
@ @ Comcwter Graphics, Volume 25, Number 4. Julv 1991

An Object-Oriented Framework for the Integration of Interactive
Animation Techniques

Robert C. Zeleznik, D. Brookshire Conner,
Matthias M. Wloka, Daniel G, Aliaga, Nathan T. Huang, Philip M, Hubbard,

Brian Knep, Henry Kaufman, John F. Hughes and Andnes van Dam

Department of Computer Science

Brown University
Providence, RI 02912

ABSTRACT

We present an interactive modeling and animation system that fa-
cilitates the integration of a variety of simulation and animation
paradigms. This system permits the modeling of diverse objects
that change in shape, appearance, and behavior over time. Our
system thus extends modeling tools to include animation controls.
Changes can be effected by various methods of control, including
scripted, gestural, and behavioral specification. The system is an
extensible testbed that supports research in the interaction of dis-
parate control methods embodied in controller objects. This paper
discusses some of the issues involved in modeling such interactions
and the mechanisms implemented to provide solutions to some of
these issues,

The system’s object-oriented architecture uses delegation hier-
archies to let objects change all of their attributes dynamically.
Objects include displayable objects, controllers, cameras, lights,
renderers, and user interfaces. Techniques used to obtain interac-
tive performance include the use of data-dependency networks, lazy
evaluation. and extensive caching to exploit inter- and intra-frame
coherency.

CR Categories and Subject Descriptors

1.3.2 Graphics Systems; 1.3.4 Graphics Utilities, Application Pack-
ages, Graphics Packages; 1.3.7 Three-Dimensional Graphics and
Realism, Animation; 1.6,3 Simulation and Modeling Applications;
D.3.3 Language Constructs

Keywords

Real-time animation, object-oriented design, delegation, simula-
tion, user interaction, electronic books, interactive illustrations.

1 Introduction

Over the last two decades, graphics research has concentrated on
three main areas, loosely categorized as image synthesis, shape
modeling, and behavioral modeling. While image synthesis (ren-
dering) was stressed in the late 70s and early 80s, the emphasis has
recently shifted to the modeling of various objects and phenomena
— indeed, many researchers believe that graphics today is model-
ing. We wish to expand the definition of “modeling” to include the
realms of simulation, animation, rendering, and user interaction.

f%rmission to copy withom tcc all or part {It’th]s matcotd is granted
provided that the copies arc not made or chstributedfor dircc[
cmnmcrciid advantage.ihc ACMcopyrigh~noticeand the titIc c~fthe
putslica[ionumt its ctttlcappear, md notw ii given [hat copying is h]
permissl~mtf the Ass(~i~tion for Compu[lng Machinery, T{} c{Ipy
othcrwlw. {w tt~republish, requires a fee andjor \pecilic pcrm]sii[m

Since the mid-60s, our research has focused on tools for creating
electronic books, specifically hypermedia documents with interac-
tive illustrations [21]. Such illustrations allow readers to interact not
just with a canned “movie” but with a stored, parameterized model
of a phenomenon they are trying to understand. Interactive illustra-
tions require simulation and animation of the underlying model in
an interactive, real-time environment.

Because we want to create interactive illustrations for a wide
range of topics, our modeling tools must handle large (and exten-
sible) sets of objects and operations on those objects that change
any of their physical attributes over time. We need a rich collection
of methods for controlling the time-varying structure and behavior
of the objects, especially as they interact under various application-
dependent systems of rules. In other words, we cannot use a single.
“silver-bullet” modeling or animation technique.

The essence of animation control is the specification of time-
varying properties. Traditional graphics package~ (such as PHIGS+,
Dorf, and RenderMan), however, have no explicit notion of time.
In these packages, time can be specified only implicitly, as the
byproduct of a sequence of editing operations on the database or
display-list representation. While today “s animation systems do
allow time to be explicitly specified, they generally permit only a
subset of an object’s propetiies to vary over time, They also tend
to be restricted in the objects, properties and behaviors they sup-
port. Most limiting, they force the designer to conceptualize the
animation process as a traditional pipeline of modeling, animation.
and rendering phases. By contrast, we have concentrated on inte-
grating modeling, animation, and rendering into a unified. coherent
framework.

