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Abstract  
In this paper, we introduce a system to virtually restore damaged 
or historically significant objects without needing to physically 
change the object in any way. Our work addresses both creating a 
restored synthetic version of the object as viewed from a camera 
and projecting the necessary light, using digital projectors, to give 
the illusion of the object being restored. The restoration algorithm 
uses an energy minimization method to enforce a set of criteria 
over the surface of the object and provides an interactive tool to 
the user which can compute a restoration in a few minutes. The 
visual compensation method develops a formulation that is 
particularly concerned with obtaining bright compensations under 
a specified maximum amount of light. The bound on the amount 
of light is of crucial importance when viewing and restoring old 
and potentially fragile objects. Finally, we demonstrate our 
system by restoring several deteriorated and old objects enabling 
the observer to view the original or restored object at will. 
CR Categories: I.3 [Computer Graphics], I.3.3 [Picture/Image 
Generation], I.3.5 [Computational Geometry and Object 
Modeling], I.3.6 [Methodology and Techniques]. 
Keywords: digitization, restoration, image completion, energy 
minimization, radiometric calibration, light transport. 

1 Introduction 
The objective of our work is to visually restore deteriorated and 
historically-significant objects viewed only by the naked-eye 

without needing to touch or change the original object in any way. 
Current physical restoration and conservation treatments that are 
normally performed are very subtle because the owners of the 
objects do not want them to be significantly changed. 
Conservation treatments are usually limited to the minimum 
necessary to prevent further deterioration. Restoration efforts are 
faced with the dichotomy of keeping the object original and of 
providing a view of the object as it was initially intended to be 
seen. Further, a historical artifact might actually have multiple 
possible restorations, either because of uncertainty in its former 
appearance or because the artifact appeared differently depending 
on the time period. Our work circumvents these issues and 
limitations by altering the visual appearance of the objects in a 
flexible and controlled manner. This allows museums, for 
instance, to resolve the dichotomy and to showcase a genuine 
historical artifact with different appearances. 
Our methodology computes a restored form of the observed object 
and uses several digital projectors and a digital camera to alter the 
appearance of the object by precisely controlling the position, 
color, and intensity of projected light. Nevertheless, several other 
approaches to restoration exist. A user could simply use an image 
editing program (e.g., Photoshop) to restore a photograph of the 
object. However, the use of such programs may require many 
hours of arduous detailed work whereas our restoration process 
can be completed in minutes. The restored view of the object can 
be displayed on a computer screen providing significant flexibility 
but lacks the benefit of the natural cues of depth perception, 
parallax, and physical inspection. Physically-restored replicas can 
be fabricated but the task is time consuming and is limited to a 
single interpretation of the restored appearance of the object. 
Creating simple replicas (e.g., diffuse white replicas capturing the 
general shape) and using projectors to augment the replica with 
visual details does give the general object appearance, but unless 
all observers are tracked and provided with a custom image (e.g., 
special goggles, head-mounted display), the intricate and view-
dependent details of a physical object cannot be provided. 
Moreover, museums pride themselves on showcasing genuine 

Figure 1. Virtual Restoration. We present a system to restore and alter the physical appearance of old and deteriorated objects: a) 
photograph of an ancient Chinese vase (ca. 2250 BC); b) an image of the synthetic restoration produced by our algorithm; c) photograph 
of the restored object using our system and guaranteed not to exceed a provided maximum amount of light per unit surface area (note: in 
photographs, background is illuminated by a light source behind the object causing shadows on the rim of the object). 

a) Photograph of Original Object c) Photograph of Restored Objectb) Synthetic Restoration



  

artifacts. With our methodology, a restored view is interactively 
computed within minutes and many simultaneous viewers can 
look at the actual historical object in a virtually restored state, 
have the benefit of depth perception, parallax, and physical 
inspection, observe all the intricate details of the object, and not 
need any special goggles or viewing devices. 
The main challenges lie in (i) correcting the deterioration of the 
colors on the object’s surface, (ii) providing a restored visual 
appearance using no more than a user-specified maximum amount 
of light, and (iii) easily obtaining the needed information about 
the object’s and projectors’ geometric and radiometric properties. 
The targeted object might suffer from missing chips of paint, 
stains, color fading, and cracks that noticeably alter its current 
appearance and hinder inferring the object’s original appearance. 
Additionally, a common concern for historically-significant 
objects that are on display is the amount of incident light. While a 
restoration scheme like ours could be enabled only periodically, 
we seek to maximize the visual restoration that can be obtained 
under a specified maximum amount of projected light. This 
allows the user to control the amount of light desired to be 
projected onto the object. Moreover, since the geometric and 
radiometric properties of the object and projectors are initially 
unknown, the restoration stage should be able to accurately and 
easily obtain this information so as to make deploying our 
restoration stage robust and practical. 
Our two key observations are that using multiple projectors with 
fully overlapping fields-of-view and assuming a discrete number 
of colors for the targeted object enables a robust virtual 
restoration system using a user-specified maximum amount of 
projected light. The first observation provides us with the 
flexibility to choose at the pixel-level how to best combine the 
projectors in order to perform the visual compensation within a 
specified maximum amount of light. The second observation 
hinges on the fact that our targeted historical and aged objects are 
often hand-painted and consist of a small number of foreground 
and background colors. The colored patterns on the surface have 
deteriorated which causes the observed color discontinuities to no 
longer be the contours of the painted shapes. Unlike image 
filtering (e.g., edge-preserving bilateral filtering), this observation 
enables us to explicitly change the contours of the deteriorated 
patterns. Further, as opposed to image inpainting efforts, our 
approach is not limited to filling in small holes, does not depend 
on self-similarity within the image, and is able to tackle images 
with significant structure. By assuming few colors are on the 
object’s surface, we devise a robust and accurate color 
classification method. The classification converts the problem into 
a discrete optimization framework and enables us to iteratively 
alter the shape of the color patterns to attempt to satisfy a set of 
smoothness criteria. Furthermore, the restoration optimization 
only allows a lighter luminance pixel to be replaced with a similar 
or darker luminance pixel. This restriction significantly improves 
the visual quality of restoring a target object with projected light.  
Overall, our approach uses an object stage and three main steps to 
perform a virtual restoration. The stage consists of a platform for 
the object as well as three digital projectors and a digital camera 
pointing towards the object. During an initial acquisition step, a 
self-calibrating 3D reconstruction method obtains a dense model 
of the observed object along with the poses of the projectors and 
camera. The high accuracy and self-calibrating nature of this step 
are necessary to ensure ease of use and to provide visually-
compelling restorations. Second, an interactive image restoration 
method uses a photograph of the object to produce a restoration 
image which attempts to infer an original appearance of the 

