
Abstract 
Reconstructing large models from images is a 

significant challenge for computer vision, computer 
graphics, and related fields. In this paper, we present an 
approach for simplifying the reconstruction process by 
mathematically eliminating external camera parameters. 
This results in less parameters to estimate and in an 
overall significantly more robust and accurate 
reconstruction. We reformulate the problem in such a 
manner as to be able to identify invariants, eliminate 
superfluous parameters, and measure the performance 
of our formulation under various conditions. We 
compare a two-step camera orientation-free method, 
where the majority of the points are reconstructed using 
a linear equation set, and a camera position-and-
orientation free method, using a degree-two equation 
set. Both approaches use a full perspective camera and 
are applied to synthetic and real-world datasets. 

1. Introduction 
The modeling and reconstruction of large 3D models 
from images is an ambitious goal of computer vision and 
computer graphics. The ultimate goal is to directly 
interact with digital models created from images of 
compelling 3D objects and spaces. Reaching this goal 
enables telepresence, virtual reality, historical 
conservation, and simulation and training. 
A difficult component in image-based 3D reconstruction 
efforts is establishing correspondences, estimating 
camera parameters, and converging to a consistent 3D 
model of the object or scene. There is a challenging 
interplay between the density and accuracy of 
correspondence data, the availability of estimated 
camera parameters, and the complexity of the 3D 
surfaces in the scene. In a general effort to simplify and 
improve the reconstruction process of large models, 
numerous previous methods place emphasis on different 
portions of the process and thus enable trading 
dependency on one aspect for freedom in another aspect.  
The key inspiration behind our research is that 
completely eliminating camera orientation parameters, 
camera position parameters, or both significantly 
simplifies and improves the overall 3D reconstruction 
process. While some methods can accurately estimate 

camera pose in some situations (e.g., employing a 
custom hardware solution or, in limited cases, using a 
passive method), the uncertainty typically introduced 
affects the entire reconstruction process. Furthermore, as 
the size of object or environment grows, the effect of 
this confusion becomes worse. For example, a small 
error in camera orientation within a large space can lead 
to a big error in the 3D reconstruction. Our results show 
that completely eliminating the dependency on camera 
orientation, camera position, or both produces noticeably 
more robust and accurate results for large environments 
as well as an overall simpler 3D reconstruction process. 
Our general approach is to find invariants in the 3D 
scene reconstruction formulation using full-perspective 
cameras and to obtain simpler formulations, without 
some or all of the external camera parameters, altogether 
resulting in new polynomial formulations of similar 
degree as the original. For large and exterior scenes, 
high absolute accuracy is not needed and thus a global-
positioning system (GPS) or another positioning system 
(e.g., laser-positioning system, LPS) may provide a 
sufficiently accurate position if the sensor remains still 
for a enough time and has line-of-sight with the emitter; 
however, orientation information is more challenging to 
obtain. For such situations, we propose an approach free 
of camera orientation parameters and demonstrate its 
superior numerical performance with no increase in 
computational expense as compared to the standard 
orientation-included formulation. For medium to large 
size environments, which include relatively-large indoor 
environments that can span multiple thousands of square 
feet, pose is needed to very high accuracy in absolute 
terms. Devices such as GPS or LPS do not work because 
of the light-of-sight limitations. In such a scenario, at a 
cost of additional computational expense, we extend our 
formulation to be completely free of both camera 
position and camera orientation parameters. As opposed 
to self-calibration methods, our general approach 
completely removes the effects of camera parameter 
uncertainty resulting in overall greater accuracy and 
higher robustness to noise in other aspects of the 
reconstruction process. We demonstrate the results of 
using our approach in the reconstruction of several large 
synthetic and real environments, spanning up to 
thousands of images or millions of points, and present 
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comparisons yielding an approximately 3x to 10x 
improvement over standard formulations. 
Our main contributions include 
• a holistic framework and methodology for 

progressively eliminating all external camera 
parameters, 

• an orientation-free 3D reconstruction process 
where the bulk of the scene points are quickly 
calculated using a linear system of equations, and 

• a novel bundle adjustment style optimization for a 
3D reconstruction without any external camera 
parameters. 

