

Efficient Multi-viewpoint Acquisition of 3D Objects
Undergoing Repetitive Motions

 Yi Xu* Daniel G. Aliaga†
Purdue University Purdue University

Abstract
Computer graphics applications such as movie effects, video
gaming, and product demonstration demand 3D models of
dynamic objects. For this purpose, numerous methods, such as
light fields, stereo reconstruction and visual hulls have been
extended to model dynamic objects. These methods use multiple
cameras to acquire images simultaneously and use the
synchronized samples to reconstruct the model for each time
instance. However, a large number of cameras are required to
obtain compelling results. We introduce an efficient acquisition
and modeling schema for dynamic objects with repetitive
motions. Our method requires as few as two cameras. The key
idea is that repetitive motions can be described by a finite number
of states. Images capturing the same state can be grouped together
and fed to the later modeling phase as if they are captured from
multiple cameras simultaneously. Our work includes an
acquisition system with interactive feedback, a graph traversal
algorithm to help obtain a near minimum subset of images to
sample the object and its motion, and a space-time image
optimization method. We demonstrate this system using several
datasets with different complexity of motion, and different
number of desired viewpoints.

CR Categories: I.3 [Computer Graphics], I.3.3 [Picture/Image
Generation], I.3.7 [Three-dimensional Graphics and Realism],
I.4.1 [Digitization and Image Capture].

Keywords: computer graphics, image-based modeling and
rendering, dynamic scenes, motion analysis, video textures.

1. Introduction
Obtaining models of dynamic 3D objects is an important part of
content generation for virtual reality, movies, gaming, and several
commercial applications. Modeling dynamic objects enables an
observer to manipulate the object in both space and time. For
example, a static observer can see the motion over time or a
moving observer can freeze the motion and see the object along a
viewpoint path. If the states (or poses) of the object repeat in the
sequence periodically or quasi-periodically, we call such a
repetitive motion. There are many rigid and non-rigid objects,
such as toys, decorative items, and appliances, undergoing
repetitive motions. In this paper, we are interested in efficiently
capturing and modeling objects undergoing repetitive motions,

rendering them from novel viewpoints, and generating new
motion sequences.
Acquiring and modeling dynamic objects is a very challenging
task. The process involves both creating a model of the object
during each state of the motion and capturing the sequence of
motion states. Motion capture methods focus on obtaining
parameter values to control the shape and pose of a given object
model during each state of the motion. Acquisition methods focus
on creating an object model but not on identifying the repeating
states of the motion. A process for both creating an object and
capturing its motion can assume each state produces a unique
projection onto the camera image plane [Allmen and Dyer 1990]
and use a single static camera to determine the sequence of states.
Unfortunately, simultaneously reconstructing the dynamic object
for each state is difficult because it limits reconstruction to only
the surfaces visible from a single viewpoint. Allowing the camera
to move increases the visible surfaces, but complicates identifying
the states of the repetitive motion and exacerbates the need for
correspondence establishment unless the motion is perfectly
periodic and the camera is capturing at a constant rate as in
[Buehler et al. 2001].
Multi-camera acquisition methods can successfully identify the
states of the repetitive motion and capture 3D objects by using a
static installation of cameras surrounding the motion volume
[Matusik et al. 2000; Zitnick et al. 2004; Starck et al. 2005;
Vedula et al. 2005]. However, these methods have certain costs.
First, they typically need a pre-installed and potentially-large
calibrated infrastructure of synchronized cameras which is a
stringent and expensive requirement. Second, the fixed
installation often precludes portability and limits the flexibility to
adapt to the number of images and viewpoints needed by the
reconstruction algorithm. Third, mutual occlusions between
cameras disallow certain configurations, such as one camera in
front of another which is useful to obtain close-ups and higher-
resolution views. In our work, we seek both to identify the state
sequence of the repetitive motion and to reconstruct the 3D
object, while overcoming the costs and limitations of large multi-
camera acquisition systems.
Our key observation is that for repetitive motions we can combine
the motion analysis benefits provided by a static camera with the
object reconstruction ability of a moving camera observing a
static scene. This allows us to model dynamic objects without the
costs and limitations of large and static multi-camera acquisition
systems and without having to tackle correspondence
establishment of a moving camera seeing a moving scene. In
particular, the static camera identifies a sequence of states which
imitates the observed motion. The moving camera (or cameras),
synchronized with the static camera, captures views of the object
at a known state of its repetitive motion. Moreover, since the
moving camera can be freely positioned, it can capture the same
motion state from viewpoints in front of other camera viewpoints
without generating an occlusion. In addition, by having
knowledge of the motion sequence, the moving camera can obtain

