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Abstract  
Computer graphics applications such as movie effects, video 
gaming, and product demonstration demand 3D models of 
dynamic objects. For this purpose, numerous methods, such as 
light fields, stereo reconstruction and visual hulls have been 
extended to model dynamic objects. These methods use multiple 
cameras to acquire images simultaneously and use the 
synchronized samples to reconstruct the model for each time 
instance. However, a large number of cameras are required to 
obtain compelling results. We introduce an efficient acquisition 
and modeling schema for dynamic objects with repetitive 
motions. Our method requires as few as two cameras. The key 
idea is that repetitive motions can be described by a finite number 
of states. Images capturing the same state can be grouped together 
and fed to the later modeling phase as if they are captured from 
multiple cameras simultaneously. Our work includes an 
acquisition system with interactive feedback, a graph traversal 
algorithm to help obtain a near minimum subset of images to 
sample the object and its motion, and a space-time image 
optimization method. We demonstrate this system using several 
datasets with different complexity of motion, and different 
number of desired viewpoints. 

CR Categories: I.3 [Computer Graphics], I.3.3 [Picture/Image 
Generation], I.3.7 [Three-dimensional Graphics and Realism], 
I.4.1 [Digitization and Image Capture]. 

Keywords: computer graphics, image-based modeling and 
rendering, dynamic scenes, motion analysis, video textures. 

1. Introduction 
Obtaining models of dynamic 3D objects is an important part of 
content generation for virtual reality, movies, gaming, and several 
commercial applications. Modeling dynamic objects enables an 
observer to manipulate the object in both space and time. For 
example, a static observer can see the motion over time or a 
moving observer can freeze the motion and see the object along a 
viewpoint path. If the states (or poses) of the object repeat in the 
sequence periodically or quasi-periodically, we call such a 
repetitive motion. There are many rigid and non-rigid objects, 
such as toys, decorative items, and appliances, undergoing 
repetitive motions. In this paper, we are interested in efficiently 
capturing and modeling objects undergoing repetitive motions, 

rendering them from novel viewpoints, and generating new 
motion sequences. 
Acquiring and modeling dynamic objects is a very challenging 
task. The process involves both creating a model of the object 
during each state of the motion and capturing the sequence of 
motion states. Motion capture methods focus on obtaining 
parameter values to control the shape and pose of a given object 
model during each state of the motion. Acquisition methods focus 
on creating an object model but not on identifying the repeating 
states of the motion. A process for both creating an object and 
capturing its motion can assume each state produces a unique 
projection onto the camera image plane [Allmen and Dyer 1990] 
and use a single static camera to determine the sequence of states. 
Unfortunately, simultaneously reconstructing the dynamic object 
for each state is difficult because it limits reconstruction to only 
the surfaces visible from a single viewpoint. Allowing the camera 
to move increases the visible surfaces, but complicates identifying 
the states of the repetitive motion and exacerbates the need for 
correspondence establishment unless the motion is perfectly 
periodic and the camera is capturing at a constant rate as in 
[Buehler et al. 2001]. 
Multi-camera acquisition methods can successfully identify the 
states of the repetitive motion and capture 3D objects by using a 
static installation of cameras surrounding the motion volume 
[Matusik et al. 2000; Zitnick et al. 2004; Starck et al. 2005; 
Vedula et al. 2005]. However, these methods have certain costs. 
First, they typically need a pre-installed and potentially-large 
calibrated infrastructure of synchronized cameras which is a 
stringent and expensive requirement. Second, the fixed 
installation often precludes portability and limits the flexibility to 
adapt to the number of images and viewpoints needed by the 
reconstruction algorithm. Third, mutual occlusions between 
cameras disallow certain configurations, such as one camera in 
front of another which is useful to obtain close-ups and higher-
resolution views. In our work, we seek both to identify the state 
sequence of the repetitive motion and to reconstruct the 3D 
object, while overcoming the costs and limitations of large multi-
camera acquisition systems.  
Our key observation is that for repetitive motions we can combine 
the motion analysis benefits provided by a static camera with the 
object reconstruction ability of a moving camera observing a 
static scene. This allows us to model dynamic objects without the 
costs and limitations of large and static multi-camera acquisition 
systems and without having to tackle correspondence 
establishment of a moving camera seeing a moving scene. In 
particular, the static camera identifies a sequence of states which 
imitates the observed motion. The moving camera (or cameras), 
synchronized with the static camera, captures views of the object 
at a known state of its repetitive motion. Moreover, since the 
moving camera can be freely positioned, it can capture the same 
motion state from viewpoints in front of other camera viewpoints 
without generating an occlusion. In addition, by having 
knowledge of the motion sequence, the moving camera can obtain 
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a complete set of images for any desired viewpoint density and 
camera speed. An acquisition that simply waves a camera around 
the object and ignores knowledge of the motion sequence might 
take significantly longer time or, in fact, never converge to a 
complete viewpoint sampling of all motion states. For a modeling 
method that requires few input images, such as image-based 
visual hull [Matusik et al. 2000], our approach can acquire a 
complete set of images quickly. If a denser set of image samples 
is required, as in light field [Gortler et al. 1996; Levoy and 
Hanrahan 1996; Buehler et al. 2001], our approach just captures a 
longer, but still compact, image sequence.  
We present an efficient modeling and acquisition method for 
dynamic 3D objects undergoing repetitive motions (Figure 1). 
Our method uses one static camera and one or more moving 
cameras. In a brief preprocessing phase, the static camera 
observes the dynamic object and determines a sequence of M 
states of the repetitive motion which may be either periodic or 
quasi-periodic motion and may include rigid transformations and 
arbitrary object deformations, but the object must stay within a 
working volume. We create a graph with a node for each of N 