2 An Overview

Our system provides a general and extensible set of objects that
may have geometric. algorithmic, or interactive (i.e.. user-interface-
controlled) properties, Geometric objects include quadrics, su-
perqttadncs, constructive solid geometry objects (C3GS) and other
hierarchical collections of objects, spline patches, objects of revo-
lution, prisms, generalized cylinders or ducts [9] (objects obtained
by extruding a varying cross-section along a spline path), and im-
plicit surfaces. Non-geometric objects include cameras, lights, and
renderers. Behaviors such as gestural controls. spring constraints,
finite-element techniques for cloth simulation [19], dynamics [131,
inverse kinematics [4] [14], and constraint solvers [3] are also en-
capsulated as objects.

Objects can send and receive messages. These messages are
persistent — a copy of each message is retained in the receiving
object. They provide information on how an object should change
itself over time. Objects can also inquire information from each
other, information that depends on the nature and content of the
messages a particular object has retained. Through messages, ob-
jects can be transformed (with scales. rotations, trwmlatiom. shears.

1, ,Iy)l AcM-()-x97Yl-436-x#9)oo7()lo.5 W 75 105

SIGGRAPH ’91 Las Veqas, 28 JuIY-2 August 1991

and rstlections), deformed (with bends, twists, tapers, waves [2],
and free-form deformations [16]), colored, shaded [171, texture-
mapped, dynamically moved (with forces, torques, velocities, and
accelerations), and volumetrically carved [8].

Messages are functions of time and, since objects retain them,
they may be edited. An object’s list of messages describes the
object’s time-varying structure and behavior. By editing this list,
through inserting, deleting, adding, or modifying messages, that
structure and behavior can be altered. Editing can be performed
either by objects or by entities (e.g., a user) external to the set of
objects comprising the model.

Our objects have several important characteristics. First, since
they can have interactive properties, any object can have a graphical
user interface as one of its attributes. Typically, an object supports
a user interface for its own specialized information, for instance, a
dynamics simulator may permit a user to specify its initial conditions
with sliders. Other objects are primarily interactive, such as an
object encapsulating a mouse which is queried by other objects for
position information, or an object encapsulating constraints editor.

Second, objects exploit communication, because they contain in-
formation that is often essential to other objects. A renderer needs
information from other objects in order to make global lighting cal-
culations. Constraint methods also require information from many
objects to perform their calculations. Constructive solid geometry
objects need information about the boundary representation of their
component objects in order to compute their own boundary repre-
sentations. A camera needs to know the position of another object
in order to track it.

Finally, an object in our system is not part of a classical class-
instance hierarchy, such as is found in the C++ and Smalltalk pro-
gramming languages. The constantly changing nature of our mod-
els makes a static relationship such as class-instance too restrictive,
since, for example, transforming a sphere into a torus would typi-
cally require a change in class. Instead, our system is a delegation
system [I g] [10]. In a class-instance system, objects have two SOttS
of associations: the association of an instance with its class and the
association of a class with its super-class. A delegation system, on
the other hand, has only one relation, that between an object and
its prototype. An object, termed the extension, can be created from
another object, its pro/otype; an object in a delegation system inter-
prets a message by using one of its prototype’s techniques. Changes
to the prototype affect both objects, but changes to the extension
affect only the extension. Although it has been suggested [5] [20]
that delegation might provide a simpler and more elegant method
of solving computer graphics problems, we are not aware of work
prior to ours incorporating delegation into animation and modeling
systems.

3 The System Architecture

3.1 Control points

At its simplest, a message is a name and a function of time. A
message can be edited by changing the particular nature and form
of its time-varying function, specified by the series of time-value
pairs that we call control poinfs (see Figure 1). Thus, editing a
message can mean adding or removing control points, associating
control points with new times, or changing the value in a control
point.

The value in a control point maybe scalars, vectors, or arbitrarily
complex expressions. For example, a scaling transformation can be
given as a single real number for a uniform scale or a list of three real
numbers for a non-unifotm scale. A control point specifying a CSG
tree can be given as a list containing threeitems: an object name or
a list (itself a CSGtree), anidentifierspecifying a CSGoperation, and
another object or list. Values can be functions of time: a translation
can be given by a vector function of the position of another object
in the scene. Function-based control points allow useful behaviotw

106

such as objects following other objects or adjusting their colors to
match those of other objects. Many systems support such tracking
behavior as a special case for cameras, but our system allows any
object to behave in this way.

n Message

Control Points

Figure 1: A message is a list of control points; a control point is a
time and an associated value.

The CSGtree example above points out that the values of control
points can be nested lists. Control-point values are very similar to
Lisp s-expressions in this regard. They can contain atomic values,
including numbers, srnngs, vectors, data structures, and object iden-
tifiers, or they can be lists of atomic values or other lists. Control
point values are thus very flexible, permitting the use of mathemat-
ical expressions based on values in the scene. Figure 2 shows some
sample control point values.