*email: xu43@cs.purdue.edu
†email: aliaga@cs.purdue.edu

a complete set of images for any desired viewpoint density and
camera speed. An acquisition that simply waves a camera around
the object and ignores knowledge of the motion sequence might
take significantly longer time or, in fact, never converge to a
complete viewpoint sampling of all motion states. For a modeling
method that requires few input images, such as image-based
visual hull [Matusik et al. 2000], our approach can acquire a
complete set of images quickly. If a denser set of image samples
is required, as in light field [Gortler et al. 1996; Levoy and
Hanrahan 1996; Buehler et al. 2001], our approach just captures a
longer, but still compact, image sequence.
We present an efficient modeling and acquisition method for
dynamic 3D objects undergoing repetitive motions (Figure 1).
Our method uses one static camera and one or more moving
cameras. In a brief preprocessing phase, the static camera
observes the dynamic object and determines a sequence of M
states of the repetitive motion which may be either periodic or
quasi-periodic motion and may include rigid transformations and
arbitrary object deformations, but the object must stay within a
working volume. We create a graph with a node for each of N

desired viewpoints of each state, resulting in a total of N x M
nodes. Subsequently during real-time capture, the static camera
classifies images to a state and the moving camera, which is
synchronized to the static camera, captures each state from
multiple viewpoints. To accelerate capture, we provide interactive
feedback to guide the user to the right place at the right time and
thus ensure desired sample coverage and reduce capture time.
Once each state is sufficiently sampled, acquisition is complete.
We then perform a silhouette-based volumetric reconstruction of
each state of the acquired object and use a space-time
optimization to align images over space and to stabilize the
motion over time. The motion state sequence can be rearranged in
order to produce new motion observable from novel viewpoints.
We have captured several real-world objects undergoing a variety
of repetitive motions. We demonstrate an efficient process,
renderings from novel viewpoints, new motion sequences of
captured objects, and multi-viewpoint captures not possible with a
static arrangement of multiple cameras.
Our main contributions are as follows:

Figure 1. Capturing Objects undergoing Repetitive Motions. a) A static camera observes the dynamic object and identifies the
unique states of the repetitive motion. b) Using the observed states and transitions, our algorithm constructs a finite state machine of
the motion. c) Acquisition uses a static camera and at least one moving camera to efficiently capture all motion states from all
desired viewpoints. d) Novel viewpoint renderings and motions are produced interactively for a moving observer (left) or for a static
observer seeing the motion over time (right).

a) Observed Sequence
ABCDEFGFHCIJAKALMBNOPDQEFGPOIBLMJAKABCRHDFGFHDCIBAKLMJAJSTUVWXATULXYSTUVWXSZTULXYZTUVXSZTU

b) Finite State Machine (partial)

A B C D E F G H I

c) Acquisition

State E State X

Example Extracted Motion Sequence:
 (ABCDEFGFHCIJSTUVWX)*

J T U V W X S……

d) Novel
Rendering

Static camera Moving camera Static camera Moving camera

viewpoint time

……

• An approach using as few as two cameras to acquire and
model objects undergoing repetitive motions thus enabling
novel viewpoint rendering and new motion sequences.

• An acquisition graph and interactive feedback mechanism
for ensuring desired image sample coverage and for reducing
the capture time to acquire repetitive motion over multiple
viewpoints and over time.

• An optimization method for aligning and registering images
observing repetitive motion both spatially and temporally.

2. Related Work
Our research builds upon work in image-based object acquisition
and repetitive motion analysis. While significant work exists in
object acquisition, acquiring dynamic objects is still a major
challenge for 3D geometry reconstruction [Hartley and Zisserman
2004] which often depends on establishing robust
correspondences and/or limits the types of dynamic objects (e.g.,
articulated rigid objects [Yan and Pollefeys 2006]).
Image-based rendering (IBR) methods attempt to address some of
the shortcomings of geometric reconstruction algorithms by
directly re-sampling a large collection of source images in order
to produce novel views of a captured object or scene, with no or
only approximate geometry (e.g., [McMillan and Bishop 1995;
Levoy and Hanrahan 1996; Gortler et al. 1996]). Capturing a
dynamic object typically requires an array of (statically-
calibrated) cameras. For example, J. Yang et al. [2002] uses 64
video cameras to capture a dynamic light field in real time.
Naemura et al. [2002] use special hardware to estimate depth in
real time and use a layered model to represent the scene. Wang et
al. [2005] and Wilburn et al. [2005] use optical flow to guide
spatial-temporal view interpolation. Other methods place the
camera around the scene in order to acquire sufficient samples to
reconstruct the scene geometry. Matusik et al. [2000, 2001]
compute a representation for the visual hull directly from the
background subtracted silhouette images. R. Yang et al. [2002]
model the dynamic scene by projecting each reference image onto
a series of planes that sweep the volume from back to front; and
each pixel is shaded according to color consistency. Carranza et
al. [2003] use silhouette images from multiple synchronized video
cameras of a human actor to estimate the motion parameters and
then to animate a human model for texture mapping. Zitnick et al.
[2004] use region based stereo algorithm to reconstruct the
dynamic scene and enables high quality free viewpoint video. All
these methods have the high-cost of requiring (many) statically-
installed cameras in order to obtain high quality results. The
camera setup is also tuned to a particular modeling technique; for
example, a planar array of cameras is good for capturing a light
field but not good for reconstructing the visual hull of an object.