2. Previous Work 
The camera-based modeling of large 3D scenes has 

been tackled in numerous different ways. The most 
traditional approach requires solving for both the pose of 
the camera and the structure of the scene [5][9]. Many 
such structure-from-motion techniques have been 
presented for orthographic [17], para-perspective [12], 
and full-perspective camera models [13]. Usually an 
initial estimation scheme is followed by a nonlinear 
refinement, e.g., bundle adjustment [16] or RANSAC-
based methods [11]. Typical numerical instabilities are 
combated with over-constraining and the hope initial 
pose and structure estimates are sufficiently accurate to 
converge to a solution of a large nonlinear optimization. 

Directly tackling camera pose estimation is done in 
several ways. For small spaces, several types of 
hardware-based trackers (e.g., magnetic, acoustic, or 
optical) are feasible, though typically of varying degrees 
of accuracy and not portable. For large areas, global-
positioning systems (GPS) and laser-positioning systems 
(e.g., Trimble ATS) provide information about the 3D 
position of a sensor. To obtain orientation information, a 
digital compass provides coarse measurements or the 
positional differences between two or more GPS/LPS 
receivers located on a rigid baseline also provides 
orientation estimates. Higher accuracy can be obtained 
by assuming more emitters are visible and/or installing 
local repeater stations. Inertial systems (e.g., gyros and 
accelerometers) can provide accurate incremental 
changes but suffer from drift and thus need to be 
periodically re-synchronized with known landmarks.  

Self-calibration and vision-based pose-estimation 
approaches rely on the tracking of natural features and 
their success is scene dependent. Often, methods assume 
constraints on the scene or geometry to improve 
computations [4][6][8]. Other methods are tuned to track 
features in specialized environments (e.g., [3]). The 
introduction of artificial landmarks improves the 
reliability on tracking but its extension to large-spaces 

can be prohibitive. While convergence to an 
approximate pose is sometimes feasible, it is not always 
possible [2][15] and, in general, is a hard problem. 

Some previous efforts have pursued partially 
eliminating camera parameters from the reconstruction 
process. For example, Tomasi [18][19] determined 
shape and motion from an image sequence without 
needing camera orientation. The method uses the angles 
between pairs of projection rays to describe image 
changes. The proposed method works in 2D and is only 
theorized to extend to 3D; further, it is very dependent 
on accurate intrinsic camera calibration. Zhang et al. 
[20] have also eliminated camera orientation from the 
traditional bundle adjustment formulation. Our approach 
is similar to theirs in the sense of omitting camera 
orientation parameters by using an invariant-based 
formulation. But in our work, we extend the approach to 
provide a linear formulation for reconstructing large-
scale models without camera orientation information and 
provide a degree-two polynomial formulation free of 
both camera orientation and camera position parameters. 
Moreover, we show additional empirical results of how 
our method compares to the standard reconstruction 
formulation. 

3. Reformulating 3D Reconstruction 
We seek low-degree polynomial functions that express 
the 3D reconstruction of points from their projections 
and that can be evaluated without needing to know 
camera orientation or without needing to know camera 
orientation and camera position. We first rewrite the 
standard equations into a form that is essentially 
parameterized by camera orientation and camera 
position. Next, we transfer the equations to projective 
space and exploit that, in projective space, the projection 
of the scene points onto the image plane is itself a 
possible solution to the 3D reconstruction. This fact 
enables some simple algebraic manipulations that result 
first in a formulation free of camera orientation 
parameters and then, with some additional 
computational expense, in a formulation free of camera 
position parameters as well. 
For i=1…N scene points and j=1…M camera images, we 
write the equations for calculating camera centers Cj and 
scene points Pi essentially parameterized by a 3D camera 
translation vector Tj, a 3D camera orientation matrix Rj, 
and generalized scene point disparity λij 
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and (xij, yij) represents the 2D coordinates of the 3D 
scene point Pi observed on the plane of image j. Our 
definition of generalized disparity, λij, of a 3D scene 
point is defined slightly differently than the conventional 
one (e.g., as in [10]): it is the ratio of the distance from 
the camera center to the scene point divided by the 
distance from the canonical camera center to the 
projected scene point. Without loss of generality, we 
assume in this paper a focal length of one, canonical 
camera center at (0,0,-1) and looking towards +z, no 
radial distortion, no skew, and square pixels. 
To rewrite the aforementioned equations using 
projective coordinates, we introduce additional variables 
to parameterize projective space. In particular, the 
canonical space coordinates of (1) and (2) (i.e., right-
hand-side) are multiplied by the projective space 
parameter w0j and wij, respectively. In a similar fashion, 
the world space coordinates of (1) and (2) (i.e., left-
hand-side) are multiplied by W0j and Wij. Accordingly, 
the projective space equivalent of equations (1) and (2) 
are 
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Next, we exploit the fact that the projection of the 3D 
scene points onto a camera’s image plane is itself a 
possible solution to the 3D reconstruction (in projective 
space). Thus, we seek a formulation that encapsulates 
equations (4) and (5) but with less camera parameters 
and that can be evaluated using either world-space 
coordinates or canonical space coordinates. As described 
in Zhang et al. [20], this can be found by using Fels-
Olver moving frame method [1] to find a functionally 
independent generating set of invariants. Functionally 
independent means they are not redundant and being a 
generating set implies that any other reconstruction 
equation set which is independent of camera orientation 
can be derived from these equations.  
We parameterize the invariants by a new set of 
variables, ω0j, ωij, and Qij, that correspond to the 
projective coordinate of the camera center, the projective 