desired viewpoints of each state, resulting in a total of N x M 
nodes. Subsequently during real-time capture, the static camera 
classifies images to a state and the moving camera, which is 
synchronized to the static camera, captures each state from 
multiple viewpoints. To accelerate capture, we provide interactive 
feedback to guide the user to the right place at the right time and 
thus ensure desired sample coverage and reduce capture time. 
Once each state is sufficiently sampled, acquisition is complete. 
We then perform a silhouette-based volumetric reconstruction of 
each state of the acquired object and use a space-time 
optimization to align images over space and to stabilize the 
motion over time. The motion state sequence can be rearranged in 
order to produce new motion observable from novel viewpoints. 
We have captured several real-world objects undergoing a variety 
of repetitive motions. We demonstrate an efficient process, 
renderings from novel viewpoints, new motion sequences of 
captured objects, and multi-viewpoint captures not possible with a 
static arrangement of multiple cameras. 
Our main contributions are as follows: 

Figure 1. Capturing Objects undergoing Repetitive Motions. a) A static camera observes the dynamic object and identifies the 
unique states of the repetitive motion. b) Using the observed states and transitions, our algorithm constructs a finite state machine of 
the motion. c) Acquisition uses a static camera and at least one moving camera to efficiently capture all motion states from all 
desired viewpoints. d) Novel viewpoint renderings and motions are produced interactively for a moving observer (left) or for a static 
observer seeing the motion over time (right). 

a) Observed Sequence 
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• An approach using as few as two cameras to acquire and 
model objects undergoing repetitive motions thus enabling 
novel viewpoint rendering and new motion sequences. 

• An acquisition graph and interactive feedback mechanism 
for ensuring desired image sample coverage and for reducing 
the capture time to acquire repetitive motion over multiple 
viewpoints and over time. 

• An optimization method for aligning and registering images 
observing repetitive motion both spatially and temporally. 