/*atomic values*/ 3.1416 “/u/j ohn/paint .bi”
camera sin (3.14 * 11.7)

/*a list of atoms*/ [1.0, 2.0, 3.01
/*a list of lists*/ [[1, 0,0], [2, [3.3,4.4]]]

/*functions*/
/*obtain 2nd value of list*/

select ([l.O, sin(t) ,3.0], 2)
/*changing position of an object*/

robot Head. pos i t i on

Figure 2: Examples of control point values (fragments of a scripting
language used to describe objects and their messages).

Values at times not explicitly specified can be derived through an
interpolation function, typically a weighted sum of contrul points.
When interpolating a series of control points whose values are them-
selves functions of time, the system cannot just pass direct values to
an interpolation method, but must first evaluate each control point
at the target time. The series of evaluated values (not functions)
thus produced can then be interpolated. As an example, consider
a camera tracking two moving objects, smoothly shifting its focus
from the first to the second. The value of a message over time can
change dramatically, depending on the interpolation method used.

3.2 Messages

An important purpose of messages is to provide communication
among objects. Objects such as a user interface or a physically
based simulator apply and edit messages to other objects, thus mod-
ifying their appearance and behavior. An object can also affect
another object by sending it a message containing a reference back
to the sender (i.e., the message contains a control point that refer-
ences another object). Whenever this message is interpreted, the
sending object is called back and asked to provide the appropriate
information. We use the term controllers for objects that modify
messages on other objects, either by actively editing or passively
being called back.

For example, large scientific visualization projects are often run
in batch mode, separating a supercomputer analysis from an inter-

@ @ ComDuter GraDhics, Volume 25. Number 4. JUIV1991

active visualization of the results. A simple controller could read in
the results of such batch simulations, obtaining a list of positions (or
whatever information is appropriate) and creating a list of messages
from it. These messages could then be given to the appropriate ob-
jects, telling each how to behave in order to represent the scientific
data [6]. Other more sophisticated controllers can apply and then
edit a set of messages, adding new messages as they derive new
results. Controllers will be discussed in more detail in Section 5.

Our system has a variety of messages to support its many kinds of
objects, Highly specialized messages can provide information for an
unusual object (for example, the parameters of an implicit equation
or the tolerances of a constraint solver). More general changes, such
as transformations. deformations, and dynamics (force or torque),
provide a diverse class of changes applicable to more common
objects.

3.3 Objects

Every object is represented by a retained list of all of the messages
it has received. Allobjects are identical when first created, since no
messages have yethensent, i.e., anew object's list is empty. The
message list isthenmodified inorder togivethe object interesting
behaviors or appearances.

Figure3: Anobject isalist of messages.

The interpretation of a message, i.e., its semantic meaning, is
determined by the object that receives it. Forexample, a screen-
aligned text object should not behave in the same way as a cube
when it receivesa message roruw; the rotation of the text should
beprojected onto theplane of the screen. Similarly, requests for
information are handled in an object-specific mannen A sphere
computes aray intersection differently from a cube.

To handle variable semantics, an object has a set of methods
(i.e., functions)to interpret messages that determine its behavior
and appearance, Interpretation of a message can alter some or
possibly all of the methods currently in use by an object, and thus can
radically change its entire nature, This ability to change methods
enables an object to adapt to different situations. For example,
a deformed torus no Ionger performs ray intersections with itself
by finding the roots ofaquartic equation. Rather than requiring
the torus’s ray-intersection method to handle all eventualities, the
procedure that interprets the deformation method changes its ray
intersection method to a more suitable one, such as one that performs
ray intersection with a set of polygons.

Many simple objects, such as spheres, cubes, and cylinders,
have many methods in common. They handle most transformations
identically and differ only in a few shape-specific methods, such
as boundary representation, ray intersection, and computation of
surface normals and parametric coordinates.