Moreover, none of these approaches take advantage of the fact
that the observed motion is repetitive.
Motion analysis work finds repeating patterns in an image
sequence based on the assumption that 3D cyclic motion is
preserved under single image projection. For example, Allmen
and Dyer [1990] detect cyclic motion by finding repetitive
patterns in the spatial-temporal curves that are defined on spatial-
temporal surfaces caused by the motion. Cutler and Davis [2000]
measure the self-similarity of a segmented object under repetitive
motion and perform Time-Frequency analysis to characterize the
periodicities. These two methods handle motion evolving in-
place. Yet other methods handle global translation by alignment
[Liu and Picard 1998; Laptev et al. 2005] or by tracking features
[Seitz and Dyer 1997]. However, this kind of motion is not
confined to a working volume and thus is not strictly repetitive.
While these works analyze periodic motion, they do not focus on
building a dynamic 3D model of the observed object over time.
Recently, a new type of medium called video textures has
received research attention [Schödl et al. 2000]. A video texture is
an infinitely varying image sequence that enhances images from a
stationary viewpoint with projections of repetitive motions.
Video textures have also been extended to large field of view
panoramic images obtained by slowly rotating a planar camera
around a stationary central axis [Agarwala et al. 2005]. In both
cases, an input video clip is partitioned into states and smooth
transition points in the video are found in order to produce a
seemingly infinite loop of projected periodic and quasi-periodic
scene motion but only from one fixed viewpoint.
In contrast, we seek multi-viewpoint acquisition of repetitive
motions. We also wish to analyze the periodic motion and to take
advantage of the recurrence of the motion states in order to
improve the modeling of the observed dynamic object. Our
approach is more general than perfectly periodic and/or human-
motion specific methods. For example, Starck et al. [2005] use 10
cameras to capture multiple video sequences and use a motion
graph [Kovar et al. 2002] tuned for predefined human motions.
Similarly, Einarsson et al. [2006] present a method for capturing
cyclic and constant speed human motions by using a turntable and
a 1D camera array. Similar constant speed assumptions are used
to create a motion lumigraph for a toy helicopter in [Buehler et al.
2001]. With the help of a static camera, our method robustly and
during acquisition determines the states of arbitrary object
motion.

3. Motion States
Our method partitions repetitive motion into a discrete number of
states. The states are organized into a sequence that is
representative of the observed repetitive motion. Then, in real

Motion States
Identification

Real-time
Classification

Static Camera

Graph
Traversal

Reconstruction
and

Optimization

Novel View
and Motion
Generation

Moving
Camera(s)

User

Feedback

Motion States Image Acquisition

Object Modeling

Figure 2. System Pipeline. Our approach consists of 3 major components: motion states, image acquisition, and object modeling.

time, a captured image is classified as belonging to one of these
states. Figure 2 contains a summary of our system pipeline.

3.1 Repetitive Motion
We categorize object motions into several different types based
on the sequencing pattern of the states of the motion and we label
all periodic and high-multiplicity random motion as repetitive
motion. In particular, a static scene corresponds to a single state
that repeats indefinitely. A completely random motion means
every state is different and occurs only once. If some states appear
more than once, then, based on the frequency of the appearance of
the states, we define the motion as low multiplicity or high
multiplicity random motion. If a whole subsequence repeats itself
infinitely, the motion is periodic. Using the frequency of
repetition of the states of the motion within a single period,
periodic motion can also be sub-classified as low-multiplicity or
high-multiplicity. In our work, we call periodic and high-
multiplicity random motion repetitive motion. While periodic
motion can be captured and reproduced perfectly, the acquisition
of high-multiplicity random motion (or “quasi-periodic” motion)
implies that a sufficiently similar motion sequence can be
acquired. Our method is able to acquire objects undergoing such
repetitive motion because each state will appear multiple times.
For each appearance, acquisition strives to be at the right place at
the right time so as to efficiently capture all states from a desired
set of viewpoints in the viewing volume.