2. Related Work 
Our research builds upon work in image-based object acquisition 
and repetitive motion analysis. While significant work exists in 
object acquisition, acquiring dynamic objects is still a major 
challenge for 3D geometry reconstruction [Hartley and Zisserman 
2004] which often depends on establishing robust 
correspondences and/or limits the types of dynamic objects (e.g., 
articulated rigid objects [Yan and Pollefeys 2006]).  
Image-based rendering (IBR) methods attempt to address some of 
the shortcomings of geometric reconstruction algorithms by 
directly re-sampling a large collection of source images in order 
to produce novel views of a captured object or scene, with no or 
only approximate geometry (e.g., [McMillan and Bishop 1995; 
Levoy and Hanrahan 1996; Gortler et al. 1996]). Capturing a 
dynamic object typically requires an array of (statically-
calibrated) cameras. For example, J. Yang et al. [2002] uses 64 
video cameras to capture a dynamic light field in real time. 
Naemura et al. [2002] use special hardware to estimate depth in 
real time and use a layered model to represent the scene.  Wang et 
al. [2005] and Wilburn et al. [2005] use optical flow to guide 
spatial-temporal view interpolation. Other methods place the 
camera around the scene in order to acquire sufficient samples to 
reconstruct the scene geometry. Matusik et al. [2000, 2001] 
compute a representation for the visual hull directly from the 
background subtracted silhouette images. R. Yang et al. [2002] 
model the dynamic scene by projecting each reference image onto 
a series of planes that sweep the volume from back to front; and 
each pixel is shaded according to color consistency. Carranza et 
al. [2003] use silhouette images from multiple synchronized video 
cameras of a human actor to estimate the motion parameters and 
then to animate a human model for texture mapping. Zitnick et al. 
[2004] use region based stereo algorithm to reconstruct the 
dynamic scene and enables high quality free viewpoint video. All 
these methods have the high-cost of requiring (many) statically-
installed cameras in order to obtain high quality results. The 
camera setup is also tuned to a particular modeling technique; for 
example, a planar array of cameras is good for capturing a light 
field but not good for reconstructing the visual hull of an object.  

Moreover, none of these approaches take advantage of the fact 
that the observed motion is repetitive. 
Motion analysis work finds repeating patterns in an image 
sequence based on the assumption that 3D cyclic motion is 
preserved under single image projection. For example, Allmen 
and Dyer [1990] detect cyclic motion by finding repetitive 
patterns in the spatial-temporal curves that are defined on spatial-
temporal surfaces caused by the motion. Cutler and Davis [2000] 
measure the self-similarity of a segmented object under repetitive 
motion and perform Time-Frequency analysis to characterize the 
periodicities. These two methods handle motion evolving in-
place. Yet other methods handle global translation by alignment 
[Liu and Picard 1998; Laptev et al. 2005] or by tracking features 
[Seitz and Dyer 1997]. However, this kind of motion is not 
confined to a working volume and thus is not strictly repetitive. 
While these works analyze periodic motion, they do not focus on 
building a dynamic 3D model of the observed object over time. 
Recently, a new type of medium called video textures has 
received research attention [Schödl et al. 2000]. A video texture is 
an infinitely varying image sequence that enhances images from a 
stationary viewpoint with projections of repetitive motions.  
Video textures have also been extended to large field of view 
panoramic images obtained by slowly rotating a planar camera 
around a stationary central axis [Agarwala et al. 2005]. In both 
cases, an input video clip is partitioned into states and smooth 
transition points in the video are found in order to produce a 
seemingly infinite loop of projected periodic and quasi-periodic 
scene motion but only from one fixed viewpoint.  
In contrast, we seek multi-viewpoint acquisition of repetitive 
motions. We also wish to analyze the periodic motion and to take 
advantage of the recurrence of the motion states in order to 
improve the modeling of the observed dynamic object. Our 
approach is more general than perfectly periodic and/or human-
motion specific methods. For example, Starck et al. [2005] use 10 
cameras to capture multiple video sequences and use a motion 
graph [Kovar et al. 2002] tuned for predefined human motions. 
Similarly, Einarsson et al. [2006] present a method for capturing 
cyclic and constant speed human motions by using a turntable and 
a 1D camera array. Similar constant speed assumptions are used 
to create a motion lumigraph for a toy helicopter in [Buehler et al. 
2001]. With the help of a static camera, our method robustly and 
during acquisition determines the states of arbitrary object 
motion. 

3. Motion States 
Our method partitions repetitive motion into a discrete number of 
states. The states are organized into a sequence that is 
representative of the observed repetitive motion. Then, in real 
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Figure 2. System Pipeline. Our approach consists of 3 major components: motion states, image acquisition, and object modeling. 