coordinates of the scene points and vector differences 
between camera centers and scene points. Thus, the 
generating set of invariant functions I, J, and L for each 
image j is 
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(6) 
where the parameters (*) are either in canonical space 
(e.g., ω0j = w0j, ωij = wij and Qij =  (xij, yij, 0)T – (0, 0, -
1)T) or in world space (e.g., ω0j = W0j, ωij = Wij and Qij = 
Pi - Cj).  
To obtain a final set of equations, we equate the 
invariants (I, J, and L) using the world-space points on 
the left-hand side to the same corresponding invariants 
using the scene point image projections on the right 
hand side. Since scene point projections are known, the 
right-hand side becomes a set of constants. The w’s and 
W’s can be arbitrarily chosen and thus there are multiple 
ways to construct an explicit system of equations to 
solve for the world-space points. In the next two 
sections, we describe how an explicit set of equations 
are constructed without camera orientation and, at the 
expense of additional computational expense, without 
camera orientation or camera position.  

4. Orientation Free Reconstruction 
Using our new form of expressing 3D reconstruction, we 
can efficiently solve for a large-set of scene points using 
a two step process and without involving any camera 
orientation parameters or even their estimation. In the 
first step, we solve for a sparse set of anchor points 
using a nonlinear equation set. The anchor points should 
be such that at least two anchor points are present in 
each image but not necessarily are the same anchor 
points in all images. In the second step, the anchor 
points are used to simplify the equations to a sparse 
linear system that is efficiently solved in order to 
calculate the positions of the remaining large number of 
scene points. 

4.1. Anchor Points 
The invariant functions (6) are used to write a compact 
set of equations for estimating scene points and anchor 
points without camera orientation parameters. Since the 
projective coordinates in (6) can be arbitrarily set, we 
choose Wij=1 and W0j=2; setting W0j=2 forces w0j=2 as 
well. This produces a simpler set of expressions. Then, 



   
 
 

 

we write the simplified expressions for (6) on the left 
using scene points in world coordinates and equate them 
to the same equations on the right but evaluated using 
the known scene point projections. This new equation 
set can be re-arranged into the following form 
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and P1 and P2 are the anchor points present in all 
images. Clearly the same anchor points do not need to be 
in all images but each pair of anchor points must span a 
sequence of images. For example, we automatically 
divide an captured image sequence into groups of 
images and find at least two anchor points per group. 
To explicitly solve for the anchor points, we jointly 
solve equations (7) using Pi=P1 and Pi=P2. The only 
resulting non-zero equations are 
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which contains a total of 8 unknowns, namely the 3D 
positions P1 and P2 and the scalars λ1j and λ2j. If we 
include the variables from another image k, we get 3 
more equations and 2 more unknowns (λ1k and λ2k). 
Thus as long as 3M ≥ 2M+6 images are used, we can 
solve for P1 and P2 (e.g., using conjugate gradient). As 
initial guess for the positions of P1 and P2, we choose 
the two images with the largest distance between their 
camera centers and triangulate initial positions for P1 
and P2.  