3.4 Anexample ofmaking objects

A delegation system has straightforward mechanisms for object hi-
erarchy [5] [10]. Recall that anobject. theex[ensimr, can bernade
from another object, theprorofype. In our system, an object can
receive a message stating that it is to inherit all the messages of an-
other object, thus becoming that object’s extension. The extension

implicitly inherits the prototype’s behavior as well, since its meth -
ods are initially defined bythe messagesin the prototype. Since
the prototype-extension relationship in our system is specified with
amessage, however. it can vary overtime, a feature not normally
present inadelegation system. Forexample, thehistory ofautomo-
biles can be modeled as a single object that uses a different model
yearcar asitsprototype for each year. This behavior is described
very simply by a single time-varying message,

Objects can also be made from several objects. Consider a
figure sitting in a chair, shown in figure 7. The chair is a CSG

object, built from the parts ofmany different objects. The tigure is
made ofseveral extruded duct objects, giving it a smooth, stylized
appearance. A duct is itself a hierarchy of several objects, made
from several spline path objects: onepathdescnbes the spine of
the duct while the others describe the duct’s cross-section along the
Iengthofthat path. Paths arethemselves composed ofpoint objects
used as the control points for the splines.

lftheobjects composing the CStlobject change overtime, the
CSGobject itself will also change. The CsGobject asks itscompc-
nents for their boundary representations at a specified time, and the
component objects return the boundary representations as function~
of time. since the boundaries are specified by messages to the corre -
spondingobject. Thecomposition of these functions inacsc object
isnecessarily afunction of time. Paths andducts behave similarly:
as the points specifying the hull of a path move, the hulls change
shape, changing the spline path. As a path changes its orientation
andshape, aduct made from this path also changes.

Suppose we want the figure to watch a fly a fly flitting about
the scene. Wecanspecify themotionof the fly with a path object.
making the fly move along a spline path. and the fly can ask the path
for the position of points further along and for tangent information
at those points. Thus the fly can be oriented along the path, as if
it were flying through the air. Likewise, the figure’s eyes can ask
the fly forits position and use that information to track it, and the
points and paths comprising the tigure’s ducts can also ask the fly
for its position and change their orientation accordingly.

4 Interpreting Messages

4.1 The Simple Case

An object computes the answer to an inquiry by interpreting each of
its messages in sequence. As we said earlier, a message can change
the methods used to interpret subsequent messages: therefore, the
particular order of messages is important. The object’s message
list itself provides this ordering. This linear traversal is satisfactory
until we begin using references to other objects and making multiple
inquiries of an object. Under these circumstances, work will be
repeated unnecessarily, and it becomes useful to exploit coherence.
as discussed in Section 4.2.

Recall that some messages, like the deformations mentioned in
Section 2, will, when interpreted, change the methods the object
uses to interpret messages further along in the list, Note also that
objects change their methods in different situations. For example,
applying a deformation to a spline patch might not cause it to change
its methods if the inaccuracy of applying the deformation to the
control hull (and not the patch itself) is acceptable [7].

When objects depend on other objects. traversal becomes recur-
sive. Consider the figure watching a fly discussed in Section 3.4.
To determine the orientation of an eye, the position of the fly must
be determined. When. in interpreting the messages of the eye, the
message containing the reference to the fly (i.e., asking the fly for
its position) is reached, a recursive traversal of the fly begins. The
fly’s position is determined by interpreting the fly’s list of messages.
and then interpretation of the eye’s list continues.

The interpretation mechanism implicitly utilizes lazy evaluation:
no calculations are performed until an object is actively asked for
information. For example, time would be wasted in computing

107

SIGGRAPH ’91 Las Veqas, 28 JuIY-2 Auwst 1991

polygonal boundary representations of CSG objects if all inquiries
concerned the tree hierarchy of the object. We use lazy evaluation
and the caching scheme described next to simultaneously avoid un-
necessary computation and exploit inter- and intra-frame coherency.

4.2 Caching

Messages can be used to store arbitrary information. Objects can
send messages to themselves in order to cache useful but computa-
tionally expensive data. Since such data is a function of time and
messages are also functions of time, messages are an appropriate
mechanism for data caching.

The first time an inquiry is made, the object computes the value
for the time of inquiry and the time interval over which that value
holds. If a second inquiry is made within the valid interval, the
object simply returns the previously computed value (see Figure 4).
Note that some messages contain data relevant to the cache. If such
a message is modified, the cache is marked as invalid (see Figure 5).
Multiple edits to these messages simply flag the cache as invalid
multiple times, a very cheap operation. Thus, several edits can be
“batched’ into one, and interactive updates become much faster,
since the data is not recomputed until actually requested.

%

Ouerv: “What do
‘yo~ look like?” Add a Cache

!
b-rep

Figure 4: An inquiry adds a cache to the end of a list of messages.
Here, the cache is of a boundary representation (b-rep) of the object.

