill-conditioned cases, or when trying to
understand a large parametric class of cases.

For SFM, variable elimination down to only depth parame-
ters drastically reduces the size of the problem. For example,
given five generic 3D points projected on a (generic) pair of
images, the standard SFM formulation involves a total of 36
variables: 15 variables for the 3D points Pi, 10 depth parame-
ters γij , one of which can be set to fix the scale ambiguity, and
12 camera parameters (9 for position and 3 for orientation)
for the second camera (we set the coordinate system in the
first camera to our default coordinate system). Removing the
camera angle parameters brings the number of variables down
to 27. Further removing the camera center variables yields 24
variables. Removing the 3D points coordinates finally brings
the number down to only 9. See Table I.

With today’s computers, many symbolic-numeric solution
techniques are very efficient for solving problems with not
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too many unknowns. The following numerical experiments
demonstrate that the depth-only SFM problem formulation
we propose has few enough parameters to be handled by
numeric-symbolic techniques. Thus, it may be possible to use
such techniques to better characterize and/or analyze some
degenerate or ill-conditioned cases, as well as other cases that
cannot be easily understood numerically.
A. Algebraic-Numerical Experiments

There are many numerical methods for solving polynomial
equations near an initial guess. Without an initial guess, or if
one desires to find all solutions of the system, then one can
attempt to solve the system algebraically. However, algebraic
methods cannot generally handle a large number of variables
or equations. A class of methods called homotopy continuation
methods, or simply homotopy, uses a mixture of numerical
and analytical techniques to address this problem. The idea
is to modify the system into a simpler system for which all
the solutions are known. Then the modified system is slowly
evolved back onto the initial system by continuously varying
its coefficients. The path between the two polynomial systems
is divided into small steps, and at each step the solutions of
the corresponding system are obtained numerically by using
the previous system’s solutions as initial guesses.

For a small number of points N and pictures J , our depth-
only equations (either Equations 12 or Equations 13 and 14)
can be solved by homotopy in Maple using the package
PHCmaple [14]. For example, consider the case of J=2 pictures
(say j = 1, 2) and N=5 points (say i = 1, 2, 3, 4, 5) on each
picture. Equations 13 and 14 then form the set

‖γ11p11 − γ21p21‖2 = ‖γ12p12 − γ22p22‖2,
‖γ11p11 − γ31p31‖2 = ‖γ12p12 − γ32p32‖2,
‖γ21p21 − γ31p31‖2 = ‖γ22p22 − γ32p32‖2,
‖γ11p11 − γ41p41‖2 = ‖γ12p12 − γ42p42‖2,
‖γ21p21 − γ41p41‖2 = ‖γ22p22 − γ42p42‖2,
‖γ31p31 − γ41p41‖2 = ‖γ32p32 − γ42p42‖2, (15)

‖γ11p11 − γ51p51‖2 = ‖γ12p12 − γ52p52‖2,
‖γ21p21 − γ51p51‖2 = ‖γ22p22 − γ52p52‖2,
‖γ31p31 − γ51p51‖2 = ‖γ32p32 − γ52p52‖2,
‖γ41p41 − γ51p51‖2 = ‖γ42p42 − γ52p52‖2,

(γ41p41 − γ31p31) · (γ11p11 − γ31p31)× (γ21p21 − γ31p31)

= (γ42p42 − γ32p32) · (γ12p12 − γ32p32)× (γ22p22 − γ32p32).
where γ11 can be set to one to fix the scale ambiguity.

PHCmaple requires the number of equations to equal the
number of unknowns. So one can pick the first 9 of the 11
equations contained in the system and obtain their solutions;
this introduces extraneous solutions that can be removed by
plugging into the remaining two equations. We picked a
generic configuration of five points reconstructed the 3D point
positions from two images using this method. After solving the
first 9 equations, we obtained 234 solutions, 44 of which were
real. Since we were looking for positive and real solutions (as
the depths γij’s must be positive and real), we were able to get
rid of most extraneous solutions immediately. The remaining
ones (a total of 8) were plugged back into the last 2 equations
in order to get the true solution. The computation took less

than 2 minutes on a PC with a 2.66GHz Intel(R) Core(TM) 2
Duo Processor with 3GB of RAM (Table I).

