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Figure 1: Example Urban Design Process. The user interactively controls a 3D urban model by altering the parameters of an underlying
procedural model (forward modeling) or by changing the values of arbitrary target indicator functions (inverse modeling). a) Starting with a
development site, b) the user selects an initial urban layout (using templates or ”place types”). The layout now has parcel egress but has c)
initial undesired values of building sun-exposure and natural interior light, and d) unwanted average distance from buildings to closest parks.
The model alterations needed to obtain user-specified local or global values for these indicator values are computed ”inversely” resulting in
a final design, which is e) seen up close or f) from a distance. In contrast,accomplishing such an output with traditional forward modeling
would require either specifically writing a procedural model with the desired parameters or very careful parameter tuning by an expert to
obtain the intended results.

Abstract

We propose a framework that enables adding intuitive high level
control to an existing urban procedural model. In particular, we pro-
vide a mechanism to interactively edit urban models, a task which is
important to stakeholders in gaming, urban planning, mapping, and
navigation services. Procedural modeling allows a quick creation
of large complex 3D models, but controlling the output is a well-
known open problem. Thus, while forward procedural modeling
has thrived, in this paper we add to the arsenal an inverse modeling
tool. Users, unaware of the rules of the underlying urban procedural
model, can alternatively specify arbitrary target indicators to con-
trol the modeling process. The system itself will discover how to
alter the parameters of the urban procedural model so as to produce
the desired 3D output. We label this process inverse design.
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1 Introduction

Urban procedural modeling is becoming increasingly popular in
computer graphics and urban planning applications. A key basis
for the popularity of city-scale urban procedural modeling is that
once the procedural model is defined, it encapsulates the complex
interdependencies within realistic urban spaces [Batty 2007] and
enables users, who need not be aware of the internal details of the
procedural model, to quickly create large complex 3D city mod-
els (e.g., [Parish and M̈uller 2001; Honda et al. 2004; Weber et al.
2009; Vanegas et al. 2009]). Effectively, the detail amplification in-
herently provided by procedural modeling is exploited: a small set
of succinctinput rulesand input parameterscan yield very com-
plex and coherent outputs. However, the succinctness of urban pro-
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cedural modeling is also its Achilles’ heel: obtaining a 3D urban
model with complex user requirements is a challenging task that
requires experience and in-depth knowledge of the underlying pro-
cedural model. An expert user with programming skill must set the
values for the input parameters, implement the procedural rules in
software, and iterate between code, parameters and examination of
the output in order to achieve the desired model. In short, what
is needed is a means to efficiently learn the parameters and rules
required to produce a desired 3D urban model, without requiring
the end user to write complex software programs. Urban planners
and content designers often have a clear vision for the target urban
model, but lack the computational tools to rapidly create models
that meet their design requirements.

To address this challenge, previous papers have proposed solutions
for locally changing the 3D output of a procedural model to pro-
duce the desired model (e.g., [Lipp et al. 2011]), for stochastically
driving a procedural model so as to obtain an output following a
desired global shape (e.g., [Talton et al. 2011]), or for guiding pro-
cedural modeling by dividing the model into smaller parts that are
easier to describe and can inter-communicate (e.g., [Beněs et al.
2011]). An alternative strategy focuses directly on the inverse mod-
eling problem: given a desired 3D output, estimate the procedural
parameters and rules needed to generate the provided output. This
strategy is particularly promising, but so far has only been applied
to selected elements of our problem, such as to generate 2D vec-
tor geometry [̌Štava et al. 2010], to complete or edit input models
exhibiting certain symmetries [Bokeloh et al. 2010], or to recreate
animated sequences [Park et al. 2011].
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Figure 2: System Pipeline. A summary of our coupled forward and
inverse modeling pipeline.

We propose coupling a forward procedural urban modeling process
with an inverse urban modeling algorithm that optimizes the in-
put parameters to satisfy user-specified goals (Figure1). We are
closing the loop between forward and inverse modeling strategies
(as depicted in Figure2) and provide both increased control and
higher flexibility, enabling the user to be much more efficient in
generating a model that satisfies their requirements. Both forward
and inverse modeling strategies can be applied during an interac-
tive editing session for either local or global model modifications.
The key advantage of supporting an inverse modeling methodology
is that the procedural model can be controlled in new ways with-
out having to re-program the forward engine or explicitly re-write
the procedural model rules. Our work abstracts the urban procedu-
ral model into a general parameterized form and adds a component
that is able to discover how to control the procedural model so as to
obtain the desired values for user-specified indicator values derived
from the resulting model.

To ensure we have an expressive forward system, we have de-
veloped a versatile parameterized urban procedural modeling en-
gine. Similar to Parish and M̈uller [2001] and to CityEngine
[http://www.esri.com/software/cityengine], our system allows for
an interactive editing at levels of detail ranging from buildings to
cities. A key innovation in the design of the procedural model ex-

ploits the place types concept used by urban designers to represent
a coherent design pattern of buildings and streets (e.g., [Calthorpe
2010]). Our system has operationalized the concept of place types
into an interface that allows urban planners and designers to interact
with the design task at a high level of abstraction from the details.
Internally, we use place types as a hierarchical means of organiz-
ing the geometric elements for spaces much larger than individ-
ual buildings, and encoding these efficiently as procedures. Akin
to example-based methods (e.g., [Kwatra et al. 2005; Merrell and
Manocha 2008; Aliaga et al. 2008]), place types effectively provide
a succinct way to assemble a complex and realistic urban space;
however, unlike example-based methods, the generation process is
fully parameterized.