 

time, a captured image is classified as belonging to one of these 
states. Figure 2 contains a summary of our system pipeline.  

3.1 Repetitive Motion 
We categorize object motions into several different types based 
on the sequencing pattern of the states of the motion and we label 
all periodic and high-multiplicity random motion as repetitive 
motion.  In particular, a static scene corresponds to a single state 
that repeats indefinitely. A completely random motion means 
every state is different and occurs only once. If some states appear 
more than once, then, based on the frequency of the appearance of 
the states, we define the motion as low multiplicity or high 
multiplicity random motion. If a whole subsequence repeats itself 
infinitely, the motion is periodic. Using the frequency of 
repetition of the states of the motion within a single period, 
periodic motion can also be sub-classified as low-multiplicity or 
high-multiplicity. In our work, we call periodic and high-
multiplicity random motion repetitive motion. While periodic 
motion can be captured and reproduced perfectly, the acquisition 
of high-multiplicity random motion (or “quasi-periodic” motion) 
implies that a sufficiently similar motion sequence can be 
acquired. Our method is able to acquire objects undergoing such 
repetitive motion because each state will appear multiple times. 
For each appearance, acquisition strives to be at the right place at 
the right time so as to efficiently capture all states from a desired 
set of viewpoints in the viewing volume.  

3.2 Identification and Classification 
A single static, and uncalibrated, camera observes the dynamic 
object in order to identify the sequence of states of the repetitive 
motion as well as to classify a current image to one of the motion 
states. Using a short image sequence captured during a 
preprocessing phase, the motion is made to consist of one state for 
each captured image. Since we assume projections of the same 
state of the object motion are similar to each other, repetitions in 
the motion sequence are identified by measuring the image-
difference between all pairs of captured images. Two states are 
merged into a single state only if the image difference between 
the representative images of the two states is below a predefined 
threshold. The threshold value controls the overall quality of the 
data fed to the modeling phase. A large threshold leads to a 
smaller number of states, but images of the same state can vary 
significantly. On the other hand, a small threshold leads to a 
larger number of states, but images within each state are very 
similar. The merging process repeats iteratively until no states are 
similar enough and a compact set of states is obtained. 
Using the computed states and state transitions, the algorithm 
constructs a finite state machine that is representative of the 
observed repetitive motion. Although one would expect a 
perfectly repeating set of states for periodic motion, both periodic 
and quasi-periodic motion consist of a repeating motion sequence 
with spurious states appearing. In the case of periodic motion, the 
discrete time sampling of the camera may cause an image to be 
occasionally captured in between other motion states. For 
example, a pendulum can be observed from the static camera as 
predominantly having the state sequence (ABCDCBA)* but 
sometimes the sequence (ABCDCEA) may appear. A quasi-
periodic motion is one that does not exactly repeat but exhibits 
significant similarities over time. The observed states and 
transitions that appear with frequency greater than a chosen 
threshold are placed into a state transition diagram, thus creating a 

finite state machine describing the major component of the 
motion. Our algorithm finds the largest strongly connected 
component of the state machine (thus ignoring dead-ends) and 
extracts those states as the representatives of the repetitive motion 
to be acquired (similar to the graph pruning in [Kovar et al. 
2002]). 
During live capture, our system matches the input image to 
cached images for each representative state in order to determine 
the current state of the repetitive motion. Our method performs an 
image-differencing operation and selects the best thresholded 
match as the current state. If an input image could not be matched 
to a state, it is discarded. This implies that the spurious motion 
states of the repetitive motion are appropriately ignored since they 
do not help to sample the desired motion.  
Figure 3 shows an example process of identifying motion states 
and classifying input images. Given an initial input sequence of 
34 frames, the system groups the motion into a high-multiplicity-
periodic-motion sequence of only 7 states, and one spurious state 
which is discarded (state H in this case). 