In contrast the standard SFM formulation (Equations 1)
cannot effectively be solved by homotopy because it contains
too many variables. Indeed, we took the same 5 points and two
pictures as above, set the coordinate system in the first camera
to our default coordinate system and the first depth parameter
γ11 to one, and entered the sine and cosine appearing in the
equations as free parameters in the camera rotation matrices
Rj . The constraint RTj Rj = I and det(Rj)= 1 were then
entered as additional polynomial equations into the system.
PHCmaple ran for more than two weeks without returning an
answer. To illustrate our claim that this is due to the number
of variables, we attempted to solve four other formulations
of SFM with PHCmaple, each with a different number of
variables. All computations were done with the same 5 points
viewed on the same two pictures, and all were run on the same
PC.The results are summarized in Table I.

We began with the angle-free formulation (Equation 8),
which for 5 points and 2 pictures consists of 27 variables and
27 equations. Solving it using PHCmaple took 39m25s. We
found a total of 171 solutions, 7 of which were real and 164
of which were complex. Only one of them, the true solution,
was real and positive. For the pose-free formulation (Equation
11 and 11), we had a system of 24 variables and 27 equations.
Solving 24 equations among these 27 using PHCmaple took
3h35m16s. We found a total of 1183 solutions, 907 of which
were real. We selected the positive ones and plugged them
back into the remaining equations to find the true solution.

Of course, there are other ways to eliminate variables. While
this work concentrates on removing the pose parameters in
order to improve the conditioning of the SFM problem, it is
worthwhile to discuss some other formulations for the sake
of further analyzing the computational advantage of variable
elimination. For example, one can keep the pose parameters
and eliminate the 3D point coordinates, as shown in Appendix
III. This also has the effect of reducing the complexity of the
problem within the context of homotopy methods, allowing
PHC Maple to solve the case of 5 points on two pictures in
about 13 minutes. Further eliminating the camera angle (see
Appendix III), slightly decreases the computation time.

Note that all solutions of the corresponding SFM prob-
lem, including complex and negative ones, can be found by
homotopy. Homotopy methods can also be used to solve
under-determined problems. Thus, the fact that our pose-free
formulation of SFM has few enough variables to be solved by
homotopy is good news. Indeed, it is not inconceivable that
one can solve and/or analyze some non-generic SFM problems
using this approach. The solution method we proposed in this
section is not necessarily the fastest. Indeed, PHCmaple is one
homotopy package among others and, certainly, a custom-built
implementation would yield faster result than this all-purpose
package. However, for generic cases, it is unlikely that any
technique involving symbolic computations will perform faster
than state-of-the-art purely numerical techniques. On the other
hand, the analysis of non-generic cases is typically done in an
off-line setting, in which speed is not necessarily critical.
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(a) Accuracy of eight point algorithm followed by triangulation.
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(b) Accuracy of refinement of a) obtained by minimizing total
reprojection error.
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(c) Accuracy of refinement of a) obtained by minimizing depth-
only cost function.
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(d) Accuracy of refinement of a) obtained by minimizing reduced
depth-only cost function.

Fig. 7: Comparison of reconstruction accuracy for depth-only cost functions and total reprojection error.
IX. LOCAL POSE-FREE SFM BY NUMERICAL

OPTIMIZATION

Beyond a small number of points and a small number of
pictures, or when the results of a generic SFM problem must
be computed within a fraction of a second, the global solution
method discussed in Section VIII is not the most effective. In
that case, a two-step approach that consists in obtaining an
initial guess for the solution and in subsequently refining this
solution is preferable. There exist many methods for obtaining
an initial guess. It is beyond the scope of this work to argue
what method is best. But the proposed depth-only equations
(either (12) or (13)-(14)) can be used to formulate a pose-free
cost function to refine any given initial solution guess for the
object points. For example, one can use (13 )-(14) to formulate
the following depth-only cost function:∑

j 6=j̄

∑
i6=ī

[
‖γijpij − γījpīj‖2 − ‖γij̄pij̄ − γīj̄pīj̄‖2

]2
+
∑
j 6=j̄

[(γ4jp4j − γ3jp3j) · (γ1jp1j − γ3jp3j)