Editing and subsequently invalidating a cache is a selective pro-
cess: editing a translation invalidates only a cache of a transfor-
mation matrix, not a cache of a polygonal boundary representa-
tion. Objects understand how different messages affect each other.
[n particular, they know which messages invalidate which caches.
Further, since each cache stores the interval over which it is valid,
invalidation may merely change the size and shape of that intewal
(perhaps splitting it into multiple intervals) instead of completely
invalidating it. If the edit changes the value of a message halfway
through the time span of the cache’s interval, the interval will be
halved. More detailed manipulations of intervals are also supported,
such as scaling and Boolean operations.

Profiling indicates that the improvement in performance with
caching more than justifies its expense. By monitoring memory
usage, we have seen that animations using extensive caching use
aPPmximately thirty percent more memory but achieve as much
as a tenfold speedup. In these animations, the caching mechanism
caches essentially all inquired data, for any time of inquiry, thereby
minimizing the need to recalculate coherent data. Note that inter-
frame coherency is automatically exploited, since caches are valid
over intervals of time.

*

Edit this
Messsage #

Ab-rep

This change marks the cache as invalid $

Figure 5: Editing a message before a cache can invalidate the cache.

4.3 Message list traversal with caching

To see how the system works with caching, let’s consider a sim-
ple example: rendering all objects in a scene with a z-buffer. The
renderer asks each object in the frame for its polygonal boundary
representation. When inquired for the first time, each object com-
putes its polygonal representation and caches it, marking it with
the interval over which it is valid, and then gives the data to the
renderer. The renderer then z-buffers the polygons, producing a
frame. When the renderer asks an object for its polygons in the next
frame, the object merely returns the previously computed boundary
representation, if it is valid for the requested frame.

Caching helps expedite inquiry within a frame as well. If we ask
the same object more than once for the same data, inquiries after the
first will perform much faster by just returning the cache. Consider
a car with four tires, each alike (up to a linear transformation).
The tire could be an expensive-to-compute spline surface, yet this
surface could be computed only once, not four times.

As another example, consider upd’sting the figure in the fly ani-
mation of Section 3.4. Suppose one of the points used in a path is
translated. This translation invalidates the point’s CTMcache (cur-
rent transformation matrix). Since caches are generated when an
object is asked for information, the identity of the inquiring object
(here, the path) is also stored in the cache. Thus, when the cache
is invalidated, the path is informed and invalidates its own caches.
These caches include references to the duct made from the path, so
the duct’s cache of its boundary representation is also marked as in-
valid. When the duct needs to provide its polygonal representation
again, it will see its invalid cache and retraverse its list of messages,
asking the path for the spline equations. The spline will notice its
own invalid cache and recalculate the spline equations, asking the
moved point for its new position.

5 Controllers

As mentioned in Section 2, behavior can be encapsulated in objects
we call controllers. A controller affects other objects by sending
them messages that refer back to the controller. Consider an inverse
kinematics controller that must make an articulated arm reach for
a goal (see Figure 8). Each joint is an object with a message that
specifies its orientation through a reference to the inverse kinematics
controller. This dependency allows the controller to indicate the
amount of translation and rotation produced by any joint at any

108

@ @ Computer Graphics, volume 25, Number 4, July 1991

given time. Interactive techniques can be considered controllers
as well, for example, when a user specifies the initial conditions
of a simulation (see Figure 9). In this case, the simulated objects
reference a user interface object.

The use of dependencies in this situation is similar to that de-
scribed in Section 4.1, Thus. when the position of an object in the
linkage is needed at a particular time t, the serial interpreta~ion of the
object’s messages begins. Upon reaching the translation or rotation
message referencing the controller, the object asks the controller
for the correct value. and the controller then supplies the necessary
translation or rotation for the given time t.

The messages sent to a controlled object by a controller are inten-
tionally as abstract as possible. The responsibility of determining
how these messages affect a controlled object is left to the object it-
self, Essentially, a controller determines M>//atto do and a controlled
object determines ltmr to do it. Consider, for example, a rigid-body
dynamics simulation involving collision detection and response, It
would be possible to have one controller handle all aspects of the
simulation. exerting control by sending only translation and rota-
tion messages to the controlled objects. However, we use instead
a collision-response controller that sends it “collision” message to
each controlled object: the object itself interprets the details of the
collision message in terms of velocity (for momentum transfers) or
acceleration (for continuous contact).