Our inverse systemenables users to directly alter the 3D model via
a set of user-specified local or global target indicators. The concept
of indicators is well used by the urban design and planning commu-
nity (e.g., [Murphy 1980; Wong 2006]) and the work presented here
is strongly motivated by our urban design and planning collabora-
tors. Indicators can be thought of as an additional output layer that
can vary from simple evaluation of geometric properties that can
be used to alter parameters in a straightforward way (e.g., average
distance of a house from the street, floor-to-area ratio) to complex
semantic metrics (e.g., landmark visibility, amount of sun exposure
per building, suitability of roofs for solar energy panels) that do not
have an obvious relationship to input parameters. Nevertheless, in-
dicators provide an intuitive means for the user to evaluate a 3D
urban model, and are easy to compute and express. To our knowl-
edge, indicators have not been used to control modeling because
the exact relationship between the input parameters and target indi-
cators is in general unknown, complex, and highly nonlinear.

Our inverse design strategy has two main advantages:

• Abstraction- we enable urban planners and designers to work
on design tasks at a high level of abstraction, enabling users to
manipulate place types, parameters, and indicators in order to
generate and evaluate the 3D urban model interactively. This
design approach enables users to focus on the design task and
not be distracted with implementation details of the procedu-
ral model, thus supporting more creativity and productivity. In
particular, an urban procedural model can be created/defined
once by an expert and then used by others who do not need to
be aware of its internal structure or of its precise response to
the input parameters.

• Interactivity - our approach enables interactively manipulat-
ing indicator targets, while regenerating 3D geometry at high
frame rates. Further, our methodology to mapping target in-
dicators to input parameters is sophisticated enough to allow
the use of complex indicators, including those for which it is
not known how to reprogram the procedural model.

To enable efficiently exploring the procedural parameter space in
order to find one or more solutions that produce a 3D urban model
of the desired parameter and indicator behavior, we use Monte
Carlo Markov Chains (MCMC) [Gilks et al. 1995] and resilient
back propagation [Riedmiller and Braun 1993]. We tailor our use
of MCMC and back-propagation to find several solutions that are
as different as possible yet comply with the desired values. Un-
like previous systems using MCMC within the context of archi-
tectural or procedural modeling (e.g., [Merrell et al. 2011; Talton
et al. 2011; Yu et al. 2011]), i) we support complex indicators, thus
enabling control beyond global shape, such as by high-level seman-
tics and indicators, ii) we consider the procedural model as a black
box and thus support context-free and context-sensitive stochastic
grammars, and in fact impose no grammar limitation – this is ad-
vantageous for urban procedural modeling because cities are hard



to express with a strict grammar and even harder using the context-
free grammars of Talton et al. [2011], and iii) our system is inter-
active and able to alter models consisting of over 1500 buildings
as well as geometry for roads, in only fractions of a second on a
desktop computer. Our use of a resilient back-propagation engine
is to imitate the indicator behavior of the urban procedural model
without having to explicitly produce a 3D model and thus allow the
MCMC engine to evaluate the target indicators for a large number
of iterations and instances of urban models. Since there is no guar-
antee that a 3D model is possible for arbitrary indicator values, our
system also provides an analysis tool which informs the user if a
particular indicator value is feasible. Using our system we can in-
teractively modify 3D models for urban areas spanning over 100
km2 and containing up to 10,000 parcels. Our typical frame rate
while changing indicator values interactively and generating new
3D models is 2.5 to 10 frames per second. The back-propagation
engine is able to compute indicator values that are typically within
5% of using the actual procedural model and require only a small
fraction of the compute time (e.g., 0.01 ms as opposed to a typi-
cal 250 ms using a procedural modeling engine, thus an effective
speedup of over 25,000x). The user can choose from a proposed
best set of 3D models. Subsequently, more edits can be made, the
model can be saved to disk, or the geometry exported to commercial
rendering engines.

2 Related Work

Procedural modeling has been used in several principal domains:
plant generation, fractal noise and terrain generation, and urban
modeling. The seminal Paris and Müller [2001] defines a forward
procedural process for generating cities using L-systems. Vane-
gas et al. [2010a] and Watson et al. [2008] provide comprehen-
sive surveys of subsequent improvements in forward-generating ur-
ban procedural modeling. Some procedural modeling approaches
have incorporated domain specific knowledge in order to gener-
ate expressive, yet controlled, output as well (e.g., vegetation [Hart
et al. 2003], architectural design [Whiting et al. 2009; Turrin et al.
2011; Merrell et al. 2011], and textures [Lefebvre and Poulin 2000;
Bourque and Dudek 2004]). A common challenge to all these ap-
proaches is providing a succinct control from a compact set of rules.

Our core inverse engine attempts to control modeling by discov-
ering how to alter the input parameters values in order to yield a
desired set of user-defined target indicator values while treating the
urban procedural model as a black box for the purpose of gener-
ality. Many classical inverse methods are based on regularization
theory (e.g., [Bertero et al. 1988]). These methods attempt toreg-
ularize ill-posed inverse problems; e.g., the inverse problem can
be defined as trying to find the underlying weights relating input
parameters to target indicators. While standard regularization can
improve the ability to compute a plausible solution to a generic in-
verse problem (e.g., Tikhonov-based regularization/regression),the
typical emphasis is noise removal and/or an assumed unknown for-
mation process of the observed indicators - neither is the case in our
work.