×(γ2jp2j − γ3jp3j)− (γ4j̄p4j̄ − γ3j̄p3j̄) · (γ1j̄p1j̄ − γ3j̄p3j̄)

×(γ2j̄p2j̄ − γ3j̄p3j̄)
]2
. (16)

One can also obtain a depth only cost function using Equation
11: ∑

j 6=j̄

[

N∑
i=2

(‖γijpij − γ1jp1j‖2 − ‖γij̄pij̄ − γ1j̄p1j̄‖2)2

+

N∑
i=3

(‖γijpij − γ2jp2j‖2 − ‖γij̄pij̄ − γ2j̄p2j̄‖2)2

+

N∑
i=4

(‖γijpij − γ3jp3j‖2 − ‖γij̄pij̄ − γ3j̄p3j̄‖2)2

+

N∑
i=5

(‖γijpij − γ4jp4j‖2 − ‖γij̄pij̄ − γ4j̄p4j̄‖2)2

+((γ4jp4j − γ3jp3j) · (γ1jp1j − γ3jp3j)

×(γ2jp2j − γ3jp3j)− (γ4j̄p4j̄ − γ3j̄p3j̄) · (γ1j̄p1j̄ − γ3j̄p3j̄)

×(γ2j̄p2j̄ − γ3j̄p3j̄))
2]. (17)

A. Numerical Experiments

We now perform numerical experiments to substantiate our
claim that pose-free (depth-only) cost functions lead a more
accurate refinement that when using the total reprojection
error, as in the standard bundle adjustment. Note that, in all our
experiments, the internal camera parameters are fixed and as-
sumed to be known. All minimizations were performed using
the function lsqnonlin in MATLAB. The MATLAB functions
we wrote to solve our depth-only equations are available at
www.ece.purdue.edu/∼mboutin/code. All computations in this
section were performed on a PC with a 2.66GHz Intel(R)
Core(TM) 2 Duo Processor with 3GB of RAM.

Our first experiment consisted in reconstructing a giraffe
model captured in our lab. The size of this model is about
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300mm × 200mm × 300mm. The camera we used was
mounted on a Microscribe Arm G2LX mechanical arm man-
ufactured by Immersion Corporation, which allowed us to
precisely measure the camera position (within one millimeter)
and orientation (within a fraction of a degree) for each picture.
We took a total of 10 pictures of the giraffe and used the
Kanade-Lucas-Tomasi feature tracking software package [19]
to track the features. As the camera positions were all on the
same side of the model, we were able to select 100 points that
appeared on all ten pictures. While the camera positions and
orientations obtained from the mechanical arm are not used
in our reconstruction process, they were necessary to obtain
a ground truth solution for the 3D giraffe points in order to
quantify the accuracy of our reconstruction. More precisely,
the ground truth solution was obtained by triangulation for
each pair of views, thus obtaining a overdetermined linear
system of equations, which was solved by singular value
decomposition to obtain the 3D point coordinates.

In order to demosntrate the improvement obtained by using
a pose-free (depth-only) cost function, we first needed an
inaccurate initial guess. We obtained this initial guess using the
the Eight-Point Algorithm [12] to recover the essential matrix
and thus the camera pose. The intrinsic camera parameters
were assumed to be known throughout the computation. We
subsequently recovered an initial guess for the Giraffe points.
The results, which are illustrated in Figure 2 a), were obtained
in Matlab in about 0.22 seconds of CPU time. As the pictures
were all taken from the same side of the object, the resulting
reconstruction was not very accurate.

Figure 2 shows the reconstruction obtained after refining
this initial guess with the pose-free (depth-only) cost function
of Equation 17. The total CPU time used for that second step
was about 530 seconds. As one can see from the figure, the
results are very accurate despite the fact that the views were
only acquired from one side of the object.

For comparison, we also refined the the initial guess of
Figure 3 a) by minimizing the total reprojection error through
varying the external camera parameters (camera position and
orientation) and the object point 3D coordinates. Note that
the internal camera parameters were kept fixed during this
optimization. This step took about 63 seconds but did not
yield any significant improvement. The inaccuracy of the
reconstruction is especially obvious from a top view (Figure
3 b), where the high ambiguity of the giraffe point positions
along one direction is observed.