3.2 Identification and Classification
A single static, and uncalibrated, camera observes the dynamic
object in order to identify the sequence of states of the repetitive
motion as well as to classify a current image to one of the motion
states. Using a short image sequence captured during a
preprocessing phase, the motion is made to consist of one state for
each captured image. Since we assume projections of the same
state of the object motion are similar to each other, repetitions in
the motion sequence are identified by measuring the image-
difference between all pairs of captured images. Two states are
merged into a single state only if the image difference between
the representative images of the two states is below a predefined
threshold. The threshold value controls the overall quality of the
data fed to the modeling phase. A large threshold leads to a
smaller number of states, but images of the same state can vary
significantly. On the other hand, a small threshold leads to a
larger number of states, but images within each state are very
similar. The merging process repeats iteratively until no states are
similar enough and a compact set of states is obtained.
Using the computed states and state transitions, the algorithm
constructs a finite state machine that is representative of the
observed repetitive motion. Although one would expect a
perfectly repeating set of states for periodic motion, both periodic
and quasi-periodic motion consist of a repeating motion sequence
with spurious states appearing. In the case of periodic motion, the
discrete time sampling of the camera may cause an image to be
occasionally captured in between other motion states. For
example, a pendulum can be observed from the static camera as
predominantly having the state sequence (ABCDCBA)* but
sometimes the sequence (ABCDCEA) may appear. A quasi-
periodic motion is one that does not exactly repeat but exhibits
significant similarities over time. The observed states and
transitions that appear with frequency greater than a chosen
threshold are placed into a state transition diagram, thus creating a

finite state machine describing the major component of the
motion. Our algorithm finds the largest strongly connected
component of the state machine (thus ignoring dead-ends) and
extracts those states as the representatives of the repetitive motion
to be acquired (similar to the graph pruning in [Kovar et al.
2002]).
During live capture, our system matches the input image to
cached images for each representative state in order to determine
the current state of the repetitive motion. Our method performs an
image-differencing operation and selects the best thresholded
match as the current state. If an input image could not be matched
to a state, it is discarded. This implies that the spurious motion
states of the repetitive motion are appropriately ignored since they
do not help to sample the desired motion.
Figure 3 shows an example process of identifying motion states
and classifying input images. Given an initial input sequence of
34 frames, the system groups the motion into a high-multiplicity-
periodic-motion sequence of only 7 states, and one spurious state
which is discarded (state H in this case).

4. Image Acquisition
Given a desired viewing volume and viewpoint density,
acquisition strives to sample all motion states from all desired
viewpoints. A naïve approach might either randomly move the
camera around the object and potentially never fully sample all
motion states from all desired viewpoints; or perform a lengthy
capture that places a movable camera at each desired viewpoint
and captures an image sequence long enough to observe the entire
repetitive motion sequence. However, due to the multiplicity of
the motion states, this may not be optimal. For example, consider
the motion of a pendulum or a fan: the left-to-right swing and
right-to-left swing has many similar states. Instead of capturing an
entire period at one viewpoint, a more efficient capture path will
place the camera at one position, capture the left-to-right swing,
then move the camera to the next position, capture the right-to-left
swing. To generalize the notion to arbitrary repetitive motion
sequences, potentially containing multiple repeating
subsequences, we encode the state and viewpoint data into an
acquisition graph and then the acquisition problem becomes how
to efficiently traverse this graph.

4.1 Acquisition Graph
The images used for modeling the object and its motion are
captured by at least one moving camera synchronized with the
static camera. Since the static camera is able to determine the
current motion state, the moving camera is, in fact, at all times
aware of the current motion state. Thus, at every frame, the

H

a) Observed state sequence
ABCDBCDBCEFGABCHFGABCEFGABCDBCEFGA

b) Computed finite state machine

C B A
E

F G

D

Figure 3. Motion States. a) Using the static camera, the
observed repetitive motion is partitioned into states and state
transitions. b) Both periodic and quasi-periodic motions are
approximated by a finite state machine.

moving camera is capturing a view of a known motion state from
a potentially different viewpoint.
We place the acquired images into the nodes of a graph. For each
of N desired viewpoints and for each of M motion states, there is a
node in this graph, which results in N x M nodes in total. We label
each node (v, s) corresponding to a viewpoint v observing a state
s. Edges in this graph represent a possible movement from one
desired viewpoint to another within an interval of time t. During
time t (which is typically chosen to be one frame time), the object
changes from motion state sa to sb. If the camera is fast enough to
travel from a viewpoint v1 to a viewpoint v2, there is an edge from
node (v1, sa) to node (v2, sb). A longer time interval t or a faster
camera produces more edges between a node and its neighbors.
Figure 4a shows an example acquisition graph for the motion
sequence (ABCABCABCDEDEDE)*. It contains all the nodes for
five states and three viewpoints and all the valid edges assuming
the spacing between desired viewpoints is equal to what the
camera can move in one frame time.