More specific methods to inverse procedural modeling in graphics
have also been published recently. For instance,Š́tava et al. [2010]
proposed inverse procedural modeling of rules and parameter val-
ues. However they focus on 2D content, terminal symbols are
known, and they generate context-free rules for linear structures
using L-systems. Bokeloh et al. [2010] explore partial symme-
tries and use inverse procedural modeling in order to complete
the geometry of ill-specified input models exhibiting certain sym-
metries. Park et al. [2011] use inverse procedural modeling to
find a grammar for animated sequences and use them to generate
new animations. Aliaga et al. [2007] and Vanegas et al. [2010b]

have focused on determining the parameter values for pre-specified
classes of procedural building models. Several facade-level works
have also proposed methods to determine procedural parameter val-
ues for individual facades (e.g., [Müller et al. 2007; Xiao et al.
2008]). Another related set of approaches are those by Honda et
al. [2004], Weber et al. [2009], and Vanegas et al. [2009] which
integrate urban simulation and urban geometric modeling. With a
user-guided process, they define an inverse-like simulation to pro-
duce realistic 3D urban models. Most related to our work are other
MCMC/Metropolis-based methods and guided procedural model-
ing of Beněs et al. [2011]. MCMC-based methods have been used
in many vision and robotics applications (e.g., see work in [Dellaert
2003]). MCMC and Metropolis-based sampling has been used as
well in computer graphics (e.g., light transport [Veach and Guibas
1997], rigid-body simulations [Chenney and Forsyth 2000], and fa-
cade modeling [Alegre and Dellaert 2004]). Recently, MCMC and
stochastic optimization were also used for furniture layout distri-
bution by searching in a parameterized design space (e.g., [Merrell
et al. 2011; Yu et al. 2011]). Beněs et al. [2011] generalizes the
concept of environment by spatially dividing the rules (and produc-
tions) into small guided procedural models that can communicate
by parameter exchange. Talton et al. [2011] take as input a stochas-
tic context-free grammar and explore the possible strings generated
by the grammar to find a production sequence that yields a target
3D shape. They render/voxelize the model to evaluate a cost func-
tion, yielding a multi-building example result in about 14 minutes.
In contrast, our method does not impose any limitations on the un-
derlying grammar and enables editing urban areas of over a 1000
buildings in only a fraction of a second.

3 Overview

As shown in Figure2, a procedural systemP produces a geome-
try G using a setΦ = {φ1, . . . , φm} of m input parameter values.
The geometry is evaluated by an indicator measurement systemI
which produces a setΓ = {γ1, . . . , γn} of n indicator values. Each
parameter value must be within a range[φmini , φmaxi ] and each in-
dicator value within a range[γmini , γmaxi ]. Symbolically, we can
write the relationship of the input parameters to the target indica-
tors:

Γ = I(G) = I(P (Φ)) = (I ◦ P )(Φ) (1)

Our objective is to let the user change the parameter valuesΦ (i.e.,
forward modeling) or the indicator valuesΓ (i.e., inverse modeling)
and then to automatically (and interactively) compute geometryG
whose indicator values are within the desired range. We define the
set of tuplesΓ∗ =

{
(γ∗

1 , γ
∗

σ1
) , . . . ,

(
γ∗

n, φ
∗

γn

)}
to be the user-

specified target indicator values, such that measurements of each
indicator are desired to have an approximate Gaussian distribution
with meanγ∗

i and standard deviationγ∗

σi
. Similarly, we define the

target parameter values to beΦ∗ = {(φ∗

1, φ
∗

σ1
) , . . . , (φ∗

n, φ
∗

σn
)}.

However, the specification ofΦ∗ is optional – if not specified, the
parameters can be freely altered by the system. While the stan-
dard task of procedural modeling is to generate geometry from a set
of input parameters, our methodology computes a set of parameter
valuesΦ′ that leads the procedural system to generate a geometric
modelG exhibiting indicators close to the target valuesΓ∗ and, op-
tionally, close to parameter valuesΦ∗. In other words, we seek a set
of parameter valuesΦ′ such that(I ◦ P ) (Φ′) → Γ∗ while possi-
bly also ensuringΦ′ → Φ∗. The overall error is encapsulated in the
functionE (Φ′,Φ∗,Γ∗) and the computational goal using MCMC
is to find the values ofΦ′ that minimizeE.

Our inverse method requires calculating(I ◦ P ) (Φ) for a large
number (e.g.,O

(
104

)
) of different values forΦ. Since standard

procedural systems are unlikely to generate such a number of pro-
ductions at interactive rates, we require a functionf (Φ) that ap-



proximates(I ◦ P ) and can be computed significantly faster. The
function does not need to produce geometry but just the correspond-
ing indicator values. We use a resilient back propagation engine to
define a function that outputs the setΓ̂ = {γ̂1, . . . , γ̂n} of values
that approximate the indicators. The function f is a good approxi-

mation of(I ◦ P ) if
∣∣∣Γ− Γ̂

∣∣∣ < ǫ, whereǫ is a small positive con-

stant. Thus, given a good approximationf of the procedural gener-
ation and indicator measurement system(I ◦ P ), our optimization
goal is to find sets of parameter valuesΦ′ such thatf (Φ′) → Γ∗

(and optionallyΦ′ → Φ).

4 Inverse Design

Given the setsΓ∗ andΦ∗, our optimization explores the large mul-
timodal space of parameters in order to propose one or more sets
Φ′. In the following, we describe MCMC in the context of our
pipeline including how both local and global moves are made, how
we select amongst the best solutions so as to encourage diversity in
the answers, and summarize our resilient back propagation engine.