4. Image Acquisition 
Given a desired viewing volume and viewpoint density, 
acquisition strives to sample all motion states from all desired 
viewpoints. A naïve approach might either randomly move the 
camera around the object and potentially never fully sample all 
motion states from all desired viewpoints; or perform a lengthy 
capture that places a movable camera at each desired viewpoint 
and captures an image sequence long enough to observe the entire 
repetitive motion sequence. However, due to the multiplicity of 
the motion states, this may not be optimal. For example, consider 
the motion of a pendulum or a fan: the left-to-right swing and 
right-to-left swing has many similar states. Instead of capturing an 
entire period at one viewpoint, a more efficient capture path will 
place the camera at one position, capture the left-to-right swing, 
then move the camera to the next position, capture the right-to-left 
swing. To generalize the notion to arbitrary repetitive motion 
sequences, potentially containing multiple repeating 
subsequences, we encode the state and viewpoint data into an 
acquisition graph and then the acquisition problem becomes how 
to efficiently traverse this graph. 

4.1 Acquisition Graph 
The images used for modeling the object and its motion are 
captured by at least one moving camera synchronized with the 
static camera. Since the static camera is able to determine the 
current motion state, the moving camera is, in fact, at all times 
aware of the current motion state. Thus, at every frame, the 

H 

a) Observed state sequence 
ABCDBCDBCEFGABCHFGABCEFGABCDBCEFGA 

b) Computed finite state machine 
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Figure 3. Motion States. a) Using the static camera, the 
observed repetitive motion is partitioned into states and state 
transitions. b) Both periodic and quasi-periodic motions are 
approximated by a finite state machine. 



 

moving camera is capturing a view of a known motion state from 
a potentially different viewpoint.  
We place the acquired images into the nodes of a graph. For each 
of N desired viewpoints and for each of M motion states, there is a 
node in this graph, which results in N x M nodes in total. We label 
each node (v, s) corresponding to a viewpoint v observing a state 
s.  Edges in this graph represent a possible movement from one 
desired viewpoint to another within an interval of time t. During 
time t (which is typically chosen to be one frame time), the object 
changes from motion state sa to sb. If the camera is fast enough to 
travel from a viewpoint v1 to a viewpoint v2, there is an edge from 
node (v1, sa) to node (v2, sb). A longer time interval t or a faster 
camera produces more edges between a node and its neighbors. 
Figure 4a shows an example acquisition graph for the motion 
sequence (ABCABCABCDEDEDE)*. It contains all the nodes for 
five states and three viewpoints and all the valid edges assuming 
the spacing between desired viewpoints is equal to what the 
camera can move in one frame time. 

4.2 Graph Traversal 
The acquisition goal is to sample the object and its motion by 
efficiently visiting all nodes in the graph. Using a moving 
(handheld) camera to acquire images may result in many different 
types of graph traversals. Figure 4b-d show that various types of 
camera motion resulting in different traversals of an acquisition 
graph. Figure 4b depicts the traversal sequence for the intuitive 
motion of simply “zigzagging” the camera in front of the object 
(e.g., visiting viewpoints 1-2-3, then 3-2-1, etc. in this 1D 
example). Traversal starts at A-1, reaches E-3, and then the 
motion sequence restarts. Traversal continues from A-3 to E-1 
and then goes back to A-1 and repeats indefinitely, leaving four 
nodes un-sampled. Although it is dependent on the viewpoint 
distribution, number of states, camera velocity, and motion 
sequence, such a simple unplanned motion might take a long time 
to capture all desired images or, in fact, not ever visit all nodes. 
Figure 4c represents a moving camera waiting for the entire 
repeating sequence to complete at each viewpoint. This approach 
always completes but might take a long time. On the other hand, 
Figure 4d shows the results of a moving camera following an 
ideal traversal sequence which yields a full sampling in 
potentially much less time. 