4.2 Graph Traversal
The acquisition goal is to sample the object and its motion by
efficiently visiting all nodes in the graph. Using a moving
(handheld) camera to acquire images may result in many different
types of graph traversals. Figure 4b-d show that various types of
camera motion resulting in different traversals of an acquisition
graph. Figure 4b depicts the traversal sequence for the intuitive
motion of simply “zigzagging” the camera in front of the object
(e.g., visiting viewpoints 1-2-3, then 3-2-1, etc. in this 1D
example). Traversal starts at A-1, reaches E-3, and then the
motion sequence restarts. Traversal continues from A-3 to E-1
and then goes back to A-1 and repeats indefinitely, leaving four
nodes un-sampled. Although it is dependent on the viewpoint
distribution, number of states, camera velocity, and motion
sequence, such a simple unplanned motion might take a long time
to capture all desired images or, in fact, not ever visit all nodes.
Figure 4c represents a moving camera waiting for the entire
repeating sequence to complete at each viewpoint. This approach
always completes but might take a long time. On the other hand,
Figure 4d shows the results of a moving camera following an
ideal traversal sequence which yields a full sampling in
potentially much less time.

4.3 Interactive Feedback
To improve live capture, we guide the moving camera to the right
place at the right time. This guidance can serve to control a

mechanical arm or as interactive feedback provided to the user
holding a handheld camera. Our system provides immediate
visual feedback to the user on the computer screen. The feedback
system continuously estimates the camera’s position, orientation,
and velocity using a mechanically tracked arm attached to the
moving camera (e.g., a MicroScribe G2LX arm). It also estimates
the state of the motion in real time. According to the current
camera viewpoint and the motion state, the system marks the
corresponding node in the acquisition graph as sampled. In order
to fully sample the motion, the user aligns the camera with one
desired viewpoint and waits until all the states are sampled. Then
the system signals the user to move to the next desired viewpoint.
Our feedback system can also guide the user to sample a subset of
images very quickly when a coarse preview of the reconstructed
object and its motion is desired. We use a heuristic search method
to find the best place and direction for the user to move the
camera in order to visit the un-sampled nodes in the graph as soon
as possible. Starting at the node in the graph closest to the current
viewpoint and given the movement direction, a recursive look-
ahead of several steps is used to choose the next best edges (and
viewpoints) that should be visited. Edges to nearby and un-visited
viewpoints of the graph are preferred. To allow a typical smooth
handheld viewpoint path, only viewpoints within a maximum
angular deviation from the current movement direction are
considered. This also prunes the recursive look-ahead tree and
improves computational performance. As time advances, visited
nodes are marked as such, and the last newly visited node
becomes the current node. Furthermore, the set of edges of the
graph can be quickly updated based on changes to the camera’s
position and speed.

5. Object Modeling
Our approach supports capturing and modeling objects using
images with any desired viewpoint density and permits
rearranging the captured object motion to produce novel motion
sequences. For example, light field methods require a large
number of planar images and small spacing between cameras.
Structure from motion techniques need fewer images but require
robust correspondence. Visual hull methods require a relatively
small number of views but these views should observe the object
from very different viewing directions. In this work, we model the
dynamic object using a volumetric reconstruction algorithm. We
also perform a spatial-temporal optimization to improve the
captured motion states and their rearrangement.

Figure 4. Example Graph Traversals. We show the graph and several traversals for the sequence (ABCABCABCDEDEDE)*. (a)
The graph for 3 viewpoints (1-3), the 5 states (A-E), and all valid transition edges. (b) A simple zigzag pattern may lead to a very long
capture sequence or, as in this example, never acquires all states from all viewpoints. (c) Staying at the same viewpoint until the entire
motion repeats always yields a complete sampling but takes potentially a long time (45 time units in this example). (d) On the other
hand, an ideal traversal completes in only 15 time units in this example.

(b) (a) (c) (d)

1

2

3
x 2

x 3x 3

x 2

x 3

x 2

x 3 x 3

x 2

x 3
x 2

x 3 x 3

x 2

x 3

x 2

x 2

A B C D E A B C D E A B C D E A B C D E

1

2

3

1

2

3

1

2

3

5.1 Volumetric Reconstruction
We use a silhouette-based volumetric reconstruction method to
build a voxel-based model for each state [Slabaugh 2004]. A
silhouette map is computed for each frame from the moving
camera by subtracting a certain background color. Camera pose
for each frame is estimated by tracking feature points from a set
of markers placed around the object. Voxels are then projected to
each frame and the volumetric model is reconstructed by rejecting
voxels that project outside the silhouette images. To render the
object from a new viewpoint, we blend the projective texture
maps of nearby reference images. Our reconstruction takes about
2-5 minutes per state on 6x6x6 voxels.

