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Development site

Figure 1: Example Urban Design Process. The user interactively controls a 3D urban model by altering the pararaetean underlying
procedural model (forward modeling) or by changing the values biteary target indicator functions (inverse modeling). a) Starting with a
development site, b) the user selects an initial urban layout (using teragatplace types”). The layout now has parcel egress but has c)
initial undesired values of building sun-exposure and natural interiortlighd d) unwanted average distance from buildings to closest parks.
The model alterations needed to obtain user-specified local or glota¢sdor these indicator values are computed "inversely” resulting in
a final design, which is e) seen up close or f) from a distance. In conaasgmplishing such an output with traditional forward modeling
would require either specifically writing a procedural model with the desparameters or very careful parameter tuning by an expert to
obtain the intended results.
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1 Introduction

We propose a framework that enables adding intuitive high level L o . .
control to an existing urban procedural model. In particular, we pro- Urban procedural modeling is becoming increasingly popular in
vide a mechanism to interactively edit urban models, a task which is Computer graphics and urban planning applications. A key basis
important to stakeholders in gaming, urban planning, mapping, and for the popularity of city-scale urban procedural modeling is that
navigation services. Procedural modeling allows a quick creation ©nce the procedural model is defined, it encapsulates the complex
of large complex 3D models, but controlling the output is a well- interdependencies within realistic urban spadéatty 2007 and
known open problem. Thus, while forward procedural modeling enables users, who need not be aware of the internal details of the
has thrived, in this paper we add to the arsenal an inverse modelingProcedural model, to quickly create large complex 3D city mod-
tool. Users, unaware of the rules of the underlying urban procedural IS (€.9., Parish and Niller 2003 Honda et al. 2004Weber et al.
model, can alternatively specify arbitrary target indicators to con- 2009 Vanegas et al. 20Qp Effectively, the detail amplification in-

trol the modeling process. The system itself will discover how to herently provided by procedural modeling is exploited: a small set
alter the parameters of the urban procedural model so as to producéf succinctinput rulesandinput parametersan yield very com-

the desired 3D output. We label this process inverse design. plex and coherent outputs. However, the succinctness of urban pro-
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cedural modeling is also its Achilles’ heel: obtaining a 3D urban ploits the place types concept used by urban designers to represent
model with complex user requirements is a challenging task that a coherent design pattern of buildings and streets (€gltHorpe
requires experience and in-depth knowledge of the underlying pro- 201Q). Our system has operationalized the concept of place types
cedural model. An expert user with programming skill must set the into an interface that allows urban planners and designers to interact
values for the input parameters, implement the procedural rules in with the design task at a high level of abstraction from the details.
software, and iterate between code, parameters and examination ofnternally, we use place types as a hierarchical means of organiz-
the output in order to achieve the desired model. In short, what ing the geometric elements for spaces much larger than individ-
is needed is a means to efficiently learn the parameters and rulesual buildings, and encoding these efficiently as procedures. Akin
required to produce a desired 3D urban model, without requiring to example-based methods (e.dkwatra et al. 2005Merrell and

the end user to write complex software programs. Urban planners Manocha 2008Aliaga et al. 2009, place types effectively provide

and content designers often have a clear vision for the target urbana succinct way to assemble a complex and realistic urban space;
model, but lack the computational tools to rapidly create models however, unlike example-based methods, the generation process is
that meet their design requirements. fully parameterized.

To address this challenge, previous papers have proposed solution®ur inverse systeranables users to directly alter the 3D model via
for locally changing the 3D output of a procedural model to pro- a set of user-specified local or global target indicators. The concep

duce the desired model (e.gLipp et al. 2011)), for stochastically
driving a procedural model so as to obtain an output following a
desired global shape (e.gTdlton et al. 201]), or for guiding pro-
cedural modeling by dividing the model into smaller parts that are
easier to describe and can inter-communicate (eBends et al.
2011). An alternative strategy focuses directly on the inverse mod-
eling problem: given a desired 3D output, estimate the procedural

of indicators is well used by the urban design and planning commu-
nity (e.g., Murphy 1980 Wong 2006) and the work presented here

is strongly motivated by our urban design and planning collabora-
tors. Indicators can be thought of as an additional output layer that
can vary from simple evaluation of geometric properties that can
be used to alter parameters in a straightforward way (e.g., average
distance of a house from the street, floor-to-area ratio) to complex

parameters and rules needed to generate the provided output. Thisemantic metrics (e.g., landmark visibility, amount of sun exposure

strategy is particularly promising, but so far has only been applied

per building, suitability of roofs for solar energy panels) that do not

to selected elements of our problem, such as to generate 2D vec-have an obvious relationship to input parameters. Nevertheless, in-

tor geometry ﬁava et al. 201 to complete or edit input models
exhibiting certain symmetrieBpkeloh et al. 201]) or to recreate
animated sequenceB4drk et al. 201]L
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Figure2: System Pipeline. A summary of our coupled forward and
inverse modeling pipeline.

We propose coupling a forward procedural urban modeling process
with an inverse urban modeling algorithm that optimizes the in-
put parameters to satisfy user-specified goals (FiglreWe are
closing the loop between forward and inverse modeling strategies
(as depicted in Figur@) and provide both increased control and
higher flexibility, enabling the user to be much more efficient in
generating a model that satisfies their requirements. Both forward
and inverse modeling strategies can be applied during an interac-
tive editing session for either local or global model modifications.

dicators provide an intuitive means for the user to evaluate a 3D
urban model, and are easy to compute and express. To our knowl-
edge, indicators have not been used to control modeling because
the exact relationship between the input parameters and target indi-
cators is in general unknown, complex, and highly nonlinear.