object. This step assigns each pixel to one of a small number of 
dynamically chosen colors using our color classification 
algorithm. Then, each patch of same-color pixels is restored using 
an energy minimization framework which performs a sequence of 
contour smoothing operations. Each operation attempts to reduce 
the maximum curvature of the contour while respecting inferred 
spatial relationships with nearby contours and producing a 
compensation-complaint restoration of the color patterns. Third, a 
visual compensation algorithm is used to compute compensation 
images for simultaneous projection. Our algorithm uses the results 
from the initial acquisition step to obtain a precise estimate of the 
light transport between projectors and cameras (e.g., similar to 
[Sen et al. 2005]). Then, our method uses a surface radiance 
model to calculate projector images so as to best alter the visual 
appearance of the target object to that of the restored image while 
guaranteeing not to exceed a given maximum amount of light per 
unit surface area for the object.  
Altogether, we present a complete and self-calibrating system 
requiring only a small amount of user input to perform compelling 
virtual restorations of real-world objects. Our system uses only 
off-the-shelf hardware. The result is a fundamentally different 
way of viewing and understanding important and perhaps 
historically-significant objects. We demonstrate our system by 
performing virtual restorations on a variety of historical objects 
exhibiting varying degrees of deterioration. 
Our major contributions are 
• a first-of-its-kind system that enables any number of 

simultaneous viewers to view in place a deteriorated real-
world object either in its original state or in a restored state, 

• a restoration method to infer an original appearance of a 
target object and to produce an image of its restoration, and  

• a visual compensation algorithm that uses a surface radiance 
model and light-transport based approach to alter the target 
object to its restored version using no more than a user-
specified maximum amount of light per unit surface area. 

2 Related Work 
Our research builds upon work in altering the visual appearance 
of objects using digital projectors, computing an efficient 
radiometric compensation, and performing an image-based 
restoration of the observed object. Raskar et al. [2001] present a 
projector-based system that projects light onto custom-built 
objects. The objects were constructed so as to imitate the general 
form of a desired physical structure, and the projectors provided 
additional visual details. As opposed to our colored (and 
deteriorated) objects, their projection surfaces were white and 
smooth thus only requiring a simple photometric calibration. 
Subsequently, several radiometric compensation algorithms have 
been proposed for calibrating projectors and cameras [Mitsunaga 
and Nayar 1999; Grossberg et al. 2004; Fujii et al. 2005; 
Wetzstein and Bimber 2007] often for the purpose of projecting 
movies on top of arbitrary surfaces. Grossberg et al. [2004] did 
alter the appearance of an object but assumed a very simple 
diffuse object model. Wetzstein and Bimber [2007] used a light-
transport approach similar to ours for capturing arbitrary surface 
properties. Augmented reality frameworks provide both real and 
synthetic content (e.g., [Azuma et al. 2001; Bimber et al. 2001]) 
but often need head-mounted displays or support a limited number 
of viewers. None of these methods calculate how much light is 
used during compensation or address visual restoration. Our work 
significantly extends these general concepts to enable observing 
and restoring fragile and deteriorated objects. 



  

With regards to visually repairing the observed object, image 
restoration methods can be loosely divided into algorithms for 
image denoising and for image inpainting. Many image denoising 
and filtering methods have been proposed to restore the quality of 
captured images and, in general, address removing very small 
artifacts. Since the sharp discontinuity of edges is often desired 
(e.g., the edges of a solid-colored pattern painted on the object), 
edge-preserving smoothing methods are particularly relevant to 
our objective; e.g. anisotropic diffusion [Perona and Malik 1990] 
and bilateral filtering [Tomasi and Manduchi 1998; Durand and 
Dorsey 2002; Weiss 2006]. However, in our case, the observed 
edges are not necessarily the ones we want to keep. Our objective 
involves more significant structural changes to the observed 
patterns since missing chips of paint, blemishes, and cracks will 
cause undesired contours to appear. Thus, our task must include 
adjusting the contours to a more correct shape and location. 
Image inpainting is concerned with “filling-in” a user-selected 
region. A first strategy is to grow the region surrounding small 
holes [Bertalmio et al. 2000; Chan and Shen 2001; Levin 2003]. A 
second approach is to incrementally fill in larger holes by 
searching for patches of pixels elsewhere in the image (or video in 
some cases); e.g., [Drori et al. 2003; Criminisi 2003; Jia and Tang 
2003]). A third approach is to merge with texture synthesis 
approaches (e.g., [Efros and Leung 1999; Wei and Levoy 2000]) 
and to generate approximate content for the missing regions (e.g., 
[Igehy and Pereira 1997; Bornard et al. 2002; Bertalmio et al. 
2003]). While these methods produce very compelling results and 
are able to complete regions with large omissions, they have 
difficulty with structured images, assume the region to inpaint is 
surrounded by valid image content, and need an a priori mask 
specifying the location of the holes to inpaint. In our case, the 
objects typically contain hand designed patterns with deterioration 
throughout the entire surface. Using inpainting to reproduce the 
structure is challenging since no holes are explicitly present. Sun 
et al. [2005] present an image completion method which improves 
upon structure-oblivious inpainting but requires user-specified 
structural hints for all structural corrections.  
In contrast, our restoration approach is more related to the object-
editing methodology of Barrett and Cheney [2002] which enables 
altering an image at the object-level rather than at the pixel-level. 
In a similar spirit to Barrett and Cheney [2002] (and also to Sun et 
al. [2005]), our method asks the user to provide hints for steering 
the restoration towards an original structure of the object. 
However, our algorithm uses a color classification algorithm to 
convert the problem into a discrete optimization. This enables 
automatically handling the details of inflating or deflating the 
painted patterns, filling in small holes, and ensuring a set of 
smooth contours while maintaining the spatial relationship 
between them. While general color classification methods can 
partition pixels into a set of similar-colored clusters (e.g., 
[Comaniciu et al. 2002; Felzenszwalb and Huttenlocher 2004], we 
use a dynamically calibrated k-means clustering approach 
specialized towards the case of knowing only a few colors are 
present. This method converts the problem to a discrete 
optimization and significantly reduces the effort on part of the 
user to specify regions in need of restoration. 