4.1 MCMC-based Parameter Searching

The optimization consists in simultaneously running many sets of
Markov Chains over a large number of iterations and choosing the
best solution states (Figure3). Our MCMC-based optimization uses
the Metropolis-Hasting algorithm [Metropolis et al. 1953], [Hast-
ings 1970] to seekΦ′ by performingnI attempted state changes
Φt → Φt+1 starting fromnP different initial parameter sets and
usingnβ different temperatures - each temperature corresponds to
a different magnitude of incremental change per iteration. Next, we
describe the computation per parameter (or per indicator) and for
brevity we drop thei subindex fromφi (or γi).
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Figure 3: Parameter Searching. We provide a diagrammatic sum-
mary of our parameter searching process. Given an initial set ofnp

parameters, a) we simultaneously pursue many Markov chains for
each ofnβ different temperatures. Within each chain both local and
global moves are performed. b) At the end, the best found solutions
from all chains are clustered and filtered. Then, one solution from
each cluster is shown to the user in order to increase variability in
the computed 3D models.

4.1.1 Error Function

Given a configurationΦt and a set of indicatorsΓ = f (Φ), the
optimization error functionE (Φt,Φ

∗,Γ∗) takes into consideration
the proximity off(Φt) to Γ∗ and (optionally) the proximity ofΦt

toΦ∗. The function can be written as

E (Φt,Φ
∗,Γ∗) = wΓ

1

n

∑

γ∈Γ

(
|γ − γ∗|

γ∗
w

)
+wΦ

1

m

∑

φ∈Φ

(
|φ− φ∗|

φ∗
w

)

The user interactively sets the values of the weightswΓ ∈ [0, 1] and
wΦ = (1− wΓ) to control the tradeoff of complying with the target
indicators or with the preferred parameter values, respectively.

4.1.2 Starting Points

A chain’s starting point is chosen by a sampling process. The tar-
get value for a parameter may be specified as an interval with mean
φ∗ ∈ ℜ and with standard deviationφ∗

σ. The valueswΦ andwΓ

used in the above error function are now used as probabilities (and
are already in the range [0,1]). Chain starting points are chosen
i) with probability wΦ to be in the sampling neighborhood of the
specified target parameter valueφ∗ (i.e., within the Gaussian distri-
butionN(φ∗, φ∗

σ/2) for eachφ ∈ Φ and bound by [φmin , φmax])
and ii) with probabilitywΓ to be uniformly sampled within its ex-
tent [φmin , φmax]. If the parameters can have any valid value, then
wΦ = 0 which implies the right hand term of equation 2 is unused
and starting points are obtained by a uniform sampling of the entire
parameter space.

Each chain performs, per attempted state change, either a local or
a global move with probabilityql and(1− ql), respectively. Local
moves are proposed by sampling from Gaussian distributions for
each parameterφ. Global moves are proposed by sampling points
using precomputed frequency distributions of the indicators. All
local and global moves are bounded by the predetermined span for
each parameter in order to guarantee that the generated solutions
remain within feasible limits.

4.1.3 Local Moves

Given the current stateΦt, a candidate state change is computed
by sampling for each parameterφ ∈ Φ a value from the Gaussian

distributionN(0, σφ), whereσφ = min
(

φ∗

w

2
, α |φmin − φmax|

)
,

and typicallyα = 0.05 in our system. Then, since the distribu-
tion of proposed moves is symmetric (i.e., it consists of a sum of
weighted Gaussians – thus, the probability of moving from statet
to t+ 1 is the same as from statet+ 1 to t), the acceptance proba-
bility a of a move from a current stateΦt to a candidate statẽΦt+1

is given by the Metropolis ratio:

a(Φt → Φ̃t+1) = min


1,

exp
(
−βE

(
Φ̃t+1

))

exp (−βE (Φt))


 (2)

whereβ is the chain’s temperature. Hence,Φt+1 = Φ̃t+1 with
probabilitya, andΦt+1 = Φt with probability(1− a).

4.1.4 Global Moves

Global moves are computed by inspecting frequency distributions
of the indicators. The frequency distribution for each indicatorγ is
computed after any user change ofΓ∗ as follows: (i) the parame-
ter space is uniformly sampled within the extent of each parameter
using many samples (e.g.,105); (ii) the value of the indicatorγ is
computed for each sample usingf ; (iii) the ranges[γmin, γmax] of γ
are computed from the evaluations off and uniformly divided into
nf bins; and (iv) a frequency histogramHk (γ) for k = [1, nf ] is
computed which stores in each of the bins both the frequency (i.e.,
the number of sampled parameter sets that fall within the bin) and
the sampled parameter sets themselves.

To perform a global move, we randomly select an indicatorγ, de-
fine bt ∈ [1, nf ] as the index of the bin containing the target in-
dicator value, and randomly choose one of the setsΦ from the bin
Hρ (γ) whereρ is chosen with probabilityhm as being from the bin



with the highest frequency (e.g., most solutions) and with probabil-
ity (1 − hm) as being from the bin containing the target indicator
value. Symbolically:

ρ =

{
bm : Hm = maxk (Hk (γ)) , k ∈ [1, nf ] with p (hm)
bt : with p (1− hm)

(3)
In contrast to a random local move in the parameter space, this ap-
proach for global moves tends to lead the chain towards distant con-
figurations that are more likely to reduce the error function for at
least one indicator.

4.2 Solution Selection: Ensuring Variability

The process described in the previous section exploresnβ ∗nP ∗nI

parameter configurations from which only a few are eventually
shown to the user. The selection is done by choosing the top so-
lutions for each temperature value, clustering the resulting config-
urations to guarantee variability in the solutions, and filtering out
solutions for which the fit between the estimated indicator values
(i.e., using the back-propagation engine) and the actual values (i.e.,
using the procedural engine) is low.

In our implementation, for each temperature we choose among all
the configurations generated the 25 solution states that returned the
smallest errorE, thus narrowing down the number of possible so-
lutions to25nβ . In order to increase the variability in the solutions
shown to the user (i.e., to obtain representative solutions from dif-
ferent regions of the parameter space), we usek-means clustering to
partition the set of solutions. The parameter values of each solution
are normalized before the distance between two points in parame-
ter space is computed by the clustering algorithm. The valuek is
determined by the user (e.g., it equals the number of solutions that
the user wants to see).