4.2. Scene Points 
To solve for the remaining large number of scene points, 
our equations actually yield a sparse linear system in the 
unknowns Pi and λij, for i=3…N and j=1…M. Given a 
set of 3D points P1 and P2 and their observed projections 
in all images, the variables λ1j and λ2j can be computed 
for all j. Then, we can solve for all Pi linearly (e.g., 
using SVD). Although we compute the λij’s, we 

typically disregard them at the end. The linear system is 
as follows 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

J

2

2

1

1

1

NJ

41

31

N

4

3

NJJ

J4J

J3J

2N2

422

322

1N1

411

311

B

B
B
B

B
B

P

P
P

V00M00

0V0M0
00V00M

V00M00

0V00M0
00V00M

V00M00

0V00M0
00V00M

M

M

M

M

OO

MM

OO

OO

λ

λ
λ

 (10) 

where 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−×−

−−⋅−−−−

−

=

)CP()CP(

)CP)(CP()CP()CP(CP

CP

M

j2j1

j1j2j1j2
2

j1

j1

j
 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−

−

=

ij3j1j2

ij2
2

j1j2

ij1j1

ij

k

k

k

V

λλ

λλ

λ
   (11) 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−×−⋅

−−⋅−−−−⋅

−⋅

=

))CP()CP((C

))CP))(CP()CP(()CP(CP(C

)CP(C

B

j2j1j

j1j2j1j2
2

j1j

j1j

j
. 

This new formulation for 3D reconstruction, which 
assumes a priori knowledge of camera centers and points 
P1 and P2, is free of camera orientation parameters and is 
completely linear. Our results show it improves both the 
stability of the solution and the overall computational 
cost of the reconstruction. 

5. Position+Orientation Free Reconstruction 
The next step is to further remove the need for 
estimating camera positions during 3D reconstruction. 
Our approach produces a nonlinear degree two 
formulation, similar in complexity to standard bundle 
adjustment, but without any camera pose parameters and 
demonstrating significantly increased robustness to noise 
in other aspects of the 3D reconstruction.  
We seek combinations of the equations of (7) that lead 
to a degree two (or less) position-and-orientation-free 
formulation. The second and third equations of (7) are of 
degree four and three, respectively, and thus we ignore 
those. We rewrite the first equations of (7) in the 
following more general form 
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and Pi1 and Pi2 are two arbitrary scene points (e.g., i1, 
i2=1,...,N  and are not necessarily distinct and  j=1,...,M). 
Based on the uniqueness of i1 and i2, we can divide all 
the equations in (12) into three sets and combine them in 
such a way as to actually eliminate (i.e., algebraically 
cancel) the parameters Cj. In particular, from (12) we 
obtain the following three groups of equations 
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After rearranging the terms, we obtain the following 
simple position-and-orientation-free equation 
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To formulate a cost function, we add the squares of the 
left-hand-side of (18) for all images and features, namely 
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This cost function is of minimal degree and does not 
involve any external camera parameters, so we bypass 
the problem of determining camera pose. The λ 
variables encode distance information from cameras to 
3D points and can be estimated by one of several 
methods. Our results show that only coarse initial 
estimates for λ’s are necessary (e.g., from depth-from-
defocus, initial coarse geometry from correspondences, 
etc.) and that the overall formulation is noticeably more 
robust than the standard pose-included formulation.  

6. Results and Discussion 
We present results and comparisons of applying our 
approach to various real and synthetic models. Our 
prototype software system is implemented on a Pentium 
IV PC using C/C++. Feature tracking is performed using 
an automatic algorithm based on OpenCV. To perform 
all standard BA computations, we use a publicly 
available sparse bundle adjustment package [7]. 
Numerical algorithms are from the Numerical Recipes in 
C library.  

Table 1 provides a summary of our datasets. The Board 
dataset is used to provide ground truth comparisons. 
Point correspondence data is obtained by tracking 
features along an image sequence of a chessboard of 
known dimensions and by a camera attached to a 
mechanically tracked arm. Sunroom, Bedroom, House, 
Corner, and Lab are used for measuring the 
effectiveness and speed for processing larger models. 
The first three are synthetic datasets of full-size rooms 
and a house, respectively. The two last are real-world 
models of large indoor spaces, spanning 250 and 1000 
square feet, respectively. Point correspondence data is 
obtained by using a system of cameras, digital 
projectors, and projected structured-light patterns [14]. 
To generate many of our graphs, we add random 
Gaussian error (noise) to camera parameters and to 
initial scene points, whichever is appropriate based on 
the context (e.g., to camera orientation, to camera 
position, to scene points, to some, or to all), and then 
report results after averaging several runs. The 
introduced error increases linearly along the horizontal 
axis, typically from zero to a maximum error. Maximum 
random position error is given by a percent of the model 
diagonal. Maximum orientation error is given by an 
explicit angle. Reconstruction error is reported as a 
percentage of the model diagonal. 
Using the board dataset, we compare the structure errors 
obtained by several reconstruction formulations. Figure 
1 compares a straightforward linear approach, a 
nonlinear bundle adjustment style optimization, our 

Dataset Board Sunroom Bedroom House Library Lab 
Images 352 1600 1300 2600 24 24 
Points 178 193100 77200 32600 2470100 2391600 
Table 1. Summary of our example datasets. 