3 Object and Acquisition Stage 
Our virtual restoration stage is intended to have an object on 
display so that either its original or restored state can be viewed at 
the press of a button. For example, a computer-controlled timer 
can enable the restoration system for no more than a total 
exposure time. Nevertheless, our visual compensation system 
ensures a maximum amount of light (e.g., expressed as a 

percentage of the projector’s maximum illumination strength) is 
not exceeded and thus prevent damage to the object over time.  
The restoration session for the object starts by (i) placing the 
object on the stage, (ii) acquiring a geometric model of the object 
and estimating the internal and external parameters of the 
projectors, (iii) capturing a picture for computing the image-based 
restoration, and (iv) efficiently calculating the light-transport 
matrix and radiometric calibration. Then, a compensation image 
for each projector is interactively computed using a desired set of 
restoration parameters and maximum light-intensity. Figure 2 
contains a picture of the setup with an example object in place. 
To facilitate easy deployment of our stage, we perform a self-
calibrating reconstruction of the object and of the projector 
parameters. Our approach is based on Aliaga and Xu [2008] 
which estimates the geometric positions of a dense set of point 
samples, their corresponding surface normals, and the poses and 
focal length of the projectors. The result is a dense and accurate 
model containing position and normal data of the target object.  

4 Restoration 
Our image restoration method provides an interactive application 
whereby a user can restore the appearance of the observed object 
using an iterative energy minimization process. Figures 3a and 3b 
show an example object section highlighting the deterioration. 
Our goal is to arrive at Figure 3c, a plausible restoration of the 
highlighted object section, and Figure 3d, which shows Figure 3a 
restored. Our method is able to work at any scale so as to provide 
both minor and major alterations to object appearance. The user 
interactively controls the smoothness of the restoration as well as 
how much it can deviate from the initial appearance.  
To begin the restoration process, our color classification algorithm 
first assigns each pixel to one of a small set of colors. Then, the 
user selects a region of the image for restoration and assigns the 
region a background color. The size of the region depends on the 

Figure 2. Object Stage. The stage used by our approach 
consists only of self-calibrated off-the-shelf hardware.

Figure 3. Image Restoration. a) A close-up image of a 
deteriorated object. b) The synthetic equivalent of a pixel-
subset of the image before restoration. c) The same synthetic 
region after our restoration. d) The final restored image of (a). 
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object and the total number of regions can range from one region 
to numerous regions. Within a region, each contiguous group of 
pixels of the same color forms a patch. The energy minimization 
alters the contours of the patches so as to reduce the value of a 
restoration energy term. For each patch in the region, the pixels of 
the patch’s contour are placed into a priority queue. The pixel 
with the largest energy term is processed first until either no 
significant change in energy occurs or no energy term exceeds a 
provided maximum. These criteria, combined with simple hole 
filling and noise removal, yield a restoration of the observed 
patterned object. Lastly, the computed image is used by the visual 
compensation method to calculate images for each projector. 

4.1 Color Classification 
Using an image of the object as the input, our classification places 
each pixel into one of a small set of colors by using a calibrated k-
means clustering method. The image to be used for restoration is 
captured using indirect and diffused illumination so as to reduce 
the troublesome effects of shadows and highlights. Then, the user 
selects the number of representative colors n that are used by the 
object pattern and selects example pixels for each color from all 
over the object. Since most objects have few colors, this process 
typically takes only a few seconds and provides calibration pixels 
for improving a k-means clustering approach. Our classification 
scheme is capable of supporting larger numbers of discrete colors 
with additional pixel selection. However, as the number of colors 
increases, the reliability of color classification decreases. 
The calibration pixels are used in an optimization process for 
defining a color distance function that provides maximum 
separation between the ቀ݊2ቁ pairs of representative colors on the 
object. Calibration pixels corresponding to the same color are 
averaged to produce a set of n representative colors of the object. 
Generically, the distance function between two colors ܿ௜ and ௝ܿ, 
expressed in the ܻݕݔ color space, is 

,൫ܿ௜ܦ ௝ܿ൯ ൌ ܽଵ൫ܿ௜௫ െ ௝ܿ௫൯
ଶ ൅ ܽଶ൫ܿ௜௬ െ ௝ܿ௬൯

ଶ ൅ ܽଷ൫ܿ௜௒, ௝ܿ௒൯
ଶ      ሺ1ሻ  

where ܽଵ, ܽଶ, and ܽଷ are positive weights given to each channel 
and ܽଵ ൅ ܽଶ ൅ ܽଷ ൌ 1. These weights balance the effect of 
chroma and intensity differences between the representative 
colors. Using a nonlinear least squares optimization (e.g., 
Levenberg-Marquardt), we compute values for ܽଵ and ܽଶ by 
minimizing the inverse of the distance between all pairs of 
representative colors and define ܽଷ ൌ 1 െ ܽଵ െ ܽଶ. The distance 
function is then used to classify each pixel on the image to one of 
the n representative colors using k-means clustering. 

4.2 Energy Minimization 
Our energy minimization alters the contours of contiguous 
patches of pixels classified to the same color in order to  

• smooth changes in the contour shape of each patch,  
• smooth changes in the distance between the closest 

contour pixels of neighboring patches, and  
• perform compensation-compliant contour changes.  