Our inverse design strategy has two main advantages:

e Abstraction- we enable urban planners and designers to work
on design tasks at a high level of abstraction, enabling users to
manipulate place types, parameters, and indicators in order to
generate and evaluate the 3D urban model interactively. This
design approach enables users to focus on the design task and
not be distracted with implementation details of the procedu-
ral model, thus supporting more creativity and productivity. In
particular, an urban procedural model can be created/defined
once by an expert and then used by others who do not need to
be aware of its internal structure or of its precise response to
the input parameters.

Interactivity - our approach enables interactively manipulat-
ing indicator targets, while regenerating 3D geometry at high
frame rates. Further, our methodology to mapping target in-
dicators to input parameters is sophisticated enough to allow
the use of complex indicators, including those for which it is
not known how to reprogram the procedural model.

The key advantage of supporting an inverse modeling methodology T0 enable efficiently exploring the procedural parameter space in
is that the procedural model can be controlled in new ways with- order to find one or more solutions that produce a 3D urban model
out having to re-program the forward engine or explicitly re-write ©Of the desired parameter and indicator behavior, we use Monte
the procedural model rules. Our work abstracts the urban procedu-Carlo Markov Chains (MCMC) Gilks et al. 1995 and resilient
ral model into a general parameterized form and adds a component?@ck propagationRiedmiller and Braun 1993 We tailor our use
that is able to discover how to control the procedural model so as to ©f MCMC and back-propagation to find several solutions that are

obtain the desired values for user-specified indicator values derived@s different as possible yet comply with the desired values. Un-
from the resulting model. like previous systems using MCMC within the context of archi-

tectural or procedural modeling (e.gMérrell et al. 2011 Talton
To ensure we have an expressive forward system, we have de-etal. 2011 Yu et al. 201}), i) we support complex indicators, thus
veloped a versatile parameterized urban procedural modeling en-enabling control beyond global shape, such as by high-level seman-
gine. Similar to Parish and Mler [200] and to CityEngine tics and indicators, ii) we consider the procedural model as a black
[http://lwww.esri.com/software/cityengine], our system allows for box and thus support context-free and context-sensitive stochastic
an interactive editing at levels of detail ranging from buildings to grammars, and in fact impose no grammar limitation — this is ad-
cities. A key innovation in the design of the procedural model ex- vantageous for urban procedural modeling because cities are hard



to express with a strict grammar and even harder using the context-have focused on determining the parameter values for pre-specified
free grammars of Talton et alR(Q11], and iii) our system is inter- classes of procedural building models. Several facade-levelsvork
active and able to alter models consisting of over 1500 buildings have also proposed methods to determine procedural parameter val-
as well as geometry for roads, in only fractions of a second on a ues for individual facades (e.g.Mfller et al. 2007 Xiao et al.
desktop computer. Our use of a resilient back-propagation engine200g). Another related set of approaches are those by Honda et
is to imitate the indicator behavior of the urban procedural model al. [2004, Weber et al. 2009, and Vanegas et al2p09 which
without having to explicitly produce a 3D model and thus allow the integrate urban simulation and urban geometric modeling. With a
MCMC engine to evaluate the target indicators for a large number user-guided process, they define an inverse-like simulation to pro-
of iterations and instances of urban models. Since there is no guar-duce realistic 3D urban models. Most related to our work are other
antee that a 3D model is possible for arbitrary indicator values, our MCMC/Metropolis-based methods and guided procedural model-
system also provides an analysis tool which informs the user if a ing of Bené et al. R01]. MCMC-based methods have been used
particular indicator value is feasible. Using our system we can in- in many vision and robotics applications (e.g., see worlbielfaert
teractively modify 3D models for urban areas spanning over 100 2003). MCMC and Metropolis-based sampling has been used as
km? and containing up to 10,000 parcels. Our typical frame rate well in computer graphics (e.g., light transpovepch and Guibas
while changing indicator values interactively and generating new 1997, rigid-body simulationsChenney and Forsyth 20PD@nd fa-

3D models is 2.5 to 10 frames per second. The back-propagationcade modelingAlegre and Dellaert 20Q% Recently, MCMC and
engine is able to compute indicator values that are typically within stochastic optimization were also used for furniture layout distri-
5% of using the actual procedural model and require only a small bution by searching in a parameterized design space (Merréll
fraction of the compute time (e.g., 0.01 ms as opposed to a typi- et al. 2011 Yu et al. 201]). Benes et al. p01] generalizes the

cal 250 ms using a procedural modeling engine, thus an effective concept of environment by spatially dividing the rules (and produc-
speedup of over 25,000x). The user can choose from a proposedions) into small guided procedural models that can communicate
best set of 3D models. Subsequently, more edits can be made, thdy parameter exchange. Talton et 2017 take as input a stochas-
model can be saved to disk, or the geometry exported to commercialtic context-free grammar and explore the possible strings generated

rendering engines. by the grammar to find a production sequence that yields a target
3D shape. They render/voxelize the model to evaluate a cost func-
2 Related Work tion, yielding a multi-building example result in about 14 minutes.