The main reason that the cost function defined in Equation
17 leads to a more accurate reconstruction than minimizing
total reprojection error is that it does not contain any external
pose parameters. When camera pose estimation is not well
conditioned, large variations in the pose estimation can lead
to very small variations in the reprojections. As a result, one
can be very close to the optimal total reprojection error while
being very far from the true camera pose. Thus, if the initial
guess for the camera pose is inaccurate, minimizing the total
reprojection error may not yield any significant improvement.
This phenomenon can be observed in Figure 4, where we show
four different reprojections of the solution obtained by total
reprojection error minimization (Figure 3). The reprojection

displayed corresponds to the first, forth, seventh, and tenth
view. As one can see, each of these reprojections is highly
accurate even though the 3D reconstruction is not, thus illus-
trating the bad conditioning of the problem we are attempting
to solve. Note that the reconstruction error, measured as
the average Euclidean distance between all points and their
corresponding reconstruction, is more than 19.745mm. In
contrast, our solution (Figure 2) has a reconstruction error of
only 5.164mm.

The difference between bundle adjustment and refining
one of our proposed pose-free cost function is more drastic
in our second set of experiments, in which we randomly
selected a set of 20 Giraffe points and considered the same ten
pictures acquired with our mechanical arm. As before, these
20 points were reconstructed using the Eight-Point Algorithm
followed by triangulation. The reconstruction is illustrated in
Figure 5a). One notices the particularly bad accuracy of this
reconstruction. Indeed, the reconstruction error, measured as
the average Euclidean distance between all points and their
corresponding reconstruction, is 294.65mm. Nonetheless, re-
fining this solution using the cost function defined by Equation
17 produces a very accurate result, with a reconstruction
error of 3.03mm. By using the cost function of Equation
16, which uses a larger set of equations, we can refine the
initial guess even better, with a reconstruction error of only
2.49mm. (See Figure 5d).) In constrast, refining the Eight-
Point Algorithm solution by minimizing the total reprojection
error does not lead any noticeable improvement, as the error of
the resulting reconstruction is still almost the same, at 294.62.
It is also interesting to note what happens when our pose-
free solutions are refined by minimizing the total reprojection
error. In this particular case, the reconstruction error actually
increases. Indeed when the pose-free solution of Figure 5c)
was refined using BA (using the true camera parameters as
initial guess for the camera parameters), the reconstruction
error increased from 3.03mm to 5.81mm. Similarly, when the
pose-free solution of Figure 5d) was refined using BA (again
using the true camera parameters as initial guess for the camera
parameters), the reconstruction error increased from 2.49mm
to 3.17mm.

Our next experiment aims to demonstrate that, in general,
refining with a pose-free (depth-only) cost functions leads
to a statistically better accuracy than minimizing the total
reprojection error. We generated 30 random 3D points and
projected them onto two images separated by a translation of
(2, 0, 0) and no rotation. More precisely, the camera centers
used to acquire the images were (−1, 0.5, 1) and (1, 0.5, 1),
respectively. We added Gaussian noise to the projection before
using the Eight Point Algorithm to recover the external camera
parameters (the internal camera parameters were fixed) and
subsequently recover an initial guess for the 3D reconstruction
(by triangulation).

We repeated this experiment 30 times for 20 different values
of the standard deviation of the noise. For each reconstruction,
we computed the reconstruction error as the average L2 norm
of the point-wise difference. As one can see from the graph
in Figure 7 a) the output error increases as the input noise
increases. These initial guess were, of course, not particularly
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accurate: our aim was to use them to showcase the difference
in accuracy of a refinement with our proposed pose-free
(depth-only) cost functions and that of a bundle adjustment
refinement.