The top solutions best minimize the error expression
|(I ◦ P ) (Φ′)− Γ∗|. Notice that this error term uses the ac-
tual indicator values computed by the procedural and indicator
measurement system, as opposed to the estimated indicator values.
Effectively, we use the approximation functionf (Φ) to very
quickly sample the parameter space and to select a set of several
dozen solutions that minimize the indicator error - hence the
approximation function does not need to be extremely precise.
The resulting solution set is small enough to have the system
interactively compute the actual indicators, thus reducing the effect
of the approximation error off .

4.3 Resilient Back Propagation Engine

Given the complexity of the procedural engine and the thousands
of experiments MCMC requires per small change, we obtain in-
teractivity by replacing the procedural and indicator measurement
system with a neural network. This choice is based on the fact that
neural networks are trained universal functions (e.g., they have been
used successfully to replace many kinds of functions: linear/non-
linear functions even periodic, exponential, and piecewise continu-
ous) and can quickly estimate indicator measurements without gen-
erating the 3D model and explicitly evaluating the indicator func-
tions.

We implement a multilayer feed-forward network (i.e., information
moves in only one direction: from parameters to indicators). The
network is set up to havem neurons in the first layer andn neurons
in the last layer with the number of layers typically beingm−n+1.
Each layer is fully connected to the next layer. When evaluating
the learned function, the weight stored in each neuron is applied to

either a sigmoid function or a Gaussian function. The back prop-
agation supervised learning algorithm trains weights starting with
the last layer. Each weightwij is updated by

wij(t+ 1) = wij(t)− lr
∂ (I ◦ P (Φ))

∂wij

(t) (4)

wherewij ’s first index (i) is for a weight in the current layer and the
second index (j) is for a weight in the next layer closer to the input
parameters,t is the iteration index,lr is the learning rate, and the
partial derivative ofI ◦P (Φ) is estimated by finite differences. We
implemented an algorithm that searches for the optimal configura-
tion of a multilayer feed-forward network by altering the number
of neurons per layer and the neuron function per neuron (e.g., sig-
moid or Gaussian). We found the aforementioned configuration,
with Gaussians, to yield near optimal results.

Our training process uses as input a set of parameters (e.g., those the
user allows the system to change), their valid ranges, and an initial
urban scenario. The parameters are sampled within those ranges
using a normal distribution and the corresponding indicator values
are calculated. Both are then used to train the neural network. The
number of samples to do the training depends on the complexity of
the urban scenario; however we found empirically that using 200-
500 samples was enough. It is worth noting that the neural network
is trained for a specific scenario. However global indicators (i.e.,
those that do not depend directly on the existence of different place
types) do not require any re-training. Local indicators (e.g., land-
mark visibility) do need to be retrained when major city changes
are made. Nevertheless, in all of our shown examples, we train the
neural network only once.

4.4 Feasibility

Finding a set of parameter values able to achieve an arbitrarily spec-
ified set of indicator values is not always possible. The existence of
a geometrical model G that satisfies both the parameter and indica-
tor target values depends on the expressivity and controllability of
the procedural model. Thus, while we attempt to provide a flexi-
ble procedural model (see Section5), there is no guarantee of in-
vertability. Nevertheless, we do provide an interactive analysis tool
based on the histogramsHk(γ) for k = [1, nf ] of Section4.1.4.
The histogram informs the users how feasible are particular ranges
of indicator values; e.g., if all bins are near empty, the indicator
cannot be generally achieved for the given procedural model.

5 Urban Procedural Model

We have implemented an urban procedural engine similar to previ-
ous city-level procedural modeling work (e.g., [Parish and M̈uller
2001; Weber et al. 2009; Vanegas et al. 2009]). However, we pro-
vide a broad range of urban geometrical configurations with a rea-
sonable degree of succinctness and high-level control. Our proce-
dural engine is inspired by urban planners. For instance, our place-
type categories and initial parameter values were obtained with the
assistance of our urban planning collaborators. In the following
text we summarize the structure of our procedural engine, list the
parameters, and describe our initial set of indicators.

5.1 Procedural Model

A key concept used in urban planning and modeling centers (e.g.,
[TRANSECT 2012; CNU 2012; CTOD 2012]) are place-types
(e.g., as described in SmartMobility [2010]). A city consists of
several instances of one or more place-type categories. All in-
stances of the same place-type category are regions – ranging from



a few blocks to an entire neighborhood – that have contained roads,
parcels, parks, and buildings with similar geometric attributes (e.g.,
width, height, density, shape outlines). Similar to the urban layout
editor of [Lipp et al. 2011], place-types allow defining, moving, ro-
tating, and resizing large subsets of the city at once and can be used
to very quickly produce a sketch of the urban model. The underly-
ing road network, subdivision into parcels, placement of parks, and
definition of building envelopes per place-type instance is generated
with a fully parameterized approach.

The interactive session consists in the user sketching the global
configuration of the urban area and then directly changingm pa-
rameter values or n indicator values. First, an arbitrary shape is
defined to separate the modeled urban area from surrounding wa-
ter and terrain bodies. Second, the user createsz > 0 place-type
instances of one or more categories, each ranging in size from a
few blocks to an entire city. In our implementation, we define a
place-type category as a template that provides specific (initial) val-
ues for parameters used by the procedural modeling engine. Once
an instance of a place-type is positioned by the user, the geome-
try of the contained roads, parcels, and building is automatically
created and joined with the neighboring geometry. While land-
use and zoning regulations are not explicitly enforced, they can
be indirectly maintained by careful selection, sizing, and place-
ment of place type instances. The expandable set of place-type
categories supported by our current implementation includes re-
gional/town/suburban center, low/medium/high-density industrial,
and residential, retail, park, and institutional areas. Third, the actual
city model is altered by our inverse design based on user-specified
changes to input parameter or target indicator values, performed in-
dividually per place-type or done collectively for groups of place-
types.