4.3 Interactive Feedback 
To improve live capture, we guide the moving camera to the right 
place at the right time. This guidance can serve to control a 

mechanical arm or as interactive feedback provided to the user 
holding a handheld camera. Our system provides immediate 
visual feedback to the user on the computer screen. The feedback 
system continuously estimates the camera’s position, orientation, 
and velocity using a mechanically tracked arm attached to the 
moving camera (e.g., a MicroScribe G2LX arm). It also estimates 
the state of the motion in real time. According to the current 
camera viewpoint and the motion state, the system marks the 
corresponding node in the acquisition graph as sampled. In order 
to fully sample the motion, the user aligns the camera with one 
desired viewpoint and waits until all the states are sampled. Then 
the system signals the user to move to the next desired viewpoint. 
Our feedback system can also guide the user to sample a subset of 
images very quickly when a coarse preview of the reconstructed 
object and its motion is desired. We use a heuristic search method 
to find the best place and direction for the user to move the 
camera in order to visit the un-sampled nodes in the graph as soon 
as possible. Starting at the node in the graph closest to the current 
viewpoint and given the movement direction, a recursive look-
ahead of several steps is used to choose the next best edges (and 
viewpoints) that should be visited. Edges to nearby and un-visited 
viewpoints of the graph are preferred. To allow a typical smooth 
handheld viewpoint path, only viewpoints within a maximum 
angular deviation from the current movement direction are 
considered. This also prunes the recursive look-ahead tree and 
improves computational performance. As time advances, visited 
nodes are marked as such, and the last newly visited node 
becomes the current node. Furthermore, the set of edges of the 
graph can be quickly updated based on changes to the camera’s 
position and speed. 

5. Object Modeling 
Our approach supports capturing and modeling objects using 
images with any desired viewpoint density and permits 
rearranging the captured object motion to produce novel motion 
sequences. For example, light field methods require a large 
number of planar images and small spacing between cameras. 
Structure from motion techniques need fewer images but require 
robust correspondence. Visual hull methods require a relatively 
small number of views but these views should observe the object 
from very different viewing directions. In this work, we model the 
dynamic object using a volumetric reconstruction algorithm. We 
also perform a spatial-temporal optimization to improve the 
captured motion states and their rearrangement. 

Figure 4. Example Graph Traversals. We show the graph and several traversals for the sequence (ABCABCABCDEDEDE)*. (a) 
The graph for 3 viewpoints (1-3), the 5 states (A-E), and all valid transition edges. (b) A simple zigzag pattern may lead to a very long 
capture sequence or, as in this example, never acquires all states from all viewpoints. (c) Staying at the same viewpoint until the entire 
motion repeats always yields a complete sampling but takes potentially a long time (45 time units in this example). (d) On the other 
hand, an ideal traversal completes in only 15 time units in this example. 
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5.1 Volumetric Reconstruction 
We use a silhouette-based volumetric reconstruction method to 
build a voxel-based model for each state [Slabaugh 2004]. A 
silhouette map is computed for each frame from the moving 
camera by subtracting a certain background color.  Camera pose 
for each frame is estimated by tracking feature points from a set 
of markers placed around the object. Voxels are then projected to 
each frame and the volumetric model is reconstructed by rejecting 
voxels that project outside the silhouette images. To render the 
object from a new viewpoint, we blend the projective texture 
maps of nearby reference images.  Our reconstruction takes about 
2-5 minutes per state on 6x6x6 voxels. 

5.2 Spatial-Temporal Optimization 
To improve the reconstruction, we perform an optimization of the 
camera frame poses within each motion state and among all 
motion states (Figure 5). The inaccuracies in feature tracking and 
calibration process as well as the discrete number of motion states 
lead either to visual popping during rendering when switching 
textures or to unnecessary image misalignment during a 
reconstructed motion sequence. To alleviate this, we reduce the 
re-projection error amongst images of the same motion state and 
improve the consistency of the object projection for an 
approximately stationary viewpoint over time.  
Our optimization process minimizes the re-projection error using 
a sequence of key-frames. The motion consistency of the object is 
improved by choosing as key frames the sequence of sampled 
images over time (motion states) whose center-of-projection 
moves the least. Then, starting with the second motion state, the 
re-projection error of its key frame image to the key frame of the 
previous motion state is successively minimized by changing the 
pose of the most recent key frame. The re-projection error of the 
non-key frames to their respective key frames per motion state is 
diminished by changing the non-key frame poses. The non-key 
frames closest to the key frame are optimized first. Images far 
from the key frame are optimized to a nearby already optimized 
non-key frame. 