5.2 Spatial-Temporal Optimization
To improve the reconstruction, we perform an optimization of the
camera frame poses within each motion state and among all
motion states (Figure 5). The inaccuracies in feature tracking and
calibration process as well as the discrete number of motion states
lead either to visual popping during rendering when switching
textures or to unnecessary image misalignment during a
reconstructed motion sequence. To alleviate this, we reduce the
re-projection error amongst images of the same motion state and
improve the consistency of the object projection for an
approximately stationary viewpoint over time.
Our optimization process minimizes the re-projection error using
a sequence of key-frames. The motion consistency of the object is
improved by choosing as key frames the sequence of sampled
images over time (motion states) whose center-of-projection
moves the least. Then, starting with the second motion state, the
re-projection error of its key frame image to the key frame of the
previous motion state is successively minimized by changing the
pose of the most recent key frame. The re-projection error of the
non-key frames to their respective key frames per motion state is
diminished by changing the non-key frame poses. The non-key
frames closest to the key frame are optimized first. Images far
from the key frame are optimized to a nearby already optimized
non-key frame.

5.3 Motion Rearrangement
Our method allows us to rearrange the order of the motion states
producing new motion sequences and repetitive motions. The
state transition diagram contains all the potential states and
transitions. Similar to video textures [Schödl et al. 2000], we
produce new and different repetitive motions by walking through
the finite state machine in different ways. However, since for each
state we already have sampled images and a reconstructed model,
the observer can freely move the virtual viewpoint during the new
motion sequence. For example, if a motion is
(ABABABABCDCDCD)*, then we can change it to (ABCD)*,
(BCDCDA)*, or to (AB)* and in all cases allow the observer to

continuously change the viewpoint.

6. Results and Discussion
We have captured several objects using our approach and
prototype implementation of one static camera and one moving
camera. Our prototype system is implemented in C++ using
standard OpenGL, GLUI, GLUT, and OpenCV libraries. The
system uses two synchronized Point Grey Research (PGR) Flea
cameras connected to a standard PC. The cameras capture color
images of the object at 1024x768 pixel resolutions and at a frame
rate of 15 Hz and are internally calibrated. State classification is
done at the same frame rate using quarter-resolution images.
Table 1 lists four captured datasets, puppy, flag, hamster, and fan,
each undergoing a different repetitive motion. For each dataset,
we list the amount of time spent capturing images, the number of
sampled states (on average, several spurious states are ignored per
dataset), the number of captured viewpoints per state, the total
number of stored images used for reconstruction, and the
multiplicity of the motion. Since the motion does not need to be
uniform, the multiplicity number only serves as an approximate
measure of the number of times each state appears during an
average cycle of the repetitive motion. We also list the final
storage of the voxel models and textures in Table 1.
Figure 1 depicts the acquisition and reconstruction pipeline using
the puppy and flag dataset. For the puppy, the static camera
observes 24 states which re-appear in an approximately repeating
sequence of 155 states (Figure 1a). From the observed states and
transitions, our method automatically builds a finite state machine
of the motion sequence (Figure 1b). During acquisition, the
moving camera captures multiple views of each state and places
them into a bin of images per state (Figure 1c). Our interactive
feedback system guides the user through acquisition and ensures a
complete and compact acquisition of the dynamic object and its
motion. Only 624 images out of 6 minutes video (~5400 frames)
are actually stored on disk for the puppy dataset. After object

Dataset Capture Time Valid States No. Viewpoints Images Multiplicity Storage (Voxel+Texture)

Puppy ~ 6 minutes 24 24 624 5.96 53M + 301M

Flag ~ 3 minutes 21 34 714 1 26M + 355M

Hamster ~ 3 minutes 10 29 290 11 52M + 126M

Fan ~ 4 minutes 86 12 1032 1.67 139M + 516M

Table 1. Datasets. We list the acquisition times and characteristics of the four datasets used for testing our method.

Figure 5. Optimization. Our method performs a space-time
optimization: images within the same motion state are
optimized to key-frames which correspond to images of
sampled motions whose center-of-projection moves the least.

A B C D

motion state

viewpoints (on a line)

object
KA key frames KC KB

KD

reconstruction, a viewer can either freeze time and observe the
object from a sequence of novel viewpoints (Figure 1d, left) or
freeze the viewpoint at a new location and observe the motion
over time (Figure 1d, right).
By efficiently traversing the acquisition graph, a user can sample
an object and its motion with guaranteed completion and in
relatively less time as compared to ad hoc moving-camera paths.
Using the actual motion sequence of two datasets, we
experimented in simulation with three camera speeds, three
desired number of viewpoints, and four graph traversals. Table 2
shows three representative cases for each dataset. Using an
incremental approach that remains at each desired viewpoint for
an entire period may take significant time. Waving the camera in
front of the object during its motion either takes a long time or
never completely samples all states and viewpoints. In these
examples, waving the camera captured only 70% of the images.
On the other hand, our method outperforms the incremental
approach and reaches 70% completion faster than zigzagging and
always completed the sampling.
Since our approach does not require a large static installation of
cameras, we can capture the motion using camera arrangements
that would normally cause self-occlusions. For example, Figure
6b demonstrates a rendering from a novel viewpoint using
captured images of the motion state obtained in front of and closer
to the object as compared to the images used in Figure 6a for the
same novel viewpoint. Thus, our method enables us to obtain
close-ups of parts of the motion and produce seemingly higher-
resolution imagery where and when desired.
Our space-time optimization process improves the rendering

quality of the reconstructed objects and their motion. Figures 6c-d
show the improved alignment between reference images before
and after optimization. While the optimization process is
automatic and does improve the quality, it comes at an additional
computational cost of approximately 30-160 minutes per dataset.
Finally, the repetitive motions of any of our datasets can be
altered yielding new and different motions. The user specifies a
new way to traverse the state transition diagram and can still
freely move the virtual viewpoint. Visually, this corresponds to
rearranging the sequence of motion states observed in Figure 1d.
More examples are in Figure 7 and in the paper video.