Figures 4a-b motivate these restoration criteria using an example 
object area. Smooth contours generally yield pleasing results and 
can be assumed to be the case for hand-painted patterns. 
Encouraging smooth changes in the distance between pairs of 
closest contour pixels ensures smooth structural changes in the 
colored patterns. For example, if the opposing portions of two 
contours are irregular in shape but of roughly similar distances, 
then the criteria will steer the contour pixels towards the spatial 
relationship of two parallel lines. However, if the contours are 
irregular and the closest pixel distance varies significantly and 
gradually from one side of the contour to the other, then the 
criteria will produce the desired straight line contours but also 
maintain the general spatial relationship between the contours. 
Further, since our goal is to ultimately restore the appearance of 
the physical object, ensuring the restoration can be done well via 
radiometric compensation is crucial (Figures 4c-d).  
Altogether, the previous criteria are used in an optimization to 
iteratively reduce the maximum pixel energy term for all pixels in 
all contours to below a threshold ߙ ൐ 0. The energy term  

݁௜௝ ൌ ,௜௝݌௜௝൯ܴ൫݌൫ߢ ,௜௝݌൫ܤ௜௝൯̂݌    ௜௝൯         ሺ2ሻ̂݌
corresponds to the ݅’th pixel on the closed poly-line curve 
defining contour ݆. The functions ߢ൫݌௜௝൯, ܴ൫݌௜௝,  ௜௝൯, and̂݌
,௜௝݌൫ܤ  ௜௝̂݌ .௜௝൯ represent the three restoration criteria, respectivelŷ݌
is the proposed new position for ݌௜௝ defined by a Laplacian 
smoothing operator applied to the contour points, namely  

௜௝̂݌ ൌ
௜ିଵ௝݌ ൅ ௜ାଵ௝݌

2         ሺ3ሻ 

All contour points ݌௜௝ are placed in a priority queue, and for each 
iteration the point with the largest ݁௜௝ value is selected. Once the 
point ݌௜௝ has been moved, the algorithm recomputes the normal of 
the contour segment before and after ݌௜௝ as well as the now 
changed energy term ݁௜௝. Neighboring contour points must also 
have their normals and ݁௜௝ values recomputed since these values 
are a weighted combination of the point’s and its neighbors’ 
normals and ݁௜௝ values. Termination is reached once all ݁௜௝ ൑  ߙ
where ߙ controls the amount of smoothing. As ߙ decreases, more 
smoothing occurs. We typically use ߙ values ranging from 1 to 8, 
with 2 being a reasonable value for most cases. 
While the contour points are initially defined to be at exact pixel 
locations, they can move to fractional pixel locations during the 
minimization. Thus, before minimization the contours are 

Figure 4. Restoration Criteria for the Energy Minimization. a-b) Contour smoothing and contour repelling/attracting restores the 
overall spatial relationship of the contours on the whole. c-d) Regions circled in green demonstrate compensation-compliant contour 
changes while regions circled in red do not. In all, the dotted lines represent the original shape of the contours. 
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removed from the image and replaced with the background color. 
Then, after minimization the changed contours are rasterized back 
onto the image and over the background color. For efficiency, if 
the distance between the contours points before and after ݌௜௝ is 
less than a small threshold (e.g., we typically use a distance of 0.2 
pixels), then ݌௜௝ is removed altogether from the contour.  

4.2.1 Contour Smoothness 
Obtaining a smooth contour is done by reducing the maximum 
curvature ߢሺ݌௜௝ሻ. The curvature κ at a contour point ݌௜௝ is defined 
as the change in angle between the previous and next contour 
segments’ normals over the arc length of the two segments: 

௜௝൯݌൫ߢ ൌ

௩೔ೕ
ฮ௩೔ೕฮ 

· ௩೔శభೕ
ฮ௩೔శభೕฮ

ሺฮݒ௜௝ฮ ൅ ฮݒ௜ାଵ௝ฮሻ
       ሺ4ሻ 

where ݒ௜௝ ൌ ௜௝݌ െ  ௜ିଵ௝. Since the contour points are initially݌
created from discrete pixels, only a small number of initial 
curvature values exist. As a consequence, there is little distinction 
between pixels near and far from an area of high curvature. To 
obtain a more continually varying measure of curvature, we 
smooth the normals of the segments with those of their neighbors. 
The user controls the magnitude of contour smoothing by 
specifying the number of neighbors to use. The larger the number 
of neighbors the user selects, the greater the degree of smoothing. 

4.2.2 Contour Repelling/Attracting 
Our method restores the overall spatial relationship of the 
contours by attempting to move each contour pixel to a computed 
distance from its corresponding closest pixel on an opposing 
contour. This procedure effectively either attracts or repels 
contour pixels from each other until converging to a mutually 
agreed upon configuration (Figure 4a). 
For point ݌௜௝ on contour ݆, we find the closest point ݍ௨௩ on a 
neighboring contour ݒ that is directly visible by ݌௜௝. This pairing 
is not bijective because when ݍ௨௩ finds its nearest neighboring 
point, it may not necessarily be ݌௜௝. The distance ݀௜௝ ൌ
ฮ݌௜௝ െ  ௨௩ฮ is defined as the repelling distance for a contourݍ
point ݌௜௝. The repelling distances of adjacent contour points are 
combined via weighted averaging yielding a smoothly varying 
distance ݀௜௝כ  per contour point. It should be noted that a 
sufficiently close pairing point ݍ௨௩ does not necessarily exist for 
all points ݌௜௝. A direct line of sight between paired contour points 
is present if a ray cast from ݌௜௝ reaches ݍ௨௩ uninterrupted by a 
contour segment. Since these computations are applied on the 
original contours in a discretized pixel space, visibility can be 
confirmed if the raster line between the two points does not cross 
a contour pixel which is neither ݌௜௝ nor ݍ௨௩. 

The function ܴ൫݌௜௝,  ௜௝ to݌ ௜௝൯ measures whether a change from̂݌
 ௜௝ brings a contour into closer agreement with the desired̂݌
distance ݀௜௝כ  to an opposing contour. If we define መ݀௜௝ to be the 
distance between ̂݌௜௝ and ݍ௨௩, then our goal is to perform 
௜௝݌ ՜ ௜௝ if and only if ห̂݌ መ݀௜௝ െ ݀௜௝כ ห ൑ ห݀௜௝ െ ݀௜௝כ ห. A function that 
captures all these objectives is 

ܴ൫݌௜௝, ௜௝൯̂݌ ൌ

ە
ۖ
۔

ۖ
ۓ 1
ሺ1ߚ ൅ ห݀௜௝ െ ݀௜௝כ หሻ

݂݅ ห݀௜௝ െ ݀௜௝כ ห ൏ ห መ݀௜௝ െ ݀௜௝כ ห

1 ݂݅ ݂݀݁݊݅݁݀݊ݑ ݏ݅ ௨௩ݍ
ሺ1ߚ ൅ ห݀௜௝ െ ݀௜௝כ หሻ ݂݅ ห݀௜௝ െ ݀௜௝כ ห ൒ ห መ݀௜௝ െ ݀௜௝כ ห

      ሺ5ሻ 

where ߚ ൒ 1 is an emphasis factor.  