Figure 1. Ground-Truth Comparisons. We show a graph 
comparing linear reconstruction, standard bundle-
adjustment, our orientation-free approach, our 
orientation-free approach plus bundle adjustment, and our 
position-and-orientation-free approach. Our methods 
consistently outperform the standard approaches. 
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orientation-free formulation, our orientation-free 
formulation followed by an additional bundle adjustment 
phase, and our position-and-orientation free formulation. 
Maximum orientation error is 12 degrees and maximum 
positional error is 40%. The vertical axis represents the 
true structure error (as a percentage of the model 
diagonal). The linear formulation assumes the provided 
pose is correct and estimates structure. As expected, it is 
not able to compensate for the introduction of error into 
the camera parameters. Bundle adjustment is able to 
reduce reconstruction error up until too much error is in 
the structure and pose estimates, at which point it starts 
diverging (i.e., reaches top of the graph – clamped to 
100%). On the other hand, our two-phase orientation-
free formulation is significantly more robust to noise 
(and of course unaffected by camera orientation error). 
Performing a bundle adjustment of our orientation-free 
formulation does not improve the results significantly, 
implying our method is already finding a near optimal 
solution. Finally, our position-and-orientation-free 
formulation is also able to recover the structure more 
accurately despite the introduction of error into the scene 
point initial estimates.  
Using several models, we analyze in more detail the 
performance of our two phase orientation-free 
reconstruction process. We introduce 5% and 15% 
positional noise and up to 5 and 15 degrees angular 
noise into the Sunroom and Bedroom model, 
respectively. Using the Sunroom model, we graph the 
final reconstruction error that results from changing the 
number of images used for reconstructing anchor scene 
points and non-anchor scene points. Increasing the 
number of images used for point reconstruction 
effectively increases the accuracy with which they are 
recovered. As can be observed in Figure 2a, the 

accuracy with which anchor points are (nonlinearly) 
recovered from image observations does not 
significantly alter the accuracy of the overall (mostly 
linear) reconstruction. On the other hand, increasing the 
number of image observations of the non-anchor scene 
points does not alter the reconstruction error only once a 
threshold of number of images has been exceeded. This 
tells us that picking a reasonable number of images to 
find anchor points and picking beyond a certain 
threshold of number of images for reconstructing the 
non-anchor points yields us nearly the best solution 
possible. Thus using 12 images overall for anchor points 
and the last 12 images for non-anchor points, in Figures 
2b-c we compare the reconstruction of our approach to 
that of a standard orientation-included optimization 
during an approximately 1500-frame walkthrough of the 
models. Our method performs noticeably better for the 

Figure 2. Orientation-Free Reconstruction Errors. We show 
the reconstruction errors for the Sunroom and Bedroom 
models. (a) The final reconstruction error resulting from 
varying the number of images used for anchor point and non-
anchor point reconstruction. (b-c)  Reconstruction error 
resulting from using only the last 12 images during an 
approximate 1500 frame walkthrough. 

5

6

7

8

9

10

5 10 15 20

Images

R
ec

on
st

ru
ct

io
n 

Er
ro

r

Anchors

Non-anchors

Bedroom 

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200

R
ec

on
st

ru
ct

io
n 

E
rr

or
 (%

)

BA
Orient-Free

Sunroom 

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400 1600

R
ec

on
st

ru
ct

io
n 

Er
ro

r (
%

)

BA

Orient-Free

a) b) c) Frame No. Frame No. 