5.2 Parameters

The entire 3D urban model hasm = zmp parameters controlling
its generation, withmp = 16 being the number of per place-type
instance parameters. The per-place type parameters generate a road
network with two levels of street hierarchy (i.e., arterials and local),
extract city blocks from the road network, subdivide the resulting
blocks into parcels, define parks, and instantiate a 3D building en-
velope inside each parcel (Figure4).

Roads within a place-type instance are generated outwards from an
initial seed location. The initial radially-outward direction is called
the u direction and its perpendicular the v direction. The following
road parameter values are specified separately i) for arterial roads
and ii) for local roads, both within a single place-type instance:

• rud
, rvd : distance between two adjacent intersections in u-

direction and in v-direction,

• ri : maximum road length irregularity randomly added to a
road segment between two adjacent interactions,

• rc : maximum random rotation (or curving angle) of a road
segment when it passes through an intersection,

• rw : road width, and

• rn : number of departing radial streets from initial seed.

Parcels are the result of subdividing an area enclosed by roads us-
ing recursive subdivision of oriented bounding boxes (OBB) - simi-
lar to that of Parish and M̈uller [2001] or Vanegas et al. [2009]. The
parcel parameters values are:

• pm, pσ : mean and standard deviation of the randomly-
determined target parcel areas during OBB subdivision,

Parcel area: pm, pσ  % Parks: pp  
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Figure 4: Urban Procedural Parameters. The set defining an ini-
tial city model includes the following parameters which define con-
straints or control underlying stochastic processes: a) target parcel
area range, b) percentage of parks, c) desired distance between
road intersections and intersection angle parameters, and d) build-
ing height and setback guidelines.

• ps : maximum random offset of the OBB subdivision split
line from the center of the block, and

• pp : percentage of parcels randomly selected as parks.

Building envelopes are controlled by the following values:

• pbm , pbρ : mean and standard deviation of height,

• pbf , pbs : front and side setback distance from road, and

• pbw , pbd : maximum front width and maximum depth.

5.3 Indicators

To demonstrate inverse design support, the entire urban model has
n = znt indicators withnt = 7 indicators per place-type being
divided into three classes of indicators that range from straight-
forward measurements to purposefully high-level abstractions (Fig-
ure5).

Intrinsic indicators measure attributes that are mostly independent
from all other buildings and parcels:

• iFAR : measures the concept of floor-to-area ratio which is of-
ten used in urban planning.

Distance-based indicators are mostly concerned with accessibility
measurements and involve computing the distance between two en-
tities:

• ip : distance from a parcel center to the closest park, and

• ix : distance from a parcel center to a user-specified location
“x” (e.g., town center, a landmark, etc.).

Visibility-based indicators involve the 3D geometry of the city and
typically perform visibility/occlusion calculations. For instance,
the below indicators can be used to quantify the appropriateness
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Figure 5: Urban Indicators. We demonstrate a variety of diverse
urban indicators, including: a) by measuring sunlight exposure per
faade, we show city models with increasing exposure (bottom re-
sult has most exposure), b) we show a color-coded distance to park
metric (red implies close to park), and c) we show the floor-to-area
ratio of several buildings.

of a city model for reduced energy consumption and/or for solar
panels. Our implemented indicators are:

• iL : percentage of buildings (inside the place-type) where at
least one point on one landmark is visible from at least one
point on the facade of the building, and

• iR, iF : percentage of time during the course of a day, av-
eraged over all days of the year and for a specified lati-
tude/longitude, that rooftops or facades, respectively, are di-
rectly exposed to the sun (i.e., self-occlusion and occlusions
by other building structures are considered).

• iI : the natural interior light ratio, obtained from dividing the
sun exposure of the facades by the average minimum distance
from an interior building point to a faade.

6 Implementation Details

Our system runs on a desktop PC equipped with Intel Xeon clocked
at 3.53GHz, Windows 7, and a NVIDIA GTX 580 graphics card.
Our implementation is single core without GPU acceleration, yet
it provides interactive feedback for all examples in the paper. The
frame rate while editing indicator values was from 2.5 to 10 frames
per second and during parameter editing was from 15 to 30 frames
per second. Back-propagation re-training, which is only needed
whenever new parameters/rules/indicators are defined, takes about
4 minutes for a training set of 1000 examples. Both MCMC
processing for indicator editing and back-propagation re-training
can be easily parallelized to multiple cores. Our prototype uses
OpenCV for k-means clustering and for an implementation of
the back-propagation engine. We set the number of temperatures
nβ = 4, the number of iterationsnI = 5000, and the number of
starting pointsnP = 20. Further, we setql = 0.9 which implies
a 10% probability of performing global state changes. For global
state changes, the number of bins per indicator range isnf = 10
and the probability of choosing the bin with the maximum number
of sampled parameter space points ishm = 0.9.

Models can be exported to CityEngine [http://www.esri.com/ soft-
ware/cityengine], for example. The road and parcel network, in-
cluding parameter values, are saved to OSM and OBJ files. By us-
ing multiple CityEngine rule files, together with some randomized
effects, we can quickly create novel and compelling urban models.
This was done for Figures 10, 11b-d, and 12e.