The variable β weighs the relative importance of a contour 
movement towards reaching a distance ݀௜௝כ  as compared to the rest 
of the terms in ݁௜௝. If the user wishes to emphasize convergence 
towards ݀௜௝כ , β should be assigned a high value, resulting in larger 
݁௜௝ values when a smoothing operation moves closer towards ݀௜௝כ . 
If not, low values for β will accentuate smoother contours while 
not necessarily pushing the contours to a distance value of ݀௜௝כ . In 
general, β controls the amount of contour movement allowed, and 
for our objects a typical β value ranges from 1.5 to 8. 

4.2.3 Compensation-Compliant Contour Changes 
Our algorithm creates a compensation-compliant restoration 
image by encouraging a solution where pixels usually lower their 
intensity (i.e., luminance) when they are being modified (Figure 
4b). In general, the compensation images will attempt to change 
the color of points on the object surface to that of the restoration 
image. The compensation process is calibrated and optimized to 
work on the whole. Nevertheless, it remains difficult to change 
the color of an object point whose spectrum and intensity of 
reflected light does not coincide sufficiently with the spectrum 
and intensity of the corresponding color in the restoration image. 
In the extreme case of an object point that only reflects light 
within a very narrow band, little color changing is possible. 
Fortunately, very few materials that reflect nearly a single-
frequency are used by our typical target objects. Thus, the color of 
a point on the object can be changed to another one by changing 
the relative strength of the RGB components of each pixel of 
projector light. However, the most limiting factor is the amount of 
light that can be reflected back by a given point on the object. 
To ensure contour changes are compensation-compliant, we allow 
a pixel to change its relative RGB values but only allow it to 
maintain or reduce its intensity. For this objective, we define  

,௜௝݌൫ܤ ௜௝൯̂݌ ൌ ቊ
0 ݂݅ ௜௝൯݌൫ܫ ൐ ௜௝൯̂݌൫ܫ ൅ ߛ
1 ݂݅ ௜௝൯݌൫ܫ ൑ ௜௝൯̂݌൫ܫ ൅ ߛ

       ሺ6ሻ 

where I(p) is the intensity value of point ݌௜௝ and ߛ represents a 
small tolerance range allowing pixels to become slightly more 
intense. This guidance does affect the appearance of the restored 
image (as seen in Figure 4b). Nevertheless it is done 
simultaneously with the other metrics and thus a restoration can 
still be found that best maintains all criteria.  

4.3 Acceleration 
Since the energy minimization moves contours pixel by pixel, it is 
highly parallelizable as long as neighboring pixels are not 
processed simultaneously. Thus, to improve interactive processing 
time, we partition the current region of the image being restored 
into a set of ݃ x ݄ grid cells. The size of the cells should be small 
enough to process quickly yet large enough to capture feature 
details and their surrounding neighbors. Given a set of grid cells, 
we define a processing order to apply the energy minimization to 
multiple grid cells in parallel. 
Our processing scheme is able to maintain both C0 and C1 
continuity between patches and contours which span multiple grid 
cells. To ensure C0 continuity between two grid cells, we anchor 
contour points which are touching a grid cell’s perimeter. During 
the energy minimization process, we set the ݁௜௝ value of anchor 
points to be 0 so that they are always underneath α and therefore 
never moved. To ensure C1 continuity, we expand the right and 
bottom sides of each grid cell by a percentage of the cell’s width 
and height (e.g., we typically use 25%). This expansion allows us 
to modify parts of the neighboring grid cells to ensure a smooth 
transition from one cell to another. However, this expansion also 



  

results in grid cells which overlap and can lead to race conditions 
when the same pixels are modified and indexed by two or more 
cells being processed simultaneously. To prevent race conditions, 
we process the cells in four non-overlapping groups, only 
processing the next group after the previous group is finished.  
Each 2x2 set of grid cells are labeled following a standard left-to-
right and top-to-bottom rasterization order. This yields the four 
groups ܥ ,ܤ ,ܣ, and ܦ, each with ݄݃/4 cells, to be processed 
sequentially. The cells within each group are processed in parallel 
since they do not overlap. Altogether, an entire high-resolution 
image divided into grid cells can be processed within a few 
minutes or less depending on the amount of restoration needed. 

4.4 User Hints 
During image restoration, the user interactively provides hints to 
the system to guide large structural changes in the observed 
patterns due mostly to large missing chips of paint or severe color 
fading. Features which were originally part of the object may be 
too worn down to detect. In these cases, the user simply has to 
provide a rough sketch of the missing features on the image using 
a paint-brush tool. These rough sketches do not have to be exact 
but only provide the proper connectivity of patches (e.g., if two 
patches are separated by a large area of missing paint, the user 
only needs to draw a colored line to connect the two patches). The 
later stages of restoration will inflate and/or deflate the shapes 
accordingly to satisfy the aforementioned restoration criteria. 

5 Visual Compensation 
Our light-efficient visual compensation uses a surface radiance 
model and light from multiple overlapping projectors in order to 
best alter the appearance of an object. We define a best alteration 
as achieving a desired tradeoff between supporting the maximum 
amount of light intensity and color variation possible while still 
producing a smooth visual compensation. Further, in order to limit 
damage due to prolonged exposure to light, the tradeoff is subject 
to a constraint of a bounded amount of light intensity to be 
incident per unit surface area of the object. To perform this visual 
compensation, we use a formulation for light-efficient 
compensation, employ the light-transport from projectors to 
camera (and vice versa), and perform a radiometric calibration. 

5.1 Light-Efficient Compensation 
The efficiency with which any one projector can change the color 
and intensity of an object varies with three parameters: the 
object’s surface orientation relative to the projector, the object-
projector distance, and projector pixel resolution. In our 
formulation, we use the camera to obtain a sampling of unit 
surface area object points (i.e. they all have unit area). We use this 
sampling to ensure a bounded amount of light incident on the 
object per unit surface area. Since camera resolution is typically 
higher than projector resolution and both devices are at about the 
same distance from the object, this assumption is reasonable. 
Thus, for a projector k and a unit object point i, we define a set of 
smoothly changing compensation weights ݓ௜௞. Using these 
weights, we alter the appearance of the target object to that of the 
restoration image while not exceeding a desired maximum 
amount of light ܧ௕௢௨௡ௗ per unit surface area of the object. Further, 
we assume ܧ௕௢௨௡ௗ is less than or equal to the maximum light 
intensity per unit surface area output of one projector. 
This overall objective can be expressed as trying to find the 
weights ݓ௜௞ ൒ 0 that solve for every unit object point ݅, 

௕௢௨௡ௗܧ ൒ ௜ܧ ൌ෍ ௜௞ݓ
ே೛

௞ୀଵ
݁௜௞ܮ௜௞      ሺ7ሻ 

where ݁௜௞ is the actual energy of the light ray from one pixel of 
projector ݇ incident on object point ݅, ܮ௜௞ is a measure of the 
portion of ݁௜௞ that is incident on the unit object point ݅, and ௣ܰ is 
the number of projectors.  