5.3 Motion Rearrangement 
Our method allows us to rearrange the order of the motion states 
producing new motion sequences and repetitive motions. The 
state transition diagram contains all the potential states and 
transitions. Similar to video textures [Schödl et al. 2000], we 
produce new and different repetitive motions by walking through 
the finite state machine in different ways. However, since for each 
state we already have sampled images and a reconstructed model, 
the observer can freely move the virtual viewpoint during the new 
motion sequence. For example, if a motion is 
(ABABABABCDCDCD)*, then we can change it to (ABCD)*, 
(BCDCDA)*, or to (AB)* and in all cases allow the observer to 

continuously change the viewpoint.  

6. Results and Discussion 
We have captured several objects using our approach and 
prototype implementation of one static camera and one moving 
camera. Our prototype system is implemented in C++ using 
standard OpenGL, GLUI, GLUT, and OpenCV libraries. The 
system uses two synchronized Point Grey Research (PGR) Flea 
cameras connected to a standard PC. The cameras capture color 
images of the object at 1024x768 pixel resolutions and at a frame 
rate of 15 Hz and are internally calibrated. State classification is 
done at the same frame rate using quarter-resolution images. 
Table 1 lists four captured datasets, puppy, flag, hamster, and fan, 
each undergoing a different repetitive motion. For each dataset, 
we list the amount of time spent capturing images, the number of 
sampled states (on average, several spurious states are ignored per 
dataset), the number of captured viewpoints per state, the total 
number of stored images used for reconstruction, and the 
multiplicity of the motion. Since the motion does not need to be 
uniform, the multiplicity number only serves as an approximate 
measure of the number of times each state appears during an 
average cycle of the repetitive motion. We also list the final 
storage of the voxel models and textures in Table 1.  
Figure 1 depicts the acquisition and reconstruction pipeline using 
the puppy and flag dataset. For the puppy, the static camera 
observes 24 states which re-appear in an approximately repeating 
sequence of 155 states (Figure 1a). From the observed states and 
transitions, our method automatically builds a finite state machine 
of the motion sequence (Figure 1b). During acquisition, the 
moving camera captures multiple views of each state and places 
them into a bin of images per state (Figure 1c). Our interactive 
feedback system guides the user through acquisition and ensures a 
complete and compact acquisition of the dynamic object and its 
motion. Only 624 images out of 6 minutes video (~5400 frames) 
are actually stored on disk for the puppy dataset. After object 

 

Dataset Capture Time Valid States No. Viewpoints Images  Multiplicity  Storage (Voxel+Texture) 

Puppy ~ 6 minutes 24 24 624  5.96 53M + 301M 

Flag ~ 3 minutes 21 34 714 1 26M + 355M 

Hamster ~ 3 minutes 10 29 290 11 52M + 126M 

Fan ~ 4 minutes 86 12 1032 1.67 139M + 516M 

Table 1. Datasets. We list the acquisition times and characteristics of the four datasets used for testing our method. 

Figure 5. Optimization. Our method performs a space-time 
optimization: images within the same motion state are 
optimized to key-frames which correspond to images of 
sampled motions whose center-of-projection moves the least.
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reconstruction, a viewer can either freeze time and observe the 
object from a sequence of novel viewpoints (Figure 1d, left) or 
freeze the viewpoint at a new location and observe the motion 
over time (Figure 1d, right). 
By efficiently traversing the acquisition graph, a user can sample 
an object and its motion with guaranteed completion and in 
relatively less time as compared to ad hoc moving-camera paths. 
Using the actual motion sequence of two datasets, we 
experimented in simulation with three camera speeds, three 
desired number of viewpoints, and four graph traversals. Table 2 
shows three representative cases for each dataset. Using an 
incremental approach that remains at each desired viewpoint for 
an entire period may take significant time. Waving the camera in 
front of the object during its motion either takes a long time or 
never completely samples all states and viewpoints. In these 
examples, waving the camera captured only 70% of the images. 
On the other hand, our method outperforms the incremental 
approach and reaches 70% completion faster than zigzagging and 
always completed the sampling.  
Since our approach does not require a large static installation of 
cameras, we can capture the motion using camera arrangements 
that would normally cause self-occlusions. For example, Figure 
6b demonstrates a rendering from a novel viewpoint using 
captured images of the motion state obtained in front of and closer 
to the object as compared to the images used in Figure 6a for the 
same novel viewpoint. Thus, our method enables us to obtain 
close-ups of parts of the motion and produce seemingly higher-
resolution imagery where and when desired.  
Our space-time optimization process improves the rendering 