This object-oriented approach to control has several advantages.
First, it reduces the complexity of controller implementation. A
controller need not keep track of how it is actually changing the
specitic attributes of a controlled object, and this controller thus can
store less information than might be needed by another controller
affecting the same object, reducing the need for communication be-
tween controllers. Second, our approach increases the efficiency of
communication between controllers and objects. A single abstrdct
message that directs changes to many attributes of an object requires
less system overhead than many messages each of which concerns
only a single imribute. Third. our approach allows different types
of objects to respond differently to tbe same abstract command, so
(hai a flexible object like cloth, for instiotce, can interpret a collision
message ditierently from a rigid object,

6 Controller Interaction

Allowing heterogeneous controllers to coexist and communicate in
the same environment has been a research goal in computer graphics
for several years [1] [12]. Such interaction between controllers
should allow many powerful behavioral control techniques to affect
a common set of objects in a meaningful way, The ideal system
should be flexible. extensible and efficient.

6.1 Problems with interaction

A number of difficult problems must be solved to achieve the goal
of heterogeneous controller interaction. The first involves identi-
fying Ihe aspects of interacting controllers that hinder successful
cooperation.

Consider the situation depicted in Figure6. The rod with end-
points aandbhaslengthl. Thedistance between thetwowallsd
and B is also 1, so it should bepossible to make the rod span the
walls, Assume that we have d controller that can move a to A and a
controller that can move b to B, and assume also that we constrain
the rod to remain rigid, The simplest way to make the rod span the
WUIISis to invoke the two controllers independently so that each
handles the task of moving one endpoint to the appropriate wall.
This solution does not necessarily work, however. Each controller
might, for instance, decide that the simplest way to move an end-
point to tbe wall is to tmnslate the rigid rod. Neither controller will
realize that the rod must be rotated to allow both endpoints to touch
the walls, so spanning will not be achieved. This problem cannot
be solved until tbe controllers consider both endpoints. Diagnosing

A

I

u

\

1

h

Figure 6: An example of incompatible controllers.

and correcting this lack of cooperation currently requires human
intervention, and automation of the process does not seem feasible
without severely restricting the possible controller types (e.g., to
constraint solvers).

Another issue in controller interaction is data incompatibility.
This arises, for example. when a kinematic controller and a dy-
namic controller both affect the same object. The dynamic con-
troller works with velocity and acceleration data that the kinematic
controller does not understand. When the kinematic controller
changes the position of the object over time. however. the velocity
of the object appears to change. If the dynamic controller is not
made aware of this apparent change in velocity, its computation
may produce visual inconsistencies.

Controllers that work iteratively present a third problem. The
iterations of different controllers may proceed at different rates.
and aliasing may result. This problem can appear when several
controllers perform numerical integration with different time step~.

Our system provides several mechanisms that facilitate controller
interaction, while trying to handle some of these problems. These
mechanisms allow us to conduct further research into interaction
policies.

6.2 Some solutions

Certain attributes of an object are dependent on its other attributes.
The object’s position, for instance, is related to its velocity and
acceleration. Our system provides a mechanism to maintain the
relationships among the attributes of an object. When a controller
inquires an attribute of a controlled object, the system keeps that at-
tribute consistent with any related attributes, even if those attributes
have been changed by other controllers. Consider, for example,
a controller that handles momentum transfers in response to colli-
sions. This controller adds a collision-response message to each
object it controls; the velocity resulting from the message is non-
zero only if the object has just penetrated another object. If some
other controller needs to know the position of an object whose mm
mentum was changed, the controlled object will conven the change
in momentum to a change in velocity; the colli>ion-response con-
troller need not be concerned with this issue.

Caching and its relation to controllers are especially important
for attributes related by differential equations (parametenzed by
time). By caching the acceleration and velocity of an object at
one instant in time, the system can use Euler’s method [15] to
obtain the velocity and position of that object at the next instant.
We are currently investigating how to use the Runge-Kutta method
of integration. This method is more effective overall than Euler’s
method. but because of our interobject dependencies, computing the
necessary intermediate values may require global information: thus
it cannot be implemented as easily in our system, which distributes

I09

I!l%
<..

sl!6n APHtl -

SIGGRAPH ’91 Las Vegas, 28 July-2 August 1991

this global information and its interpretation among objects.
Caching is also useful for the numerical differentiation of at-

tributes, helpful in solving the data incompatibility between kine-
matics and dynamics mentioned at the start of this section. A
velocity corresponding to a kinematic change can be approximated
by dividing the most recent displacement created by the kinematics
controller by the elapsed time (in the animation’s time units) from
the previous displacement.