7. Conclusions and Future Work
We have introduced an efficient multi-viewpoint acquisition
schema for dynamic objects undergoing repetitive motions. Our
system uses only two cameras yet obtains samples of each motion
state of a dynamic object from multiple viewpoints. By analyzing
the motion in a pre-processing stage, we avoid storing a large
number of redundant images and choosing a useful subset from
them. By constructing an acquisition graph and providing
feedback to the user, all motion states and desired viewpoints can
be efficiently sampled. These samples are fed to a later modeling
phase for reconstruction, optimization, and rendering of a 3D
dynamic object. Furthermore, the captured repetitive motions can
be altered and rearranged yielding new motions and still have
viewpoint freedom. Our approach is also independent of the
modeling technique in the sense that we can obtain images at any
desired viewpoint density. Finally, our method also provides
opportunities for capturing images from viewpoint configurations

a) b) c) d)
Figure 6. Close-up Views and Optimization. (a) A view of the hamster only using images from a far. (b) Same viewpoint and
time-instant of the motion but using close-up image that produces crisper, effectively higher-resolution, images. Unlike static multi-
camera systems, we can place the moving camera in front of a previously captured viewpoint and obtain unoccluded images at
multiple distances from the object. (c) Novel viewpoint rendering of flag without image optimization and (d) with optimization.
Notice the reduced blurriness, especially noticeable around the stars.

Dataset Camera Speed No. Views Incremental (100%) Zigzag (70%) Our Method (70%) Our Method (100%)

0.4 4x4 1968 555 210 1290

0.2 8x8 7872 1140 720 3990

Hamster

0.1 16x16 31488 25155 3570 15930

0.4 4x4 2752 1125 1080 1935

0.2 8x8 11008 ∞ 4260 7800

Puppy

0.1 16x16 44032 ∞ 17520 31995

Table 2. Graph Traversals. We experimented in simulation with two datasets using different camera speeds, number of views, and
traversal/motion methods. Camera speed is in terms of a viewing area of size one. Acquisition time is in units of per-frame time. Our
traversals are consistently better.

not feasible with static multiple camera setups.
Our system has several current limitations as well potential
directions for future work. First, we assume moving objects
remain in a compact working volume. We would like to
investigate how to capture local repetitive motion but under
global translation and rotation. Second, we would like to study the
theoretical aspect of how many static views are enough to
uniquely identify all repetitive motions. Third, we would like to
implement our system with a robot arm, which is controlled by
the feedback system. This will yield better reconstruction quality
and 360 degree acquisition as compared to handheld cameras.
Finally, in our approach the quality of view-dependent
illumination effects depends on the density of image capture; we
would like to extend our technique to include highly-specular and
inter-reflective objects (e.g., a water fall, candles, etc.) so as to
expand our range of supported object types.

Acknowledgement
We would like to thank the reviewers for their suggestions to
improve this paper. This work was supported by NSF CCF
0434398 and by a Purdue Research Foundation grant.

References
ALLMEN, M. DYER, C.R., “Cyclic Motion Detection using

Spatiotemporal Surfaces and Curves”, Int’l Conf. on Pattern
Recognition, pp. 365-370, 1990.

AGARWALA, A., ZHENG, K.C., PAL, C., AGRAWALA, M., COHEN,
M., CURLESS, B., SALESIN, D., and SZELISKI, R., “Panoramic
Video Textures”, ACM Transactions on Graphics, 24, 3, 2005.

BUEHLER C., BOSSE, M., MCMILLAN, L., GORTLER, S., and
COHEN, M., “Unstructured Lumigraph Rendering”, ACM SIGGRAPH,
pp. 425-432, 2001.

CARRANZA, J., THEOBALT, C., MAGNOR, M.A., and SEIDEL, H.-P.,
“Free-Viewpoint Video of Human Actors”, ACM Transactions on
Graphics, 22, 3, 2003.

CUTLER, R. and DAVIS, L., “Robust Real-Time Periodic Motion
Detection, Analysis, and Applications”, IEEE Trans. on Pattern
Analysis and Machine Intelligence, 22, 8,781-796, 2000.