quality of the reconstructed objects and their motion. Figures 6c-d 
show the improved alignment between reference images before 
and after optimization. While the optimization process is 
automatic and does improve the quality, it comes at an additional 
computational cost of approximately 30-160 minutes per dataset.  
Finally, the repetitive motions of any of our datasets can be 
altered yielding new and different motions. The user specifies a 
new way to traverse the state transition diagram and can still 
freely move the virtual viewpoint. Visually, this corresponds to 
rearranging the sequence of motion states observed in Figure 1d. 
More examples are in Figure 7 and in the paper video. 

7. Conclusions and Future Work 
We have introduced an efficient multi-viewpoint acquisition 
schema for dynamic objects undergoing repetitive motions. Our 
system uses only two cameras yet obtains samples of each motion 
state of a dynamic object from multiple viewpoints. By analyzing 
the motion in a pre-processing stage, we avoid storing a large 
number of redundant images and choosing a useful subset from 
them. By constructing an acquisition graph and providing 
feedback to the user, all motion states and desired viewpoints can 
be efficiently sampled. These samples are fed to a later modeling 
phase for reconstruction, optimization, and rendering of a 3D 
dynamic object. Furthermore, the captured repetitive motions can 
be altered and rearranged yielding new motions and still have 
viewpoint freedom. Our approach is also independent of the 
modeling technique in the sense that we can obtain images at any 
desired viewpoint density. Finally, our method also provides 
opportunities for capturing images from viewpoint configurations 

a) b) c) d) 
Figure 6. Close-up Views and Optimization. (a) A view of the hamster only using images from a far. (b) Same viewpoint and 
time-instant of the motion but using close-up image that produces crisper, effectively higher-resolution, images. Unlike static multi-
camera systems, we can place the moving camera in front of a previously captured viewpoint and obtain unoccluded images at 
multiple distances from the object. (c) Novel viewpoint rendering of flag without image optimization and (d) with optimization. 
Notice the reduced blurriness, especially noticeable around the stars. 

 

Dataset Camera Speed No. Views Incremental (100%) Zigzag (70%) Our Method (70%) Our Method (100%) 

0.4 4x4 1968 555 210 1290 

0.2 8x8 7872 1140 720 3990 

Hamster 

0.1 16x16 31488 25155 3570 15930 

0.4 4x4 2752 1125 1080 1935 

0.2 8x8 11008 ∞ 4260 7800 

Puppy 

0.1 16x16 44032 ∞ 17520 31995 

Table 2. Graph Traversals. We experimented in simulation with two datasets using different camera speeds, number of views, and 
traversal/motion methods. Camera speed is in terms of a viewing area of size one. Acquisition time is in units of per-frame time. Our 
traversals are consistently better. 



 

not feasible with static multiple camera setups. 
Our system has several current limitations as well potential 
directions for future work. First, we assume moving objects 
remain in a compact working volume. We would like to 
investigate how to capture local repetitive motion but under 
global translation and rotation. Second, we would like to study the 
theoretical aspect of how many static views are enough to 
uniquely identify all repetitive motions. Third, we would like to 
implement our system with a robot arm, which is controlled by 
the feedback system. This will yield better reconstruction quality 
and 360 degree acquisition as compared to handheld cameras. 
Finally, in our approach the quality of view-dependent 
illumination effects depends on the density of image capture; we 
would like to extend our technique to include highly-specular and 
inter-reflective objects (e.g., a water fall, candles, etc.) so as to 
expand our range of supported object types. 
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Figure 7. Example Novel Views. (a-b) Two novel renderings of the fan dataset, (c-d) and of the hamster dataset. (e) Screen-shot of 
underlying 3D voxel model for hamster. (f-g) Two novel renderings of the puppy dataset while sitting (f) and while standing (g). 
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