In contrast, our method does not impose any limitations on the un-

Procedural modeling has been used in several principal domains:de.rly.'ng grammar and _enables editing urban areas of over a 1000
buildings in only a fraction of a second.

plant generation, fractal noise and terrain generation, and urban
modeling. The seminal Paris andilVer [200]] defines a forward )
procedural process for generating cities using L-systems. Vane-3 QOverview

gas et al. 20104 and Watson et al.Z00§ provide comprehen-

sive surveys of subsequent improvements in forward-generating u As shown in Figure2, a procedural syster®? produces a geome-
ban procedural modeling. Some procedural modeling approachestry G using a se® = {¢1, ..., ¢ } Of m input parameter values.
have incorporated domain specific knowledge in order to gener- The geometry is evaluated by an indicator measurement system
ate expressive, yet controlled, output as well (e.g., vegetatiart | which produces asé&t= {v1,...,v»} of nindicator values. Each

et al. 2003, architectural desigriWhiting et al. 2009 Turrin et al. parameter value must be within aran@g.in; , ¥max, ) and each in-
2011 Merrell et al. 201}, and texturesliefebvre and Poulin 2000 dicator value within a rangBymin; , Ymax,; ] Symbolically, we can
Bourque and Dudek 2004 A common challenge to all these ap-  write the relationship of the input parameters to the target indica-
proaches is providing a succinct control from a compact set of.rules tors:

Our core inverse engine attempts to control modeling by discov- ['=1(G) = I(P(®)) = (o P)(®) @)

ering how to alter the input parameters values in order to yield a Our objective is to let the user change the parameter vahgs.,
desired set of user-defined target indicator values while treating the forward modeling) or the indicator valu&g(i.e., inverse modeling)
urban procedural model as a black box for the purpose of gener-and then to automatically (and interactively) compute geom@try
ality. Many classical inverse methods are based on regularizationwhose indicator values are within the desired range. We define the
theory (e.g., Bertero et al. 1988. These methods attempt teg- set of tuplesT™* = {(7{,75,),---, (v, ¢%,)} to be the user-
ularize ill-posed inverse problems; e.g., the inverse problem can specified target indicator values, such that measurements of each
be defined as trying to find the underlying weights relating input indicator are desired to have an approximate Gaussian distribution
parameters to target indicators. While standard regularization canwith meany; and standard deviatiopi;,. Similarly, we define the
improve the ability to compute a plausible solution to a generic in- target parameter values to B = {(¢7, Gy ) (D0, 05 )}

verse problem (e.g., Tikhonov-based regularization/regressi@),  However, the specification @* is optional — if not specified, the
typical emphasis is noise removal and/or an assumed unknown for-parameters can be freely altered by the system. While the stan-
mation process of the observed indicators - neither is the case in ourdard task of procedural modeling is to generate geometry from a set
work. of input parameters, our methodology computes a set of parameter
values®’ that leads the procedural system to generate a geometric
modelG exhibiting indicators close to the target vald€sand, op-

. ] tionally, close to parameter valu®s. In other words, we seek a set
proposed inverse procedural modeling of rules and parameter val-¢ parameter value$’ such that/ o P) (&) — I* while possi-

ues. However they focus on 2D content, terminal symbols are 550 ensuringd’ — @*. The overall error is encapsulated in the
known, and they generate context-free rules for linear StrucmresfunctionE(@’ &*,T*) and the computational goal using MCMC
using L-systems. Bokeloh et al2Q1Q explore partial symme- is to find the values ob’ that minimizek.

tries and use inverse procedural modeling in order to complete

the geometry of ill-specified input models exhibiting certain sym- Our inverse method requires calculatitfo P) (®) for a large
metries. Park et al.2D1] use inverse procedural modeling to  number (e.g.O (104)) of different values ford. Since standard
find a grammar for animated sequences and use them to generat@rocedural systems are unlikely to generate such a number of pro-
new animations. Aliaga et al2p07 and Vanegas et al2D104§ ductions at interactive rates, we require a functjofi) that ap-

More specific methods to inverse procedural modeling in graphics
have also been published recently. For instaGtzya et al. 2017



proximates( o P) and can be computed significantly faster. The The user interactively sets the values of the weights= [0, 1] and
function does not need to produce geometry but just the correspond-ws = (1 — wr) to control the tradeoff of complying with the target
ing indicator values. We use a resilient back propagation engine to indicators or with the preferred parameter values, respectively.
define a function that outputs the dét= {71,...,7n} of values

that approximate the indicators. The function f is a good approxi- 4.1.2 Starting Points

mation of (1 o P) if ‘F — f‘ < €, wheree is a small positive con-

stant. Thus, given a good approximatipof the procedural gener-
ation and indicator measurement syst@ho P), our optimization
goal is to find sets of parameter valudSsuch thatf (') — T'*
(and optionallyd’ — ®).

A chain’s starting point is chosen by a sampling process. The tar-
get value for a parameter may be specified as an interval with mean
¢* € R and with standard deviatiofy;,. The valuesws andwr

used in the above error function are now used as probabilities (and
are already in the range [0,1]). Chain starting points are chosen
i) with probability we to be in the sampling neighborhood of the
specified target parameter valgié (i.e., within the Gaussian distri-
bution N (¢*, ¢ /2) for each¢ € ® and bound by ¢min , Pmax])
Given the set§™* and®*, our optimization explores the large mul- ~ and ii) with probabilitywr to be uniformly sampled within its ex-
timodal space of parameters in order to propose one or more setdent [pmin , Pmax]. If the parameters can have any valid value, then
®’. In the following, we describe MCMC in the context of our we = 0 which implies the right hand term of equation 2 is unused
pipeline including how both local and global moves are made, how and starting points are obtained by a uniform sampling of the entire
we select amongst the best solutions so as to encourage diversity ifParameter space.

the answers, and summarize our resilient back propagation engine.