Having obtained an initial solution guess, we subsequently,
refined the reconstruction by minimizing the total reprojection
error (while keeping the internal camera parameters constant).
The results were obtained in 0.203 second in average. The
error of the corresponding reconstruction is plotted in Figure
7 b). For comparison, we also refined the initial solution guess
by minimizing the following depth-only cost function:

E =

N−1∑
i=1

N∑
ī=i+1

(‖γi1pi1 − γī1pī1‖2 − ‖γi2pi2 − γī2pī2‖2)2

+((γ41p41 − γ31p31) · (γ11p11 − γ31p31)

×(γ21p21 − γ31p31)− (γ42p42 − γ32p32) · (γ12p12 − γ32p32)

×(γ22p22 − γ32p32))2,

(18)
for N = 30 points. This function uses the symmetrized
equation set (Equation 13) along with Equation 14. The
average Euclidean distance between the 3D points we obtained
and their true value is plotted in Figure 7 c). A significant
improvement over minimizing total reprojection error can
be observed. The CPU time used for this step was about
1.027 seconds in average, which is about five times the CPU
time used to minimizing total reprojection error. The time
difference increases with the number of points considered.
This is because our cost function uses one equation for every
pair of points while the total reprojection error uses only one
equation per point. So our cost function contains more terms
than the total reprojection error. Actually the number of cost
function terms of our method is (N(N − 1)/2 + 1)(J − 1)
versus NJ for the total reprojection error, for a data set with N
points and J images. The relationship between the number of
reconstructed 3D points and the CPU time is shown in Figure
8. As one can see, the relationship between the running time
and the number of points in minimizing the total reprojection
error is almost linear while the one in our depth-only method is
quadratic. However, we can reduce the size of our cost function
by only considering a fraction of our proposed depth-only

equations. More precisely, instead of using the full set depth-
only cost function (Equation 18), one can use a partial set of
depth-only equations to obtain a reduced cost function, such
as this one, which uses the complete and minimal equation set
(Equation 12):

Ereduced =

N∑
i=2

(‖γi1pi1 − γ11p11‖2 − ‖γi2pi2 − γ12p12‖2)2

+

N∑
i=3

(‖γi1pi1 − γ21p21‖2 − ‖γi2pi2 − γ22p22‖2)2

+

N∑
i=4

(‖γi1pi1 − γ31p31‖2 − ‖γi2pi2 − γ32p32‖2)2

+

N∑
i=5

(‖γi1pi1 − γ41p41‖2 − ‖γi2pi2 − γ42p42‖2)2

+((γ41p41 − γ31p31) · (γ11p11 − γ31p31)

×(γ21p21 − γ31p31)− (γ42p42 − γ32p32) · (γ12p12 − γ32p32)

×(γ22p22 − γ32p32))2.

(19)
This cost function contains (4(N − 4) + 7)(J − 1) terms,
which makes the CPU time of the reconstruction comparable
to that of total reprojection error minimization, as shown in
Figure 8. As we can see from Figure 7 d), the accuracy of the
reconstruction is not significantly affected.

As stated earlier, the reason that the cost functions Equation
18 and 19 are more accurate than the total reprojection error is
that they do not contain any external camera pose parameters.
The most troublesome parameter is the camera angle, as a
small change in camera angle can make a large difference in
the 3D point positions. Even when one knows the camera
position precisely, it is still highly difficult to obtain the
reconstruction accurately by minimizing the total reprojection
error, as long as the camera angle estimate is inaccurate. To
substantiate this statement, we ran another experiment. Again
we used 30 randomly generated 3D points and the same 2
cameras. We added Gaussian noise with incrementally large
standard deviation to the camera orientation, and then used the
noisy camera pose along with the projection data to reconstruct
an estimate of 3D points. The error between the estimated 3D
points and the ground true is shown in Figure 9 a). We then
minimized the total reprojection error in order to refine this
initial solution. Figure 9 b) shows that this did not lower the
reconstruction error significantly. In sharp contrast, our depth-
only method, both full and partial, give highly accurate results,
as shown in Figure 9 c) and d) respectively.

While the reconstruction error obtained with our approach
is smaller than when using BA, even in the presence of
outliers created by the Gaussian noise added to the points,
it is still affected by noise: the more noise the less accurate
the reconstruction. As with any other reconstruction method,
the presence of mislabeled points is problematic, as the coordi-
nates of mislabeled points can vary drastically from their true
coordinates, which can lead to a poorly converging optimiza-
tion. To illustrate this, and in order to better separate the effect
of noise from mislabeling, we repeated the 20 point giraffe
experiment while artificially adding further and further outliers
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(a) Accuracy of initial 3D reconstruction after perturbing
camera angle.
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(b) Accuracy of refinement of a) obtained by minimizing total
reprojection error.
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(c) Accuracy of refinement of a) obtained by minimizing
depth-only cost function.
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(d) Accuracy of refinement of a) obtained by minimizing
reduced depth-only cost function.