5.1.1 Surface Radiance Model 
We define a surface radiance model to measure the amount of 
light incident on a unit surface area object point from all 
projectors. Consider several ௪ܲ ൈ ௛ܲ resolution digital projectors 
where each is emitting up to ௅ܲ lumens. Although a lumen is a 
measure of perceived light energy, it is often used for projectors. 
The maximum light energy emitted per projector pixel is 
approximately ݁௣ ൌ ௅ܲ/ሺ ௪ܲ ௛ܲሻ. We calculate an expression for 
estimating the portion of ݁௣ incident on the object per unit surface 
area. We conservatively assume no loss of light energy occurs in 
the transmission from projector to object. 
To compute the light energy per unit surface area, we assume a 
diffuse surface illumination model (Figure 5). The area of one 
projector pixel on the object’s surface is approximately 

௜௞ܣ ൎ ቀ ఘௗ೔ೖ
ୡ୭ୱఏ೔ೖ

ቁ
ଶ
        ሺ8ሻ 

where ߩ is the per-pixel solid angle of the projector, ݀௜௞ is the 
distance between unit object point ݅ and projector ݇, and ߠ௜௞ is the 
angle between the surface normal ݅ and the light direction vector 
from object point ݅ to projector ݇’s center-of-projection. This 
approximation is valid under the assumption that ߩ is relatively 
small as compared to the distance ݀௜௞. The maximum surface 
radiance from all ௣ܰ  projectors onto a single object point ݅ is 

௜೘ೌೣܧ ൌ ෍ ௘೛௅೔ೖ
ಿ೛

ೖసభ
     where     ܮ௜௞ ൌ

1
௜௞ܣ

.      ሺ9ሻ 

Furthermore, given ݁௣ and an object, the maximum light energy 
per unit surface area on the object is max௜ሺܧ௜೘ೌೣሻ. Therefore, a 
reasonable range of values for ܧ௕௢௨௡ௗ is ሾ0,max௜ሺܧ௜೘ೌೣሻሿ. 

5.1.2 Combining Projector Lights 
There are several ways to compute ݓ௜௞ for each object point ݅ and 
projector ݇, and each method achieves a different tradeoff 
between light intensity and visual smoothness. One naïve option 
is to set all ݓ௜௞ ൌ 1/ ௣ܰ and to globally scale all projector pixels 
so that the total light energy from all projectors incident on any 
object point ݅ never exceeds ܧ௕௢௨௡ௗ. While the threshold will not 
be exceeded, the overall light intensity of the visual compensation 
is diminished. The reduction occurs because energy is wasted on 
illuminating surface fragments at a grazing angle to a projector 
which are not lit as effectively as head-on illuminated object 
points. Further, areas not illuminated by all projectors appear 
abruptly darker than those covered by more projectors.  

Figure 5. Surface Radiance Model. The amount of light 
incident on a unit surface area object point from all projectors 
is modeled based on a diffuse surface illumination model. 

projector 1 
projector 0 projector 2 

ߩ ൎ
௜௞݀ߩ
cos ௜௞ߠ

݀௜௞
 ௜௞ߠ



  

The most light-efficient weighting scheme is to choose for each 
object point ݅ the single projector which maximally illuminates it. 
This corresponds to setting 

௜௞ݓ ൌ ቊ
1, ௜௞ܮ ൌ max

௝
௜௝ܮ

0, ݁ݏ݅ݓݎ݄݁ݐ݋
       ሺ10ሻ 

in equation (7) and using equation (9) to compute values for ܮ௜௞. 
However, this has the side effect of causing shape discontinuities 
between the areas illuminated by different projectors because the 
projector selected to illuminate a smooth fragment of the object 
can abruptly change. To smooth across the boundary, we could 
linearly scale among all projectors so that the total amount of light 
energy emitted on any object point is bounded by ܧ௕௢௨௡ௗ. This is 
equivalent to calculating the weights as 

௜௞ݓ ൌ
௜௞ܮ

∑ ௜௝ܮ
ே೛
௝ୀଵ

.      ሺ11ሻ 

But this option may use a significant amount of light energy to 
illuminate surface fragments at a grazing angle to projector light. 
Because of the area-based scaling, the compensation image will 
be brighter than with uniform intensity per projector but not as 
bright as with the maximal efficiency configuration. Nevertheless, 
this linear scheme does provide a smooth transition between the 
intensities projected onto object points from different projectors. 
Our solution achieves a parameterized tradeoff between the 
smoothness and energy efficiency by generalizing the weights as 

௜௞ݓ ൌ
ሺܮ௜௞ሻ௠

∑ ൫ܮ௜௝൯
௠ே೛

௝ୀଵ

         ሺ12ሻ 

where m can be any nonnegative number. On one hand, a larger m 
results in higher energy efficiency. On the other hand, a smaller ݉ 
increases the visual smoothness of the compensation. The 
aforementioned schemes (e.g., uniform (m = 0), linear (m = 1), 
and maximum (m = ∞) distributions) are three particular cases of 
the generalized equation (12). 