4 Inverse Design

Each chain performs, per attempted state change, either a local or
a global move with probability; and(1 — ¢;), respectively. Local
moves are proposed by sampling from Gaussian distributions for
o o ) each parametep. Global moves are proposed by sampling points
The optimization consists in simultaneously running many sets of using precomputed frequency distributions of the indicators. All
Markov Chains over a large number of iterations and choosing the |5cal and global moves are bounded by the predetermined span for

best solution states (Figu. Our MCMC-based optimizationuses  gach parameter in order to guarantee that the generated solutions
the Metropolis-Hasting algorithmMetropolis et al. 1958 [Hast- remain within feasible limits.

ings 1970 to seek®’ by performingn; attempted state changes
d; — .y, starting fromnp different initial parameter sets and
usingng different temperatures - each temperature corresponds to
a different magnitude of incremental change per iteration. Next, we Given the current staté,
describe the computation per parameter (or per indicator) and for ;
brevity we drop the& subindex fromyp; (or ;).

4.1 MCMC-based Parameter Searching

4.1.3 Local Moves

a candidate state change is computed
by sampling for each parametgre ® a value from the Gaussian

distribution N (0, o), wheres, = min (457;, & |Prmin — ¢max\>,

[b]

and typicallya. = 0.05 in our system. Then, since the distribu-

[ ol P(@) | tion of proposed moves is symmetric (i.e., it consists of a sum of
oK ee® Q.’ Global p(1 — q1) Pagz’::e‘e' weighted Gaussians — thus, the probability of moving from state
e@pr@e | [ tot + 1is the same as from statet- 1 to ¢), the acceptance proba-
‘n Clusters . X ~
P11 N Y A pp— bility a of a move from a current state; to a candidate stat®,
— <1>c. - TERN is given by the Metropolis ratio:
. e e @ °® : _
Tlp L o, -7 ® e \ _ exp (7ﬂE (q>t+1))
- : N a(®y — P = min | 1, 2
SO (e Pr) exp (~BE (8,)) @
Pnyt 4 5
np @ @° @ O . . _ .
where 3 is the chain’s temperature. Henc®;; = ®;41 with

probabilitya, and®.41 = . with probability (1 — a).

Figure 3: Parameter Searching. We provide a diagrammatic sum-
mary of our parameter searching process. Given an initial set,of
parameters, a) we simultaneously pursue many Markov chains for . ) o
each ofn different temperatures. Within each chain both local and  Global moves are computed by inspecting frequency distributions
global moves are performed. b) At the end, the best found solutions©f the indicators. The frequency distribution for each indicgtes
from all chains are clustered and filtered. Then, one solution from COMPuted after any user changeldf as follows: (i) the parame-
each cluster is shown to the user in order to increase variability in €7 SPace is uniformly sampled within the extent of each parameter
the computed 3D models. using many samples (e.d.0 );_ (||)__t_he value of the indicatoty is
computed for each sample usifig(iii) the rangegymin, Ymax| of v
are computed from the evaluations fo&nd uniformly divided into
ny bins; and (iv) a frequency histograff, (y) for k = [1,ny] is
computed which stores in each of the bins both the frequency (i.e.,
the number of sampled parameter sets that fall within the bin) and
the sampled parameter sets themselves.

4.1.4 Global Moves

4.1.1 Error Function

Given a configuratiorib; and a set of indicatorf = f (), the
optimization error functior® (®;, ®*,I"") takes into consideration
the proximity of f(®;) to I'* and (optionally) the proximity ofb,
to @*. The function can be written as

B (®,, 0", T7) = wr% ) <M)+w¢% > (l(bq_%')

*
~yer Tw pED

To perform a global move, we randomly select an indicatode-
fineb, € [1,ny] as the index of the bin containing the target in-
dicator value, and randomly choose one of the §efsom the bin
H, () wherep is chosen with probabilityi,, as being from the bin



with the highest frequency (e.g., most solutions) and with probabil- either a sigmoid function or a Gaussian function. The back prop-
ity (1 — h.,) as being from the bin containing the target indicator agation supervised learning algorithm trains weights starting with

value. Symbolically: the last layer. Each weighi;; is updated by
) _ ‘ i I oP (D
o {12? H,, = max;, (vatligg);&f_eigl,)nf] with p (i) wis (£ 4+ 1) = wiy(t) — 1, 2 awv,( D %)
. m )
®3)

In contrast to a random local move in the parameter space, this ap-wherew;’s firstindex (i) is for a weight in the current layer and the
proach for global moves tends to lead the chain towards distant con-second index (j) is for a weight in the next layer closer to the input

figurations that are more likely to reduce the error function for at Parametersi is the iteration indexi, is the learning rate, and the
least one indicator. partial derivative off o P (®) is estimated by finite differences. We

implemented an algorithm that searches for the optimal configura-
tion of a multilayer feed-forward network by altering the number

of neurons per layer and the neuron function per neuron (e.g., Sig-
moid or Gaussian). We found the aforementioned configuration,
The process described in the previous section exploges:p +n; with Gaussians, to yield near optimal results.

parameter configurations from which only a few are eventually B )

shown to the user. The selection is done by choosing the top so-Our training process uses as input a set of parameters (e.g., teose th
lutions for each temperature value, clustering the resulting config- user allows the system to change), their valid ranges, and an initial
urations to guarantee variability in the solutions, and filtering out urban scenario. The parameters are sampled within those ranges
solutions for which the fit between the estimated indicator values Using a normal distribution and the corresponding indicator values