Fig. 9: Effect of error in the camera angle estimate with perfect knowledge of the camera position.
to the data. This was done by moving the image of some
specific points towards the top left corner position of the image
while recording the effect on the reconstruction accuracy. More
specifically, we first modified the image of the 10th point on
the 10th image by moving it on a straight line towards the
upper left corner of the image: the position of this outlier on
the line is parameterized uniformly using the parameter t. This
corresponds to adding 0.5% outlier to the data. We repeated
the same experiment by simultaneously moving the 10th image
of the 10th point and the 9th image of the 9th point both towards
the upper left corner of the respective image. This time, we
used the same parameter t to parameterize the movement of
both points. This corresponds to adding 1% outlier to the data.
Finally, we repeated the same experiment by simultaneously
moving the 10th image of the 10th point, the 9th image of the
9th point, and the 8th image of the 8th point both towards the
upper left corner of the respective image. Again, we used the
same parameter t to parameterize the movement of all three
points. This corresponds to adding 1.5% outlier to the data.
As one can see from the graph, both for the cost function
of Equations 17 and that of Equation 16, moving the outliers
further and further away produces somewhat erratic results
passed a certain threshold. Thus when there is a potential for
mislabeling, the use of RANSAC in combination with our
approach should be considered.

X. STATISTICAL INTERPRETATION

The total reprojection error is generally accepted to be the
best measure of reconstruction accuracy. Part of this belief
is based on the fact that minimizing the total reprojection
error yields the maximum likelihood estimate for the cam-
era pose and object reconstruction when the image error is
zero-mean Gaussian [5] [11] [23]. In general, a maximum
likelihood estimator is viewed as a good estimator because
it is asymptotically unbiased and efficient. In other words, as
the number of observations tends to infinity, its bias tends
to zero and the expected value of its mean squared error
tends to the Cramér-Rao lower bound. Thus, in the asymptotic
limit, no unbiased estimator for the camera pose and object
reconstruction can be more accurate than an estimator that
minimizes the total reprojection error when the image error is
zero-mean Gaussian. In the experiments presented in Figure 7,
we show that the mean squared error of our estimator is much
smaller than that of the maximum likelihood estimator. This is
not a contradiction because our estimator is biased. Recall that
our equations are obtained by projecting the standard SFM
equations onto a subspace. This is a standard regularization
technique used to increase the conditioning of an estimator.
While this adds a bias to the estimator, the average accuracy
is often improved. See for example Chapter 4 of [2] for a
simple example in linear algebra.
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Fig. 10: Effect of Outliers on Accuracy.

XI. FUTURE EXTENSIONS

The results we obtained so far are only valid when the
internal camera parameters are fixed. However, they can easily
be extended to include variable internal camera parameters, as
we show below. To illustrate how this can be done without any
knowledge of invariant theory, we begin by considering the
case where only the focal lengths of the cameras are variable
and unknown before generalizing to the case where all internal
camera parameters are variable and unknown.

Let fj denote the focal length of the camera at picture j.

Then Equation 4 becomes

γij

 f−1
j xij
f−1
j yij

1

 = RjPi −RjCj , for all i, j. (20)

Following our previous reasoning, we can eliminate the exter-
nal camera parameters Rj and Cj , thus obtaining the following
modified version of our depth-from-motion Equations 13∥∥∥∥∥∥γij

 f−1
j xij
f−1
j yij

1

− γīj
 f−1

j xīj
f−1
j yīj

1

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥γij̄
 f−1

j̄
xij̄

f−1
j̄
yij̄

1

− γīj̄
 f−1

j̄
xīj̄

f−1
j̄
yīj̄

1

∥∥∥∥∥∥
2

, (21)

for distinct i, ī = 1, 2, ...n, and distinct j, j̄ = 1, 2, ...J . Solv-
ing these equations would yield the values of the unknowns
fj , γij up to the projective ambiguity of the reconstruction.