5.1.3 Calculating the Compensation Image 
Given a desired set of weights to combine the light from multiple 
projectors, we must compute the ݁௜௞’s to generate a visual 
compensation to make the object appear as in the synthetic 
restoration image. Let ܩ correspond to a single-channel image of 
the RGB restoration image. The pixels of ܩ map one-to-one with 
the set of sampled object points; thus pixel ܩ௜ corresponds to the 
intensity value for object point ݅. The projector pixel intensity 
value to yield an apparent value of ܩ௜ on the object’s surface is  

݁௜௞ ൌ ݏ ڄ  ௜ሻ        ሺ13ሻܩ௞ሺܨ
where ܨ௞ሺכሻ is the radiometrically calibrated function which 
converts a color intensity value in ܩ to an output intensity for 
projector ݇’s pixel incident on object point ݅ and ݏ is a global 
scaling factor to ensure ܧ௕௢௨௡ௗ is not exceeded per unit area on 
the object. Since several object points may fall incident on one 
projector pixel, we average all ݁௜௞’s that map to the same 
projector pixel. In general, the functions ܨ௞ are nonlinear and are 
modeled via a radiometric calibration step (Section 5.2). To 
compute the global scaling factor, we first evaluate equation (13) 
with ݏ ൌ 1 to obtain the values ܧ௜ and then re-compute ݁௜௞ using 

ݏ ൌ
௕௢௨௡ௗܧ
max
௜
ሺܧ௜ሻ

.        ሺ14ሻ 

The final expression enabling us to perform a light-efficient and 
smooth compensation using a restoration image ܩ and a light 
energy bound of ܧ௕௢௨௡ௗ is 

௕௢௨௡ௗܧ ൒ ௜ܧ ൌ ෍ݏ
ሺܮ௜௞ሻ௠

∑ ൫ܮ௜௝൯
௠ே೛

௝ୀଵ

ே೛

௞ୀଵ
 ௜௞.        ሺ15ሻܮ௜ሻܩ௞ሺܨ

where ݉ controls the amount of smoothness. In our experiments 
we typically use values for ݉ in the range of 5 to 10. 

5.2 Light-Transport from Projectors to Camera 
To model the light interaction between the projectors and the 
camera, we compute a light-transport matrix and perform a 
radiometric calibration. While we obtain correspondence 
information between the projectors and cameras during the 3D 
acquisition phase, we do not obtain a precise estimate of the sizes 
and shapes of the regions of influence each projector pixel has on 
the object. Although the light-transport matrix can capture 
arbitrary surface reflectance properties, we assume the surface to 
be Lambertian and to exhibit only local diffuse inter-reflections. 
This enables us to significantly accelerate the process of acquiring 
the light-transport matrix. Similar to Sen et al. [2005], we acquire 
the transport for different parts of the object in parallel by shifting 
a grid of projector “dots” over the surface of the object. The dots 
are shifted to one of 16ൈ16 or 32ൈ32 positions, for example. 
Thus, in 162 or 322 images we can sample the per-pixel light-
transport matrix for each projector. In our system, we add an 
additional refinement step whereby the initial correspondence 
between projector and camera pixels (i.e., from the 3D acquisition 
phase) is further refined during light-transport acquisition. The 
projection of each projector dot onto the object is typically a 
bright elliptical blob of pixels well separated from the neighboring 
blobs. Hence, for each projector dot we perform an image-search 
near the initially estimated corresponded camera pixel in order to 
snap to the center of the observed elliptical blob. 
While the light transport implicitly captures the surface 
reflectance properties, we explicitly perform a radiometric 
calibration directly on the object itself in order to model the 
nonlinear behavior of the projectors (i.e., functions ܨ௞ in Section 
5.1.3). We use a version of the method of Nayar et al. [2003] to 
calibrate each projector. Since our goal is to compensate for 
imagery relatively similar to the existing object, we assume a 
diagonal color mixing matrix and capture 255 gray-level images 
of the object as illuminated individually by each projector. 

5.3 Virtual Illumination 
We optionally augment the compensation with virtual lights 
shining on the object and/or with some of the (material) noise of 
the original photograph added back. To obtain a virtually 
illuminated compensation image, we apply the restored image as a 
texture-map on top of the 3D reconstruction of the object and 
synthetically render the object from the calibrated point of view of 
the camera. The rendering process can use any combination of 
OpenGL lights, and thus by reading back the frame buffer, we 
obtain a virtually re-illuminated version of the restored image. In 
addition, a small amount of the noise from the original image can 
be infused back into the restored image so as to simulate some of 
the irregularities and material properties of the original object. 

6 Results 
We show the results of using our system to restore several 
deteriorated objects from various locations. Additional 
visualizations and live video recordings of the objects are 
included in the video accompanying this paper. We use three 
1400x1050 Optoma EP910 projectors to restore the objects and 
one Canon Digital Rebel XTi 10MP camera to capture all 
photographs. The objects we used consist of genuine historical 
artifacts and replicas borrowed from the Indianapolis Museum of 



  

Art (IMA) and from the Eiteljorg Museum (both in Indianapolis, 
IN, USA). In particular, the objects in Figures 6 and 11 are 
genuine pottery from the Casas Grandes Cultural Region (1200-
1425 A.D.) in northern Mexico, the object is Figure 1 is an 
accurate replica of a Chinese vase from the Neolithic period 
(2000-2500 B.C.), and the object in Figure 10 is a replica of a 
figurine from the Moche Culture in northern Peru.  
For all objects, the preprocessing work was to securely place the 
object on the platform, take a picture under diffused illumination, 
perform a self-calibrating 3D acquisition, compute the light-
transport matrix, and carry out a radiometric calibration. 
Preprocessing is automated and takes about 1-2 hours to complete 
per object, with half of the time spent acquiring images.  
Using our tool, the user can restore the object to a plausible 
original appearance and generate views for different virtual 
illumination setups. For the restoration, the user selects a value for 
the target level of smoothness ߙ (as well as the number of 
adjacent pixels used to smooth the contour) and a value for ߚ 
which limits the maximum amount of contour movement. For the 
computation of the compensation image, the user selects the target 
luminance energy ܧ௕௢௨௡ௗ and the smoothness exponent ݉. The 
restoration results in this paper were created in 5-30 minutes. 
Figure 6 shows example pictures produced during a restoration 

session. Figure 6a contains a photograph of the diffusely-
illuminated original object used for our color classification. Figure 
6b shows an image of the synthetic restoration produced by our 
method. We have infused a small amount of noise and mild 
virtual illumination (as per Section 5.3). Figure 6c is a photograph 
of the restored object under projector illumination. All 
restorations are visible on the object by the naked eye and the 
observer is able to walk up to and around the object. 
Our approach to color classification is tuned to images with few 
colors and outperforms more general methods. For instance, 
classification was performed using a publicly available 
implementation of the mean shift algorithm [Comaniciu and Meer 
2002] (Figure 6d) and using a standard k-means clustering 
algorithm (Figure 6e). Neither of these approaches performed as 
well as our method (Figure 6f). 
During interactive restoration, the user employs our program to 
generate a restored view of the object. For instance, Figure 7a 
shows a close-up of the initial classified pattern of the pictured 
object. Setting ߙ to a small value causes an aggressive smoothing 
to occur during restoration (Figure 7b). Setting a large ߚ value 
prevents contours from changing their current spatial relationship 
(Figure 7c). A good reconstruction is obtained by choosing a 
balance of these two parameters (Figure 7d). If the criterion to 
enforce a compensation-complaint restoration is removed, then an 
initial surface fragment such as the one in Figure 7e might be 
attempted to be restored as in Figure 7f which is difficult to 
perform. On the other hand, using our criteria can steer the 
restoration to a different solution that is easier to accomplish with 
visual compensation (Figure 7g). 
Our visual compensation process achieves a trade-off between 
maximum brightness and visual smoothness subject to an energy 