(i.e., using the back-propagation engine) and the actual values (i.e.,are calculated. Both are then used to train the neural network. The
using the procedural engine) is low. number of samples to do the training depends on the complexity of

the urban scenario; however we found empirically that using 200-
In our implementation, for each temperature we choose among all 500 samples was enough. It is worth noting that the neural network
the configurations generated the 25 solution states that returned thes trained for a specific scenario. However global indicators (i.e.,
smallest erroiZZ, thus narrowing down the number of possible so- those that do not depend directly on the existence of different place
lutions to25n4. In order to increase the variability in the solutions  types) do not require any re-training. Local indicators (e.g., land-
shown to the user (i.e., to obtain representative solutions from dif- mark visibility) do need to be retrained when major city changes
ferent regions of the parameter space), wekusgeans clustering to are made. Nevertheless, in all of our shown examples, we train the
partition the set of solutions. The parameter values of each solution neural network only once.
are normalized before the distance between two points in parame-
ter space is computed by the clustering algorithm. The valise 4.4 Feasibility
determined by the user (e.g., it equals the number of solutions that

the user wants to see). Finding a set of parameter values able to achieve an arbitrarily spec-
ified set of indicator values is not always possible. The existence of
a geometrical model G that satisfies both the parameter and indica-
tor target values depends on the expressivity and controllability of
he procedural model. Thus, while we attempt to provide a flexi-
)le procedural model (see Sectib)) there is no guarantee of in-
ertability. Nevertheless, we do provide an interactive analysis tool
ased on the histogrant$; () for & = [1,ns] of Section4.1.4
The histogram informs the users how feasible are particular ranges
of indicator values; e.qg., if all bins are near empty, the indicator
cannot be generally achieved for the given procedural model.

4.2 Solution Selection: Ensuring Variability

The top solutions best minimize the error expression
[(IoP)(®)—T". Notice that this error term uses the ac-
tual indicator values computed by the procedural and indicator
measurement system, as opposed to the estimated indicator value
Effectively, we use the approximation functiofi(®) to very
quickly sample the parameter space and to select a set of sever
dozen solutions that minimize the indicator error - hence the
approximation function does not need to be extremely precise.
The resulting solution set is small enough to have the system
interactively compute the actual indicators, thus reducing the effect
of the approximation error of.

5 Urban Procedural Model
4.3 Resilient Back Propagation Engine . . . i

We have implemented an urban procedural engine similar to previ-
ous city-level procedural modeling work (e.gPdrish and Niller
2001, Weber et al. 2009Vanegas et al. 200P However, we pro-
vide a broad range of urban geometrical configurations with a rea-
sonable degree of succinctness and high-level control. Our proce-
dural engine is inspired by urban planners. For instance, our place-
type categories and initial parameter values were obtained with the
assistance of our urban planning collaborators. In the following
text we summarize the structure of our procedural engine, list the
parameters, and describe our initial set of indicators.

Given the complexity of the procedural engine and the thousands
of experiments MCMC requires per small change, we obtain in-
teractivity by replacing the procedural and indicator measurement
system with a neural network. This choice is based on the fact that
neural networks are trained universal functions (e.g., they hese b
used successfully to replace many kinds of functions: linear/non-
linear functions even periodic, exponential, and piecewise continu-
ous) and can quickly estimate indicator measurements without gen-
erating the 3D model and explicitly evaluating the indicator func-

tions.
5.1 Procedural Model

We implement a multilayer feed-forward network (i.e., information

moves in only one direction: from parameters to indicators). The A key concept used in urban planning and modeling centers (e.g.,
network is set up to have: neurons in the first layer andneurons [TRANSECT 2012 CNU 2012 CTOD 2013) are place-types

in the last layer with the number of layers typically being-n+1. (e.g., as described in SmartMobilitg@1d). A city consists of
Each layer is fully connected to the next layer. When evaluating several instances of one or more place-type categories. All in-
the learned function, the weight stored in each neuron is applied to stances of the same place-type category are regions — ranging from



a few blocks to an entire neighborhood — that have contained roads,
parcels, parks, and buildings with similar geometric attributes (e.g.,
width, height, density, shape outlines). Similar to the urban layout
editor of [Lipp et al. 201}, place-types allow defining, moving, ro-
tating, and resizing large subsets of the city at once and can be used
to very quickly produce a sketch of the urban model. The underly-
ing road network, subdivision into parcels, placement of parks, and - L[ - 1 I

% Parks: p,

definition of building envelopes per place-type instance is generated r,
with a fully parameterized approach. ¢
The interactive session consists in the user sketching the global fvg

configuration of the urban area and then directly changinga-
rameter values or n indicator values. First, an arbitrary shape is
defined to separate the modeled urban area from surrounding wa-
ter and terrain bodies. Second, the user creates0 place-type
instances of one or more categories, each ranging in size from a
few blocks to an entire city. In our implementation, we define a
place-type category as a template that provides specific (initial) val-
ues for parameters used by the procedural modeling engine. Once
an instance of a place-type is positioned by the user, the geome- ft
try of the contained roads, parcels, and building is automatically
created and joined with the neighboring geometry. While land-

PogsPog P,

m.’

use and zoning regulations are not explicitly enforced, they can and curvature Building heights, setbacks

Road distances o

be indirectly maintained by careful selection, sizing, and place- — o

ment of place type instances. The expandable set of place-typeFigure 4: Urban Procedural Parameters. The set defining an ini-

categories supported by our current implementation includes re-tial (_:ity model includes th_e following parameters which define con-

gionalftown/suburban center, low/medium/high-density industrial, Straints or control underlying stochastic processes: a) target parcel

and residential, retail, park, and institutional areas. Third, the actual area range, b) percentage of parks, c) desired distance between

city model is altered by our inverse design based on user-specifiedroad intersections and intersection angle parameters, and d) build-

changes to input parameter or target indicator values, performed in-ing height and setback guidelines.

dividually per place-type or done collectively for groups of place-

types. e ps; : maximum random offset of the OBB subdivision split
line from the center of the block, and