A variety of interesting controller interactions can be created
simply by using the mechanisms for maintaining related attributes.
When multiple controllers send messages to the same object, the
relative ordering of the messages determines how the effects of
the controllers combine to determine the object’s overall behavioc
messages earlier in the list affect the object first, because of the
order of traversal. We call this type of interaction srrict priority
ordering. By allowing different orderings of the messages, the
system can provide different effects, since messages are in general
non-commutative (e.g., a translate followed by a rotate is not the
same as a rotate followed by a translate).

A more general mechanism for controller interaction is supported
by allowing multiple controllers to affect one or more objects indi-
rectly through an intermediary controller. The multiple controllers
are referenced by messages to the intermediary controller, not to
the controlled object, and the controlled objects reference only the
intermediary controller. The job of the intermediary controller is
to combine the effects of the multiple controllers into a meaningful
result and convey this result to the controlled objects. Such inter-
mediary controllers can be used whenever strict priority ordering
is not sufficient, e.g., when the behavior of an object should be
the weighted average of the effects of two controllers. A toolbox
of standard intermediary controllers that perform useful functions
(such as the weighted average) could be added to the system.

7 An Example — 3D Pong

To see how this system works in practice, let’s look at a sample inter-
active environment: a 3D pong game in which a sphere represents
the ball, and two cylinders, appropriately scaled and translated, rep-
resent the paddles. We can play our game inside a court that is an
object of revolution lying on its side, using scaled cylinders capping
the ends of the revolve object for the back walls, the ones that the
ball should not hit.

Two pairs of dial objects control the paddles, so that two users can
manipulate the paddles next to the appropriate walls. A collision-
detection object checks for intersections between the ball, the re-
volve object, the back walls, and the paddles. Finally, collision-
response objects tell different objects what to do, One is responsible
for collisions between the ball and anything except the back walls:
when the ball hits the object of revolution, this object produces
physically based collision-response messages. The ball then moves
accordingly, while the revolve object uses a null interpretation of
the response message and thus is unaffected by collisions. When
the ball collides with a paddle, it uses the same collision-response
interpretation as before, but the paddle would use its own, a dif-
ferent one, perhaps one that makes the paddle visually light up. A
second collision-response object will be responsible for collisions
between the ball and the back walls. When the ball hits one of
the back walls, the ball will receive a different kind of collision re-
sponse message, since it will not bounce back. The wall’s collision
response interpretation will add a point to the current score.

Many interesting features could be added to this game. For ex-
ample, the walls of the court could change as the game progressed
(possibly in response to collisions with the ball). The ball could
move faster when hit by a faster paddle, despite the fact that the
paddles are under kinematic control and have no intrinsic notion of
velocity. Users could control their paddles in different ways, for ex-
ample, using polar coordinates or Euclidean coordinates, simply by

changing the messages between the dials and the paddles. Moving
obstacles could be placed between the two players, perhaps obsta-
cles that follow the ball, or follow a pre-scnpted plan of motion.
Since objects can be asked to display themselves at any time, instant
replay of a game works automatically, allowing users to see what
they just did, and change it. Finally, these features can be added
interactively by the game players.

8 Summary

We have designed and implemented an interactive graphics system
[11] with an unusually close integration of modeling and anima-
tion. All modeling is done through time-varying messages and
thus all modeling tools can be used for animation. The system is
object-oriented and provides a time-varying delegation hierarchy
for maximum flexibility.

Behavioral control is supported by giving controllers the respon-
sibility for calculating what controlled objects are to do, while let-
ting each object interpret the abstract instructions according to its
own methods. Multiple controllers can operate independently by
instructing their objects in priority order. Alternatively, intenrtedi-
ary controllers can be written to integrate the behavior of control
mechanisms. The system currently contains a large class of geo-
metric primitives and a growing collection of user-interface objects
and controllers.

A number of efficiency mechanisms contribute to interactive
performance. In particular, lazy evaluation and caching exploit
all inherent inter- and intra-frame coherence. By distributing the
database, we expect to further improve the performance of the sys-
tem. It should be possible for each object to evaluate its messages
in parallel, but we will have to consider scheduling problems when
objects depend on each other.

Our system is meant to go the next step beyond the scope of
traditional graphics systems such as PHIGS+ or Dor& Such systems
enforce a rigidly divided modeiingfanimation/rendering pipeline.
We believe our system provides some indications of where the next
generation of graphics systems software is headed: towards an
environment with both time and behavior as first-class notions, and
not just shape description and rendering.

9 Acknowledgements

We cannot begin to thank all the people that have made a system of
this complexity possible. We would like to thank the many people
who have commented on this paper, especially the reviewers. We
would also like to thank Paul Strauss and Michael Natkin, architects
of an earlier version of the system that provided much insight into
the problem of a general animation system. In addition, the entire
Brown Graphics Group, especially the artists, have provided much
valuable criticism of the system’s capabilities.