7 Results and Discussion

We have used our framework to create and edit a variety of city-
scale 3D models. All editing and rendering is done interactively
using sliders to alter parameter values (forward modeling) or indi-
cator values (inverse modeling). All example sessions were com-
pleted in under 5 minutes and most took less than one minute. In
the following, we show several analysis and case-study results.
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Figure 6: Back Propagation. a-c) Error plots for three indicators
comparing measured to estimated indicator values. d-e) Compari-
son of top 120 target and measured indicator values.

7.1 Analysis

Figures6-8 show results from several analyses. Figure6 presents
a visualization of the fitting error between the indicators values es-
timated by back propagation and the values measured by using the
actual procedural model. Figures6a-c show error plots for three
indicators in an example city: sun exposure, floor-to-area ratio, and
landmark visibility. The x-axis shows the measured indicator val-
ues and the y-axis shows the back propagation estimated indicator
values. The graph plots 200 sampled parameter value vectors differ-
ent than the 200 samples used to train the back propagation engine.
Figures6d-e show the target and measured values for two indica-
tors using the top 120 solutions of the inverse computation. The
samples are sorted by increasing fitting error: 90% of the samples
have a fitting error below 10%. Solutions with a fitting error higher
than 15% are not shown to the user.

Altogether, our back propagation engine is a good approximation
of our procedural generation and indicator measurement system.
However, the accuracy of the local indicator approximation could
decrease with the number of input parameters due to the parameter
interdependency and the stochastic nature of the indicator. To par-
tially mitigate this effect, the number of hidden layers and the num-
ber of training samples should be increased but it will fail when the
indicator function cannot be expressed through a neural network.
However, the accuracy of the local indicator approximation could
decrease as the number of input parameters increases because of the
potential additional parameter interdependency and system com-
plexity. To partially mitigate this effect, the number of hidden layers



Figure 8: Variability. a-c) We show the three top solutions generated by our system, with variabilitydisabled, for a desired sun exposure
indicator value. d-f) Next, we enable our solution to increase solution variability and obtain three clearly non-similar top solutions. g-i)
Show the corresponding models of d-f but using our interactive rendering engine.
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Figure 7: Global vs. Local Moves. a) Not including global moves
during optimization results in more error than b) including global
moves over the same number of iterations.

and the number of training samples could be increased but it will
fail when the indicator function cannot be expressed sufficiently ac-
curately. Figure7 demonstrates the advantage of including global
moves, as well as local moves, while searching through the param-
eter space. Figures7a-b show the value ofE (Φt,Φ

∗,Γ∗) for one
randomly selected Markov chain running at each temperatureβ.
The best solution states found so far are shown as a thick black
line. These results demonstrate that our approach for including
global moves yields faster convergence and avoids converging to
undesired local minima. In this example, MCMC exploration with
global moves resulted in a measured sun exposure value (0.218)
that was closer to the target value (0.211) than when no global
moves were used (0.196). The resulting 3D models are shown in
Figures7c-d. The model found by using global moves achieves
higher sun exposure by using larger building setbacks and smaller
building heights.

Figure 8 shows the best solutions found by our system with and
without enforcing variability (Section4.2). The user required the
city to exhibit a target average sun exposure value of 0.3. When
variability is not enforced, three solutions are generated with mea-
sured indicator values close to the target values (Figure8a-c). The
solutions have similar parameter values and hence produce 3D
models with comparable styles (i.e., all are found in the same pa-
rameter space neighborhood). When variability is enforced, three
solutions are computed with measured indicator values still close

to the target values, but now show different styles (Figures8d-i).
These three solutions come from different neighborhoods (i.e., clus-
ters) in the parameter space. The main advantage of enforcing vari-
ability is that the user can be presented with several solutions all
of which closely match the target indicator values but also exhibit
different urban configurations. The user can then choose amongst
the top solutions using more subjective style preferences.

7.2 Example Designs

Figures1, 9, and10 show the results from several example design
sessions using our system. A design session consists of several in-
teractive iterations of forward and inverse editing of an urban layout
that yields a model satisfying the intended goals. Figures 1 and 9
contain an example built upon our interactions with a well-known
architectural and urban design company, Calthorpe Associates. In
this experiment, the goal was to design a new technology park for
Bangalore, India, which includes high-tech industrial buildings of
various densities, campuses for institutional buildings, and five res-
idential clusters, each containing high- and medium-density build-
ings. In our shown example, we focus on one of the residential clus-
ters. Similar design processes were followed for the other areas.
Each residential cluster is desired to have a prescribed amount of
sun-exposure per building, a minimum of natural interior light, and
a small distance from residential buildings to public parks. While
such a set of goals could be achieved by a manually-created 3D
model or by a customized procedural model, our system uses the
ability to support arbitrary indicators, to facilitate quick editing,
and to produce a model of the intended properties. First, the user
sets up an initial model using place types (Figure1a-b). The initial
spatially-varying indicator values for sun-exposure and natural in-
terior light are shown in Figures9a and9c (as well Figure1c). The
system automatically determines an alternative 3D model that has
parcel egress, meets the desired sun-exposure and interior lighting
values, and best follows the intended place-type constraints (Fig-
ures9b and9d). In Figure 9e (as well Figure 1d), the initial value
of the distances to closest park indicator is represented. To show
system flexibility, we reduce building-to-park distance using in-
verse indicator based modeling (Figure9f) or forward parameter
modeling (Figure9g). Finally, Figures 1e and 1f have views of the
newly produced 3D urban model. Figure10shows a content-design
example. The modeler is seeking to alter the amount of building-
produced shadows (e.g., a low value of the sun exposure indicator).
Instead of the user having to comprehend the subtle interdepen-
dencies of the needed parameter changes (shown in the insets in
Figure10), we enable using a single slider to produce three results:
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Figure 9: Urban Design Example (Extended). We show additional imagery for the urban design session of Figure 1. Thesequences (a-b)
and (c-d) show the before and after of our system automatically improving the sun exposure or interior natural light of the development site
of Figure 1a-b. Next, the sites’ average distance to closest park is reduced either with (f) automatic inverse modeling based on the distance
to park indicator or with (g) several manual forward modeling edits. The final model is shown in Figures 1e-f.