Figure 6. Restoration Pipeline. a) Photograph of original object. b) 
Image of synthetic restoration. c) Photograph of restored object. d) Mean-
shift color segmentation. e) Naïve k-means clustering. f) Our optimized 
color classification scheme. 

a) b) c) 

d) e) f) 

Figure 7. Energy Minimization Parameters. a) Original 
color classification. b) Highly smoothed: ߙ and ߚ small. c) 
Rigid contours: ߚ large. d) Final balance of ߙ and ߚ. e) 
Photograph of original object. f) Non-compensation complaint 
contour change was to attempt to erase dark lines in yellow 
boxes. g) Compensation-complaint restoration. 

a) b) 

c) d) 

e)

f) 

g)

Figure 8. Visual Compensation Brightness/Contrast. a) 
Maximally-bright projector combination but with artifacts. b) 
Linear combination of projectors (smooth but dim). c) Our 
nonlinear combination and solution (see equation 15). 

a) b) c) 



  

constraint. Figure 8a shows the maximally efficient compensation 
where each projector pixel chooses which object areas it best 
illuminates. The sudden changes between projectors may cause 
visible discontinuities on the object’s surface. Using a linear 
combination achieves a smooth compensation image but at the 
cost of a reduction in the overall maximum brightness (Figure 8b). 
In contrast, by using a careful balance of lights, we achieve both 
high brightness and a smooth visual compensation.  
Figure 9 numerically shows the weighting factors for the three 
projectors across a horizontal line of pixels from the middle 
portion of the restoration images shown. The weighting is such 
that the total area underneath the three curves sums to the same 
value for each of the three weighting schemes shown (Figure 9a: 
the projector pixels most head-on to an object point are enabled, 
Figure 9b: a linear combination of projectors, and Figure 9c: a 
non-linear weighted combination as per equation 15). The total 
area underneath each curve is limited by ܧ௕௢௨௡ௗ – essentially our 
method oscillates the curves so as to best fit to the bound.  
Figures 10 and 11 show more examples. Figure 10 demonstrates 
two virtual illumination scenes. Figure 10a is a photograph of the 
original object. Figures 10b and 10c are photographs of the 
restored object under virtual lights. Figure 11 shows our system 
restoring an old pottery item. Figure 11a contains a photograph of 
the original object and Figure 11b is a photograph of the restored 
object under a very diffuse virtual light. The inset shows another 
photograph of the re-illuminated object using a different virtual 
light. The close-ups in Figures 11c and 11d show the visible 
condition of the object’s surface before and after restoration. Our 
method is able to compensate for the deterioration and produce a 
restored appearance under bounded amount of light. 
Limitations. Our techniques do have some limitations. During 
image restoration, the gamut of color patterns for our color 
classification scheme must be relatively small and finite. We do 

not handle gradients of colors, as these patterns contain such a 
large number of colors that pixel selection becomes infeasible. 
Furthermore, the ability to control the different parameters 
effectively is limited when dealing with complex items (such as 
human or animal figures) which in turn makes restoration 
difficult. Mild specularity is supported by our acquisition and 
compensation method but in general is difficult to handle. Our 
acceleration scheme for capturing the projector-camera light 
assumes at most local inter-reflection. Finally, we do not support 
objects with subsurface scattering since it is difficult to visually 
alter these types of surfaces with projector light. 

7 Conclusions and Future Work 
Our complete virtual restoration system enables us to alter the 
appearance of objects to that of a synthetic restoration, to create 
virtual re-illuminations of them, and to achieve a balance of high 
brightness and contrast with smooth visual compensation. The 
compensation is guaranteed to not exceed a specified maximum 

Figure 9. Projector Contributions. Graphs show the ݇݅ݓ’s for a row of pixels across the middle of an image fragment. The sum under 
the area of for all projectors in each graph is the same: a) maximally-bright combination, b) linear combination, and c) our approach. 
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Figure 10. Virtual Illumination. a) Photograph of original 
object. b) Photograph of restored object with virtual shiny 
appearance. c) Similar to (b) but a more diffuse appearance. 
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Figure 11. Additional Example. a) Photograph of original 
object. b) Photograph of virtually restored object (inset is 
another photograph of object under a different virtual 
illumination setup). c) Close-up of original deteriorations on 
object. d) Close-up of same area on virtually restored object. 

a) b) 

c) d) 



  

amount of light per unit surface area. This requirement is critical 
for our approach to be deployed within museums and other 
locations which have a genuine interest in displaying original and 
restored versions of their artifacts. In such a setting, the amount of 
light exposed to the objects is of great concern. Our approach also 
provides a physical inspection stage where viewers are not 
restricted to viewing a virtual restoration on a computer screen, 
but rather can see and experience the restored object “in person”.  
Future Work. First, we would like to extend our method to 
support multiple camera setups and smaller projectors. This would 
enable us to capture a more complete geometric model, to perform 
a visual compensation over a wider field of view, and to have a 
more compact hardware system. For instance, because of our 
current limited field-of-view, the handle of the figurine in Figure 
11 could not be well captured and thus we removed it from the 
visual compensation image. Smaller and cheaper projectors can be 
used and the additional artifacts (e.g., stronger vignetting) can be 
handled by the radiometric calibration. Second, we are interested 
in developing a gamut of interactive restoration operations to be 
performed on the observed objects using a camera-based feedback 
loop. Finally, we are pursuing portable virtual restoration stations. 
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