References

[1]

[2]

[3]

[4]

Phil Ambum, Eric Grant, and Turner Whitted. Managing
geometric complexity with enhanced procedural models. In
Proceedings of the ACM SIGGRAPH, Computer Graphics,
volume 20(4), pages 189-195, August 1986.

Alan H. Barr. Global and local deformations of solid prim-
itives. In Proceedings of the ACM SIGGRAPH, Computer
Graphics, volume 18(3), pages 2 1–30, July 1984.

Ronen Barzel and Alan H. Barr. A modeling system based on
dynamic constraints. In Proceedings of the ACM SIGGRAPH,
Compurer Graphics, volume 22(4), pages 179–I 88, August
1988.

Lisa K. Borden. Articulated objects in BAGS. Master’s thesis,
Brown University, May 1990.

110

@ @ Computer Graphics, Volume 25, Number 4, July 1991

[5] A. H, Boming. Classes versus prototypes in object-oriented
languages. In IEEEIACM Fall Joint Computer Conference,
pages 36-40, 1986.

[6] Ingfei Chen and David Busath. Animating a ceIIular transpotl
mechanism. Pixel Magazine, 1(2), 1990.

[7] Gerald Farin. Curves and Surfaces for Computer-Aided Gee-
memic Design. Academic Press, second edition, 1990.

[8] Tinsley A. Galyean. Sculpt: Interactive volumetric modeling.
Master’s thesis, Brown University, May 1990.

[9] Andrew Glassner, editor. Graphics Gems. Academic Press,
1990,

[10] Brent Halperin and Van Nguyen. A model for object-based
inheritance. In Peter Wegner and Bruce Shriver, editorx, Re-
search Directions in Object-Oriented Programming. The MIT
preSS, 1987.

[11] Philip M. Hubbard, Matthias M. Wloka, Robert C. Zeleznik,
Daniel G. Aliaga, and Nathan Huang. UGA: A unified graph-
ics architecture. Technical Report CS-91 -30, Brown Univer-
sity, 1991.

[12] Devendra Kalra. A Un@ed Framework for Constraint-Based
Modeling. PhD thesis, California Institute of Technology,
1990.

[13] Matthew Moore and Jane Wilhelms. Collision detection and
response for computer animation. In Proceedings ofrhe ACM
SIGGRAPH, Computer Graphics, volume 22(4), pages 289-
298, August 1988,

[14] Cary B. Phillips, Jianmin Zhao, and Norman I. Badler. hrter-
active real-time articulated figure manipulation using multiple
kinematic constraints. In Proceedings of the Symposium on
interactive 3D Graphics, pages 245-250, 1990.

[15] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling. Numerical Recipes in C. Cambridge
University Press, 1988.

[16] T. W. Sederberg and S. R. Parry. Free-form deformation of
solid geometric models. In Proceedings of the ACM SIG-
GRAPH, Computer Graphics, volume 20(4), pages 151-160,
August 1986.

[17] Paul S. Strauss. A realistic lighting model for computer an-
imators. IEEE Computer Graphics and Applications, 10(6),
November 1990.

[18] Peter Wegner. The object-oriented classification paradigm. In
Peter Wegner and Bruce Shriver, editors, Research Directions
in Object-Oriented Programming. The MIT Press, 1987.

[19] Jerry Weil. A simplified approach to animating cloth objects.
Unpublished report written for Optomystic, 1988.

[20] Peter Wisskirchen. Object-Oriented Graphics. Springer-
Verlag, 1990.

[2 1] N. Yankelovich, N. Meyrowitz, and Andries van Dam. Read-
ing and writing the electronic book. fEEE Computer, 18(10),
October 1985.

111

: SIGGRAPH ‘91 Las Vegas, 28 July-2 August 1991

Figure 7: A figure assembled from several spline paths. One defines a path for extrusion. Others define the shape of the extrusion at various
points along the path of extrusion. Because of the rich dependencies of our system, such an object will change as the paths used to make it
change.

Figure 8: Inverse kinematics controllers (affecting the robots) interacting with a finite-element simulation (affecting the cloth) in a mdiosity-
rendered room. All are part of the same database, and work together. For example, note that the cloth is being dragged off of the table.

Figure 9: Newton’s cradle, a physically simulated toy. The user can specify initial conditions, or interact with the simulation as it procedes.

112