5.2 Parameters e p, : percentage of parcels randomly selected as parks.

The entire 3D urban model has = zm, parameters controlling Building envelopes are controlled by the following values:
its generation, withn,, = 16 being the number of per place-type o )
instance parameters. The per-place type parameters generate aroad ® Pb..,Ps, : mean and standard deviation of height,
network with two levels of street hierarchy (i.e., arterials and local),
extract city blocks from the road network, subdivide the resulting
blocks into parcels, define parks, and instantiate a 3D building en- o Db, Db, - Maximum front width and maximum depth.
velope inside each parcel (Figute

® v, o, : frontand side setback distance from road, and

Roadswithin a place-type instance are generated outwards from an 5-3  Indicators

initial seed location. The initial radially-outward direction is called

the u direction and its perpendicular the v direction. The following To demonstrate inverse design support, the entire urban model has
road parameter values are specified separately i) for arterial roads? = zn: indicators withn, = 7 indicators per place-type being
and ii) for local roads, both within a single place-type instance: divided into three classes of indicators that range from straight-

forward measurements to purposefully high-level abstractions (Fig-
e 7y4,,Ty, : distance between two adjacent intersections in u- ure5).
direction and in v-direction,
Intrinsic indicators measure attributes that are mostly independent
e r; : maximum road length irregularity randomly added to a from all other buildings and parcels:
road segment between two adjacent interactions,
e irar : Measures the concept of floor-to-area ratio which is of-
e 7. : maximum random rotation (or curving angle) of a road ten used in urban planning.

segment when it passes through an intersection, ) o . .
Distance-based indicators are mostly concerned with accessibility
e 1, : road width, and measurements and involve computing the distance between two en-
. . I tities:
e 1, : number of departing radial streets from initial seed.

- e i, : distance from a parcel center to the closest park, and
Parcels are the result of subdividing an area enclosed by roads us-

ing recursive subdivision of oriented bounding boxes (OBB) - simi- e i, : distance from a parcel center to a user-specified location
lar to that of Parish and Mler [2001 or Vanegas et alZ009. The “X” (e.g., town center, a landmark, etc.).

parcel parameters values are: - - . .
Visibility-based indicators involve the 3D geometry of the city and

e pm,po : Mean and standard deviation of the randomly- typically perform visibility/occlusion calculations. For instance,
determined target parcel areas during OBB subdivision, the below indicators can be used to quantify the appropriateness



Models can be exported to CityEngine [http://www.esri.com/ soft-
ware/cityengine], for example. The road and parcel network, in-
cluding parameter values, are saved to OSM and OBJ files. By us-
ing multiple CityEngine rule files, together with some randomized
effects, we can quickly create novel and compelling urban models.
This was done for Figures 10, 11b-d, and 12e.

7 Results and Discussion

We have used our framework to create and edit a variety of city-
scale 3D models. All editing and rendering is done interactively
using sliders to alter parameter values (forward modeling) or indi-
cator values (inverse modeling). All example sessions were com-
pleted in under 5 minutes and most took less than one minute. In
the following, we show several analysis and case-study results.

Sunlight Exposure Foor to Area Ratio Landmark Visibility
B B 2
N RS E
0.4 L ¢ a¥er.
3 3 I
Sunlight Exposure Floor to Area Ratio & £ =."}'u‘,‘ :
02 i -
Figure 5: Urban Indicators. We demonstrate a variety of diverse
urban indicators, including: a) by measuring sunlight exposure per T — % - .
faade, we show city models with increasing exposure (bottom re- . Measured Measured Measured
sult has most exposure), b) we show a color-coded distance to park : ~|[d]
metric (red implies close to park), and ¢) we show the floor-to-area £ ' ——Mesuredvalue
ratio of several buildings. Al e " A
@0
. . 215 T
of a city model for reduced energy consumption and/or for solar = |l T meetvalue
panels. Our implemented indicators are: H
e i, : percentage of buildings (inside the place-type) where at = % 20 40 60 50 100 120
. . .. umber Sample
least one point on one landmark is visible from at least one A '
point on the facade of the building, and Figure 6: Back Propagation. a-c) Error plots for three indicators

_ ) comparing measured to estimated indicator values. d-e) Compari-
e ig,ip : percentage of time during the course of a day, av- son of top 120 target and measured indicator values.
eraged over all days of the year and for a specified lati-

tude/longitude, that rooftops or facades, respectively, are di- )
rectly exposed to the sun (i.e., self-occlusion and occlusions 7.1 Analysis
by other building structures are considered).

Figures6-8 show results from several analyses. Figaneresents

e i : the natural interior light ratio, obtained from dividing the  a visualization of the fitting error between the indicators values es-

sun exposure of the facades by the average minimum distancetimated by back propagation and the values measured by using the

from an interior building point to a faade. actual procedural model. Figuréa-c show error plots for three
indicators in an example city: sun exposure, floor-to-area ratio, and
6 Implementation Details landmark visibility. The x-axis shows the measured indicator val-

ues and the y-axis shows the back propagation estimated indicator
values. The graph plots 200 sampled parameter value vectors differ-

Our system runs on a desktop PC equipped with Intel Xeon clocked gnt than the 200 samples used to train the back propagation engine.
at 3.53GHz, Windows 7, and a NVIDIA GTX 580 graphics card.  Figyreséd-e show the target and measured values for two indica-
Our implementation is single core without GPU acceleration, yet tors ysing the top 120 solutions of the inverse computation. The
it provides interactive feedback for all examples in the paper. The samples are sorted by increasing fitting error: 90% of the samples
frame rate while editing indicator values was from 2.5 t0 10 frames paye 4 fitting error below 10%. Solutions with a fitting error higher
per second and during parameter editing was from 15 to 30 frameSihan 15% are not shown to the user.