EINARSSON, P., CHABERT, C.-F., JONES, A., MA, W.-C., LAMOND,
B., HAWKINS, T., BOLAS, M., SYLWAN, S., and DEBEVEC, P.,
“Relighting Human Locomotion with Flowed Reflectance Fields”,
Eurographics Workshop on Rendering, 2006.

GORTLER, S.J., GRZESZCZUK, R., SZELISKI, R., and COHEN, M.F.,
“The Lumigraph”, ACM SIGGRAPH, pp. 43-54, 1996.

HARTLEY, R., and ZISSERMAN, A., “Multiple View Geometry In
Computer Vision”, Cambridge University Press, 2004.

KOVAR, L., GLEICHER, M., and PIGHIN, F., “Motion Graphs”, ACM
Transactions on Graphics, 21, 3, 2002.

LAPTEV, I., BELONGIE, S.J., PEREZ, P., and WILLS, J., “Periodic
Motion Detection and Segmentation via Approximate Sequence
Alignment”, Int’l Conf. on Computer Vision, pp. 816-823, 2005.

LEVOY, M. and HANRAHAN, P., “Light Field Rendering”, ACM
SIGGRAPH, pp. 31-42, 1996.

LIU, F. and PICARD, R.W., “Finding Periodicity in Space and Time”,
Int’l Conf. on Computer Vision, pp. 376-383, 1998.

MATUSIK, W., BUEHLER, C., RASKAR, R., GORTLER, S.J., and
MCMILLAN, L., “Image-based Visual Hulls”, ACM SIGGRAPH, pp.
369-374, 2000.

MATUSIK, W., BUEHLER, C., and MCMILLAN, L., “Polyhedral Visual
Hulls for Real-time Rendering”, Eurographics Rendering Workshop,
2001.

MCMILLAN, L. and BISHOP, G., “Plenoptic Modeling: An Image-Based
Rendering System”, ACM SIGGRAPH, pp. 39-46, 1995.

NAEMURA, T., NITTA, T., MIMURA, A., and HARASHIMA, H.,
“Real-Time Video-Based Modeling and Rendering of 3D Scenes”,
IEEE Computer Graphics and Applications, 22, 2, pp. 66-73, 2002.

SCHÖDL, A., SZELISKI, R., SALESIN, D.H., and ESSA, I., “Video
Textures”, ACM SIGGRAPH, pp. 489-498, 2000.

SEITZ, S.M. and DYER, C.R., “View-Invariant Analysis of Cyclic
Motion”, Int’l Journal of Computer Vision, 25, 3, pp. 231-251, 1997.

SLABAUGH, G., CULBERTSON, W., MALZBENDER, T., STEVENS,
M., and SCHAFER, R., "Methods for Volumetric Reconstruction of
Visual Scenes", Int’l Journal of Computer Vision, 57, 3, pp. 179-199,
2004.

STARCK, J., MILLER, G., and HILTON, A., “Video-based Character
Animation”, Symp. on Computer Animation, 2005.

VEDULA, S., BAKER, S., and KANADE, T., “Image-based Spatio-
temporal Modeling and View Interpolation of Dynamic Events”, ACM
Transactions on Graphics, 24, 2, pp. 240-261, 2005.

WANG, H. and YANG, R., “Towards Space-Time Light Field
Rendering”, ACM SIGGRAPH Symp. on Interactive 3D Computer
Graphics, pp. 125-132, 2005.

WILBURN, B., JOSHI, N., VAISH, V., TALVALA, E.-V., ANTUNEZ,
E., BARTH, A., ADAMS, A., HOROWITZ, M., and LEVOY, M.,
“High Performance Imaging Using Large Camera Arrays”, ACM
Transactions on Graphics, 24, 3, 2005.

YAN, J. and POLLEFEYS, M., “Automatic Kinematic Chain Building
from Feature Trajectories of Articulated Objects”, Computer Vision and
Pattern Recognition, pp. 712-719, 2006.

YANG, J.C., EVERETT, M., BUEHLER, C., and MCMILLAN, L., “A
Real-Time Distributed Light Field Camera”, Eurographics Workshop
on Rendering, 2002.

YANG, R., WELCH, G., BISHOP, G., “Real-Time Consensus-Based
Scene Reconstruction using Commodity Hardware”, Pacific Graphics,
2002.

ZITNICK, C.L., KANG, S.B., UYTTENDAELE, M., WINDER, S., and
SZELISKI, R., “High-Quality Video View Interpolation using a
Layered Representation”, ACM Transactions on Graphics, 23, 3, 2004.

g)

Figure 7. Example Novel Views. (a-b) Two novel renderings of the fan dataset, (c-d) and of the hamster dataset. (e) Screen-shot of
underlying 3D voxel model for hamster. (f-g) Two novel renderings of the puppy dataset while sitting (f) and while standing (g).

a) b) c) d) e)

f)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