Figure 10: Content Design Example. We show a content design example producing 3 results: a) high shadowing, b) medium shadowing,
and c) low shadowing. Instead of the user having to determine how to alter the procedural parameters (shown in the insets), the system
automatically learns how to alter the parameters to obtain the intended result.

high shadowing (Figure10a), medium shadowing (Figure10b), and
low shadowing (Figure10c). Our system automatically learns how
to alter the parameters in order to obtain the intended result.

7.3 Urban Model Interdependencies

Figures11 and 12 focus on showing editing flexibility whereby
hypothetical urban design changes are constrained to certain ar-
eas and/or editing in one part of a city can affect another (distant)
part. Figure11 shows a city for which our system computes new
parameter values for the entire (multi-place-type) city so that a de-
sired indicator value is met. The indicator of interest is the percent-
age of buildings from which at least one of two landmarks is vis-
ible. This example exhibits interdependencies between place-type
instances and requires that several place-types be changed in order
to achieve the desired outcome (in Figure 11a, each place type is
color-coded). The user specified three different target visibility val-
ues for the city: 15%, 30% and 75%, for which configurations with
12%, 27% and 78% were computed by our system. The system au-
tomatically modified mostly the mean and standard deviation of the
building heights and the percentage of parks in each one of the three
place-type instances. In particular, low visibility was achieved by
increasing the height of the buildings near the coast and assigning
low heights to the buildings in the inland place-types. The system

produced a high landmark visibility configuration by assigning low
building heights (4 floors) to the place-type instance near the coast,
mid-rise buildings (14 floors) to the middle place-type, and high-
rise buildings (31 floors) to the most inland place-type.

Figure12shows the complementary case of Figure 11 where a user
wishes to redevelop one of the nine place-type instances of an exist-
ing city (Figure12a) so that the overall indicators of the city achieve
the target goal, in this case, of bringing the average floor-to-area ra-
tio of the entire city to 5.2 in order to meet new local development
needs. The system finds a solution yielding an overall floor-to-area
ratio of 5.4, but the user then realizes that the building sun expo-
sure of the modified place-type is now too low. As a result, the
user sets a target interval for the sun exposure value, and new solu-
tions are presented that remain close to the target floor-to-area ratio
while also keeping sun exposure within the specified interval (Fig-
ure12b-c). Among these solutions, the user chooses one based on
style preferences (Figure12d) and exports it to CityEngine (Fig-
ure12e).

In general, these figures demonstrate the use of our approach to
automatically compute the parameters of a procedural urban model,
either for a selected local area or for the entire city, producing a
3D model such that all or part of the model exhibits the desired
indicator values. In practice, supporting local controllability of both
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Figure 11: Global Indicator Control. This example focuses on a global landmark visibility indicator. a) Top-downview of the city model
and user-selected landmarks. b) Initial 3D city model configuration where the landmarks are not visible from most buildings (yellow boxes).
c-d) User increases the desired amount of landmark visibility and the system interactively alters the city model. Below images b-d is a color
coded profile of the city showing how many landmarks are visible.

Figure 12: Local Changes for Global Indicator Control. a) One
of the nine neighborhoods of a city is redeveloped so that the av-
erage floor-area ratio of the entire city increases. b) The system
proposes a solution that satisfies the target floor-area ratio but that
reduces the sun exposure of the area. The user then requires the
system to find a solution that maintains a high sun exposure. Three
different solutions are produced (c, d, e) that exhibit different styles
but satisfy the constraints on both indicator values.

parameters and indicators is essential to make our approach useful
to content designers and urban planners.

8 Conclusions and Future Work

We have coupled an automatic inverse design approach for urban
procedural modeling with forward procedural modeling. Urban in-
dicators are intuitive metrics for measuring the desirability of urban
areas, and we have incorporated this as a key method for design-
ers to efficiently generate optimized 3D urban models that meet
their target criteria. The relationship of indicators to the proce-
dural model is in general unknown and complex which has until
now hindered their direct specification. We tackle the well-known
open problem of controlling procedural modeling by providing a
generalized mechanism that allows users to specify arbitrary tar-
get indicators and automatically compute the optimal parameters to
obtain the desired output. Our methodology uses MCMC and back
propagation, including algorithms to search both local and global
state changes, and presents multiple distinct 3D model options to
the user.

For our current framework, we have identified several limitations
and future work items. First, our method explores a parameter space
of roughly the same size as other recent MCMC-based methods in
computer graphics. However, the accuracy of our back propaga-
tion engine decreases as the number of parameters increases (e.g.,
when simultaneously optimizing for a large number of place-type
instances), especially when a large number of dependent param-
eters are included. While we could replace the back propagation
with the procedural engine itself, performance would be severely
affected. We will explore alternative means to support scaling to
a much larger number of parameters. Second, we will explore ad-
ditional indicators, including feeding indicator values back to the
model so as to, for instance, alter window sizes and wall materials
based on the result of sun light exposure. Third, although applied
to the concept of urban procedural modeling, there is virtually no
limit to generalize the concept of target indicators to other proce-
dural models such as buildings, trees, and furniture and to use our
inverse modeling approach for these models as well.
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