Figure 3. Reprojection 
Error for Orientation-
Free Reconstruction. We 
show re-projection error 
for House using our 
orientation-free method. 
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Sunroom and Bedroom. For the House model, in Figure 
3 we show the average pixel-reprojection error using all 
images and at various error levels (up to 6 degrees and 
12% in position). Moreover, our mostly linear approach 
is significantly faster. At medium error levels, our 
approach, using standard SVD, reconstructs the over 
30,000 House scene points in 61 seconds (anchor point 
optimization takes less than a second) while an efficient 
and sparse bundle adjustment package requires 276 
seconds. Further, the bundle adjustment approach does 
not always converge. We would expect even better 
performance by using a sparse linear solver. 
Using two large real-world indoor models, we show the 
improved robustness and accuracy of our position-and-
orientation-free approach as compared to pose-included 
bundle adjustment. As ground truth, we use the best 
reconstruction obtained and then progressively increase 
the amount of random Gaussian noise as a percent of 
model diagonal (horizontal axis). Figure 4a shows the 
scene reconstruction error plotted against the 
approximate magnitude of error in the initial estimates. 
As seen in the graph, our approach is significantly more 
robust to noise, by up to almost ten times for one of the 
datasets (near the 12% percent noise level). Moreover, 
our approach is also better at obtaining a reconstruction 
even when low-error pose is provided. In Figures 4b-c, 
our formulation yields less reconstruction error as 
compared to the standard formulation. Although not as 
noticeable as when pose error is included in the standard 
formulation, it does demonstrate the increased resilience 
to initial scene point error of our method even when 
pose is known! 
Our position-and-orientation free approach does need 
initial disparity estimates; however, they are not needed 

to a high-level of accuracy and, in particular, they are 
not needed to higher accuracy than the initial scene point 
estimates. Therefore, we can safely calculate the initial 
disparity estimates from the initial scene point estimates 
(or vice versa). Figure 5 reports the relationship between 
several scene point accuracies and disparity accuracies 
that obtain the same quality of reconstruction for our 
ground-truth model (Board). In other words, the graph 
shows that a given amount of scene point accuracy 
corresponds to a similar amount of disparity accuracy. 
Hence, disparities and/or scene point estimates are 
needed at similar precisions to initialize the 
optimization. Depending on the acquisition technology, 
one might be easier than the other to obtain, nevertheless 
there is no significant performance difference.  

Regarding limitations, our linear orientation-free 
reconstruction approach depends on the existence of 
anchor points and our position-and-orientation-free 
method is computationally expensive but still sparse. We 
experimented with several simple algorithms to find 
anchor points and suspect that in general there are at 
least two features points common to a contiguous 
sequence of images but there is no guarantee. Our 
position-and-orientation free approach must evaluate 
O(N2M) terms within each iteration of the optimization 
as opposed to O(NM) for bundle adjustment. This 
increase in computation is a tradeoff but we believe it to 
be worthwhile versus having to provide camera pose or 
assuming it can be correctly and accurately recovered in 
all cases. 

7. Conclusions and Future Work 
We have presented a complete framework for re-

formulating the 3D reconstruction equations into a form 
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Figure 4. Position-and-Orientation-Free 
Reconstruction. We show the 
reconstruction error of our position and 
orientation free formulation with (a) both 
pose and structure error and (b-c) with 
only structure error. In both cases, our 
method significantly outperforms the 
standard formulation. 
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where camera orientation parameters, camera position 
parameters, or both can be removed completely. In 
strong contrast with self-calibration which attempts to 
compute these values, we mathematically remove some 
or all of the external camera parameters. The removal 
has two major consequences: (1) camera orientation and 
camera position values do not need to be provided, 
estimated or assumed they can be calculated, and (2) the 
overall stability and robustness of the reconstruction 
process to noise in other aspects is noticeably increased 
thus facilitating more accurate reconstructions. If camera 
position is available, we describe a mostly linear 
reconstruction method. If neither camera position nor 
camera orientation is available, we describe a nonlinear 
process, similar to bundle adjustment, but that only 
needs coarse initial scene point estimates or disparity 
estimates to converge to an accurate reconstruction. As 
compared to standard formulations, our approach yields 
improvements ranging from 3x to 10x on our several 
synthetic and real-world models of up to thousands of 
images or millions of points. 

As for future work, we are exploring several avenues. 
In particular, we are interested in exploiting the 
sparseness of our formulations in order to use faster 
sparse linear and sparse nonlinear optimization codes. 
Further, we are investigating methods to remove the 
need to provide initial disparity estimates and thus to 
reduce further the number of reconstruction parameters. 
Finally, we believe our work yields significant 
improvement, in terms of accuracy and robustness, for 
large 3D reconstruction efforts and expect to see more 
work in parameter elimination. 
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Figure 5. Scene Point vs. Disparity Error. We compare 
the amount of scene point error needed to obtain the same 
disparity error and observe an almost linear relationship 
implying that one or both are needed at similar accuracy. 

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45

Structure Error (%)

D
is

pa
rit

y 
Er

ro
r (

%
)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