In order to obtain a fully ”pose-free” formulation, we
would need to further eliminate the internal camera parameters
fj . More generally, if all internal camera parameters were
unknown and allowed to vary from picture to picture, then
Equation 4 would be replaced by

γij

 xij
yij
1

 = Kj (RjPi −RjCj) , for all i, j,

where Kj is a diagonal matrix containing all the internal
camera parameters, and we would need to eliminate all the
Kj , Rj , Cj , and Pi. Observe that the right-hand-side of that
equation corresponds to an affine transformation of the object
point Pi. We can assume that the determinant of Kj is equal
to one, in which case the transformation is restricted to an
equi-affine transformation. The (joint) invariants of the group
of equi-affine transformations on R3 are well known: they are
generated by the volumes vi0i1i2i3 spanned by sets of 4 points
Pi0 , Pi2 , Pi3 , Pi4 ∈ R3, where

vi0i1i2i3 = det (Pi1 − Pi0 , Pi2 − Pi0 , Pi3 − Pi0) .
Therefore, we have the following SFM equations,
|γi1jpi1j − γi0jpi0j , γi2jpi2j − γi0jpi0j , γi3jpi3j − γi0jpi0j | =
|γi1jpi1j − γi0jpi0j , γi2jpi2j − γi0jpi0j , γi3jpi3j − γi0jpi0j | ,
for all distinct i, ī and all distinct j, j̄, which are free of both
internal and external camera parameters. Note the geometric
interpretation of these equations (volumes between the object
points are preserved under equi-affine transforms), which ex-
tends the geometric interpretation for the fixed internal camera
parameter case previously discussed (dot products, Euclidean
distances and signed areas are preserved under orientation
preserving rigid motions).

XII. SUMMARY AND CONCLUSION

We proposed a formulation of the problem of structure
from motion (SFM) with fixed internal camera parameters in
terms of polynomial equations of degree two and three in the
depth of the object points with respect to the camera centers.
This formulation, obtained by algebraic variable elimination,
is equivalent to the standard SFM formulation but it does
not involve any of the (external) parameters of the camera.
By equivalent, we mean that it encodes exactly the same
constraints on the depth parameters as the standard SFM
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formulation: no constraint is added, and no constraint is
removed. Thus its solution set corresponds to the projection
of the solution set for the standard SFM formulation onto the
space spanned by the depth variables. Moreover, the remaining
unknowns all depend linearly on the depth parameters.

In small well-determined cases, our formulation can be
solved in a global fashion using homotopy methods. In par-
ticular, the case of five points on two pictures can be solved
under two minutes on a 2.66GHz Intel(R) Core(TM) 2 Duo
Processor using a homotopy package for Maple [14]. This
solution approach yields all solutions of the problem, including
the complex ones, and the true solution can be selected as
the only real positive one. In contrast, the same program was
unable to solve the standard SFM formulation after running
for more than 2 weeks. While the current running time may be
too large for many applications, this result noteworthy from a
theoretical point of view. In particular, it implies that algebraic-
based methods could, potentially, be used to analyze and/or
solve SFM cases that are difficult to solve numerically, such
as the degenerate cases or cases where the object or picture
points are defined by a parametric expression.

In the over-determined case, one can use our equations
to formulate simple external-camera-pose-free cost functions
to be minimized. Our experiments indicate that, given a
noisy input, minimizing a pose-free cost function leads to a
statistically more accurate solution than minimizing the total
reprojection error as in the Bundle Adjustment method (BA).
When all the possible equations are used to formulate the cost
function, the minimization is more computationally expensive
than minimizing the total reprojection error. One can select a
smaller set of equations before formulating the cost function.
If the set is small enough, the run time becomes comparable
to that of minimizing total reprojection error, but the resulting
accuracy is still significantly better. While the reconstruction
error obtained with our approach is smaller than when using
BA, even in the presence of outliers created by the Gaussian
noise added to the points, it is still affected by noise: the
more noise the less accurate the reconstruction. As with any
other reconstruction method, the presence of mislabeled point
is problematic, as the coordinates of mislabeled points can vary
drastically from their true coordinates. Thus in the presence
of outliers and/or mislabeling within a large number of points
or pictures, our method should be combined with a RANSAC
approach so to only used the best picture points available.

The total reprojection error is generally accepted to be the
best measure of reconstruction accuracy. This belief is based
on the fact that minimizing this error yields the maximum
likelihood estimate when the image error is zero-mean Gaus-
sian. Our results emphasize the importance of also considering
numerical conditioning when deciding on a best solution
strategy, as a biased estimator such as the one we propose
can beat the accuracy of the maximum likelihood estimate.