per second. Back-propagation re-training, which is only needed

whenever new parameters/rules/indicators are defined, takes aboufltogether, our back propagation engine is a good approximation
4 minutes for a training set of 1000 examples. Both MCMC of our procedural generation and indicator measurement system.
processing for indicator editing and back-propagation re-training However, the accuracy of the local indicator approximation could
can be easily parallelized to multiple cores. Our prototype uses decrease with the number of input parameters due to the parameter
OpenCV for k-means clustering and for an implementation of interdependency and the stochastic nature of the indicator. To par-
the back-propagation engine. We set the number of temperaturedially mitigate this effect, the number of hidden layers and the num-
ng = 4, the number of iterationa; = 5000, and the number of ber of training samples should be increased but it will fail when the

starting pointsvp = 20. Further, we sey; = 0.9 which implies indicator function cannot be expressed through a neural network.
a 10% probability of performing global state changes. For global However, the accuracy of the local indicator approximation could
state changes, the number of bins per indicator rangg is= 10 decrease as the number of input parameters increases becawse of th

and the probability of choosing the bin with the maximum number potential additional parameter interdependency and system com-
of sampled parameter space points,is = 0.9. plexity. To partially mitigate this effect, the number of hidden layers
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Figure 8: Variability. a-c) We show the three top solutions generated by our system, with varialslitiyled, for a desired sun exposure
indicator value. d-f) Next, we enable our solution to increase solution viitialand obtain three clearly non-similar top solutions. g-i)
Show the corresponding models of d-f but using our interactive rémglengine.

Probability of Global Move = 0.0 Probability of Global Move = 0.1 to the target values, but now show different styles (Flgm)
Target indicator = 0.211 These three solutions come from different neighborhoods (i.e-, clus

iy 'JW‘

ters) in the parameter space. The main advantage of enforcing vari-
ability is that the user can be presented with several solutions all
of which closely match the target indicator values but also exhibit
different urban configurations. The user can then choose amongst
the top solutions using more subjective style preferences.

MCMC minimum error

7.2 Example Designs

Figuresl, 9, and10 show the results from several example design
sessions using our system. A design session consists of several in-
teractive iterations of forward and inverse editing of an urban layout
that yields a model satisfying the intended goals. Figures 1 and 9
Measured indicator = 0.196 Measured indicator = 0.218 contain an example built upon our interactions with a well-known

Figure 7: Global vs. Local Moves. a) Not including global moves architectural and urban design company, Calthorpe Associates. In

during optimization results in more error than b) including global this experiment, the goal. was to dgsign anew technology .park for
moves over the same number of iterations. Bangalore, India, which includes high-tech industrial buildings of

various densities, campuses for institutional buildings, and five res-
. . . idential clusters, each containing high- and medium-density build-

and the number of training samples could be increased but it will ings. In our shown example, we focus on one of the residential clus-
fail when the indicator function cannot be expressed sufficiently ac- ars  Similar design processes were followed for the other areas.
curately. Figurer demonstrates the advantage of including global ' g4ch residential cluster is desired to have a prescribed amount of
moves, as well as local moves, while searching through the param-gyn_exposure per building, a minimum of natural interior light, and
eter space. Figuré&-b show the value of (@, ", ') for one a small distance from residential buildings to public parks. While
randomly selected Markov chain running at each temperature  g,ch 3 set of goals could be achieved by a manually-created 3D
The best solution states found so far are shown as a th'ick bl‘?CkmodeI or by a customized procedural model, our system uses the
line. These results demonstrate that our approach for including gpjity to support arbitrary indicators, to facilitate quick editing,
global moves yields faster convergence and avoids converging 04,4 to produce a model of the intended properties. First, the user
undesired local minima. In this example, MCMC exploration with  gatg up an initial model using place types (Figlmeb). The initial
global moves resulted in a measured sun exposure value (0.218)4iia|ly-varying indicator values for sun-exposure and natural in-
that was closer to the target value (0.211) than when no global tgyjor light are shown in Figurea anddc (as well Figurelc). The
moves were used (0.196). The resulting 3D models are shown ingysiem automatically determines an alternative 3D model that has
Figures7c-d. The model found by using global moves achieves yce| egress, meets the desired sun-exposure and interior lighting
higher sun exposure by using larger building setbacks and smaller,a)yes, and best follows the intended place-type constraints (Fig-
building heights. ures9b and9d). In Figure 9e (as well Figure 1d), the initial value

of the distances to closest park indicator is represented. To show
Figure 8 shows the best solutions found by our system with and system flexibility, we reduce building-to-park distance using in-
without enforcing variability (Sectiod.2). The user required the  verse indicator based modeling (Figu@® or forward parameter
city to exhibit a target average sun exposure value of 0.3. When modeling (Figure9g). Finally, Figures 1e and 1f have views of the
variability is not enforced, three solutions are generated with mea- newly produced 3D urban model. Figur®shows a content-design
sured indicator values close to the target values (Figare). The example. The modeler is seeking to alter the amount of building-
solutions have similar parameter values and hence produce 3Dproduced shadows (e.g., a low value of the sun exposure indicator).
models with comparable styles (i.e., all are found in the same pa- Instead of the user having to comprehend the subtle interdepen-
rameter space neighborhood). When variability is enforced, three dencies of the needed parameter changes (shown in the insets in
solutions are computed with measured indicator values still close Figure10), we enable using a single slider to produce three results:




Increased sun
exposure (inverse)

Decreased distance
to closest park
(inverse)

Decreased distance
to closest park
(designer-specified)

Increased interior
natural light (inverse)