We generalized of our approach to the case of a projective
camera (i.e, when the internal camera parameters vary from
one picture to the next). This extension was obtained using the
invariants of the group of equi-affine transformations in R3.
In future work, it would be interesting to study the advantages
provide by this fully pose-free formulation of the general

formulation of the SFM problem for a pinhole camera.

APPENDIX I

To show that Equations 8 form a complete set of camera-
orientation free equations, we show that solving Equations 8
for all Pi’s and all Cj’s is equivalent to solving Equations 1
for all Pi’s, all Cj’s and all Rj’s and forgetting the actual
values of the Rj’s. To do this, we show that Equations 1
can be deduced from Equations 8. We begin by using a well
known fact from invariant theory [18] which states that if some
vectors v1, . . . , vN and w1, . . . , wN satisfy vi · vk = wi · wk,
for all i, k = 1, . . . , N , then there exists an orthogonal matrix
A such that vi = Awi, for all i = 1, . . . , N . Thus, for every
index j, there exists an orthogonal matrix Aj such that

(γjpij) = Aj(Pi − Cj), for all i = 1, . . . , N.
But the determinant of Aj cannot be negative, otherwise
γijγ1jγ2jpij ·p1j×p2j = −(Pi−Cj) · (P1−Cj)× (P2−Cj),
which contradicts the third equation (unless Pi−Cj , P1−Cj
and P2−Cj are co-planar.) Hence, each Aj is a rotation matrix
and we thus obtain Equations 1.

APPENDIX II

To show that Equations 10 form a complete set of camera-
pose-free equations, we need to show that solving Equation 10
for all Pi’s is equivalent to solving Equations 1 for all Pi’s, all
Cj’s and all Rj’s and forgetting the actual values of the Cj’s
and Rj’s. Again we do this by showing that Equations 1 can
be deduced from Equations 10. We use a fact from invariant
theory which states that if vectors v1, . . . , vN and w1, . . . , wN
satisfy ‖vi − vk‖ = ‖wi − wk‖, for all i, k = 1, . . . , N , then
there exists an orthogonal matrix A and a translation vector T
such that vi = Awi +T , for all i = 1, . . . , N . Thus, for every
index j, there exists an orthogonal matrix Aj and a translation
vector Tj such that

γjpij = AjPi + Tj , for all i = 1, . . . , N.
But the determinant of Aj cannot be negative, otherwise

γ4jγ1jγ2j(p4j − p3j) · (p1j − p3j)× (p2j − p3j)

= −(P4 − P3) · (P1 − P3)× (P2 − P3),
which contradicts the fifth equation (unless P4 − P3,P1 − P3

and P2−P3 are co-planar.) Hence, each Aj is a rotation matrix.

APPENDIX III

To obtain a SFM formulation that does not contain 3D
point parameters, we begin with the standard SFM equations
(Equations 1) for five 3D points on a pair of pictures:

pij = cij(RjPi + Th), for i = 1, . . . , 5 and j = 1, 2.
By rigid motion invariance, we can set the first camera position
at the origin of the coordinate system: R1 = I and T1 = 0.
Then the first 5 equations become:

pi1 = ci1Pi, for i = 1, . . . , 5.
Isolating the Pi in each equation and replacing into the
remaining five equation sets and setting γij = 1/cij , we get

γi2pi2 = γi1R2pi1 + T2, for i = 1, . . . , 5. (22)
This gives us a system of equations where the 3D point
parameters have been eliminated, i.e. a depth-and-pose-only
SFM formulation. Using the same technique, one can eliminate
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the 3D points parameters from angle-free SFM formulation to
obtain a depth-and-translation-only SFM formulation.

γi2γ12pi2 · p12 = (γi1pi1 − C2) · (γ11p11 − C2),

γi2γ22pi2 · p22 = (γi1pi1 − C2) · (γ21p21 − C2),

γi2γ12γ22pi2 · p12 × p22 = (γi1pi1 − C2) · (γ11p11 − C2)

×(γ21p21 − C2), (23)
for all i = 1, . . . , 5.
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