Figure 9: Urban Design Example (Extended). We show additional imagery for the urban design session of Figure 1s@tpeences (a-b)
and (c-d) show the before and after of our system automatically improvengtth exposure or interior natural light of the development site
of Figure 1a-b. Next, the sites’ average distance to closest park icesteither with (f) automatic inverse modeling based on the distance
to park indicator or with (g) several manual forward modeling edits. Thalfinodel is shown in Figures 1e-f.
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Figure 10: Content Design Example. We show a content design example producing 3 results: a) high shagldwimedium shadowing,
and c) low shadowing. Instead of the user having to determine how to a#qurtitedural parameters (shown in the insets), the system
automatically learns how to alter the parameters to obtain the intended result.

high shadowing (Figur&0a), medium shadowing (Figuf#b), and produced a high landmark visibility configuration by assigning low

low shadowing (FigurdOc). Our system automatically learns how  building heights (4 floors) to the place-type instance near the coast,

to alter the parameters in order to obtain the intended result. mid-rise buildings (14 floors) to the middle place-type, and high-
rise buildings (31 floors) to the most inland place-type.

7.3 Urban Model Interdependencies Figurel12 shows the complementary case of Figure 11 where a user

wishes to redevelop one of the nine place-type instances of an exist-
Figures11 and 12 focus on showing editing flexibility whereby  ing city (Figure12a) so that the overall indicators of the city achieve
hypothetical urban design changes are constrained to certain arthe target goal, in this case, of bringing the average floor-to-area ra-
eas and/or editing in one part of a city can affect another (distant) tio of the entire city to 5.2 in order to meet new local development
part. Figurell shows a city for which our system computes new needs. The system finds a solution yielding an overall floor-to-area
parameter values for the entire (multi-place-type) city so that a de- ratio of 5.4, but the user then realizes that the building sun expo-
sired indicator value is met. The indicator of interest is the percent- syre of the modified place-type is now too low. As a result, the
age of buildings from which at least one of two landmarks is vis- uyser sets a target interval for the sun exposure value, and new solu-
ible. This example exhibits interdependencies between place-typetions are presented that remain close to the target floor-to-area ratio
instances and requires that several place-types be changed in ordefhile also keeping sun exposure within the specified interval (Fig-
to achieve the desired outcome (in Figure 11a, each place type isyre 12b-c). Among these solutions, the user chooses one based on

COlOl"COded).. The user SpeCiﬁed three different targ_et VISIbI'Ity v_al- sty|e preferences (F|gu|1';\2d) and exports it to C|tyEng|ne (F|g_
ues for the city: 15%, 30% and 75%, for which configurations with yre 12e).

12%, 27% and 78% were computed by our system. The system au-

tomatically modified mostly the mean and standard deviation of the In general, these figures demonstrate the use of our approach to
building heights and the percentage of parks in each one of the threeautomatically compute the parameters of a procedural urban model,
place-type instances. In particular, low visibility was achieved by either for a selected local area or for the entire city, producing a
increasing the height of the buildings near the coast and assigning3D model such that all or part of the model exhibits the desired
low heights to the buildings in the inland place-types. The system indicator values. In practice, supporting local controllability of both
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Figure 11: Global Indicator Control. This example focuses on a global landmark visibility indicator. a) Top-daem of the city model
and user-selected landmarks. b) Initial 3D city model configurationrevtiee landmarks are not visible from most buildings (yellow boxes).
c-d) User increases the desired amount of landmark visibility and thersyiateractively alters the city model. Below images b-d is a color
coded profile of the city showing how many landmarks are visible.

parameters and indicators is essential to make our approach useful
to content designers and urban planners.

8 Conclusions and Future Work

We have coupled an automatic inverse design approach for urban
procedural modeling with forward procedural modeling. Urban in-
dicators are intuitive metrics for measuring the desirability of urban
areas, and we have incorporated this as a key method for design-
ers to efficiently generate optimized 3D urban models that meet
their target criteria. The relationship of indicators to the proce-
dural model is in general unknown and complex which has until
now hindered their direct specification. We tackle the well-known
open problem of controlling procedural modeling by providing a
generalized mechanism that allows users to specify arbitrary tar-
get indicators and automatically compute the optimal parameters to
obtain the desired output. Our methodology uses MCMC and back
propagation, including algorithms to search both local and global
state changes, and presents multiple distinct 3D model options to
the user.

For our current framework, we have identified several limitations
and future work items. First, our method explores a parameter space
of roughly the same size as other recent MCMC-based methods in
computer graphics. However, the accuracy of our back propaga-
tion engine decreases as the number of parameters increases (e.g.,
when simultaneously optimizing for a large number of place-type
instances), especially when a large number of dependent param-
eters are included. While we could replace the back propagation
with the procedural engine itself, performance would be severely
affected. We will explore alternative means to support scaling to
a much larger number of parameters. Second, we will explore ad-
ditional indicators, including feeding indicator values back to the
model so as to, for instance, alter window sizes and wall materials
e - based on the result of sun light exposure. Third, although applied
Figure 12: Local Changes for Global Indicator Control. a) One to the concept of urban procedural modeling, there is virtually no
of the nine neighborhoods of a city is redeveloped so that the av- |imit to generalize the concept of target indicators to other proce-
erage floor-area ratio of the entire city increases. b) The system dural models such as buildings, trees, and furniture and to use our
proposes a solution that satisfies the target floor-area ratio but that inverse modeling approach for these models as well.
reduces the sun exposure of the area. The user then requires the
system to find a solution that maintains a high sun exposure. Three
different solutions are produced (c, d, e) that exhibit different styles ACknowledgements
but satisfy the constraints on both indicator values.

We are grateful to our sponsors who enabled this work including
NSF 1IS 0964302, NSF OCI 0753116, and a Google Research gift.
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