
EUROGRAPHICS 2014 / B. Lévy and J. Kautz
(Guest Editors)

Volume 33 (2014), Number 2

Designing Large-Scale Interactive
Traffic Animations for Urban Modeling

I. Garcia-Dorado D. G. Aliaga S. V. Ukkusuri

Purdue University, IN, USA

Figure 1: Pipeline. Our approach enables a designer to specify a vehicular traffic behavior and the system will compute
what realistic 3D urban model yields that behavior. a) The user creates/load a road network and defines the job and people
distribution; b) inputs are used to simulate traffic and the user draws a desired new traffic behavior (or traffic optimization).
Our system iteratively simulates and alters the model so as to find c) solutions that meet the desired goals and/or costs.

Abstract
Designing and optimizing traffic behavior and animation is a challenging problem of interest to virtual environ-
ment content generation and to urban planning and design. While some traffic simulation methods have appeared
in computer graphics, most related systems focus on the design of buildings, roads, or cities but without explic-
itly considering urban traffic. To our knowledge, our work provides the first interactive approach which enables
a designer to specify a desired vehicular traffic behavior (e.g., road occupancy, travel time, emissions, etc.) and
the system will automatically compute what realistic 3D urban model (e.g., an interconnected network of roads,
parcels, and buildings) yields the specified behavior. Our system both altered and improved traffic behavior in
novel procedurally-generated cities and in road networks of existing cities. Our urban models contain up to 360
km of roads, 300,000 vehicles, and typically cover four hours of simulated peak traffic time. The typical editing
session time to "paint" a new traffic pattern and to compute the new/changed urban model is two to five minutes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—I.3.6 [Computer Graphics]: Methodology and Techniques—

1. Introduction

Interactive modeling of urban spaces, with high realism and
accurate behavior, is a fundamental challenge in computer
graphics. Vehicular traffic is a ubiquitous dynamic activ-
ity in real-world cities which makes its simulation a neces-
sity for realistic interactive urban environments. Moreover,
with more than half of the world population living in cities,
there is considerable interest in large-scale traffic simula-
tion, design, and visualization. Virtual environment applica-
tions with a growing need for realistic vehicle traffic include
virtual tourism, games and films, navigation services, traffic
monitoring, eco-routing, and urban planning and re-design.

Considerable effort has been devoted to urban modeling.
Vanegas et al. [VAW∗10] and Musialski et al. [MWA∗13]
provide surveys of urban procedural modeling and urban
3D reconstruction. Schreckenberg and Sharma [SS11] and
Pelechano et al. [PAB08] provide excellent crowd simula-
tion and animation surveys. Traffic simulation and animation
for computer graphics has received some recent attention
(e.g., [GVK06,SvdBLM11,SWML10,SWL11,WSL13]) but
has also only been investigated in a forward fashion (i.e.,
simulate traffic for a given road network).

The challenges for our work are i) simulating realistic traf-
fic flows at interactive rates, and ii) controlling traffic in an

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



I. Garcia-Dorado & D. G. Aliaga & S. V. Ukkusuri / Designing Large-Scale Interactive Traffic Animations for Urban Modeling

easy and intuitive manner. Traffic is well recognized to be
difficult to simulate and control due to its highly nonlin-
ear behavior, inherent complexity, and emergent behavior.
For example, a local change to the network might have an
adverse effect elsewhere in the network (e.g., blocking an
important avenue in one neighborhood might cause a long
traffic delay in another part of the city due to traffic redirec-
tion, or increasing the speed limit of a road segment might
seem like it will improve travel time, but it might in fact
attract more vehicles and ultimately slow down transit in
the area). Trial-and-error and keyframe-based control tech-
niques might work for a small number of intersections but
not for interactively designing large-scale traffic animations.

We present a novel methodology for automatically cre-
ating a 3D urban model (e.g., an interconnected network
of roads, parcels, and buildings) that exhibits a desired and
realistic vehicular traffic behavior (Figure 1). Our method
provides an interactive virtual paintbrush tool whereby the
user can specify i) the desired traffic for a new urban model
(e.g., for games and films, navigation services, or virtual en-
vironments in general), or ii) can improve or alter traffic in a
provided urban model to assist traffic planners in obtaining
desired values for standard metrics such as road occupancy
(i.e., percentage of the segment that is occupied), travel time,
or CO emission level. Our solution includes a novel traffic
microsimulation engine and an algorithm to manipulate traf-
fic behavior. To the best of our knowledge, our framework is
the first interactive method to automatically generate a real-
istic 3D urban model that yields a specified traffic behavior.

Our traffic microsimulation engine yields both the de-
tailed per-vehicle data needed for traffic animation and the
fast performance needed for our design strategy. The sys-
tem we create achieves its significant speedup by extending
microsimulation with a novel traffic atlas concept, a new ap-
proximate solution to a time-dependent shortest path prob-
lem, and an efficient adaptation of car-following, lane chang-
ing, and gap-acceptance models.

Our traffic manipulation strategy explores which set of
urban model changes brings the simulated traffic behavior
closer to the interactively specified behavior. While there
are several ways to explore such a large solution space, our
method is based on Markov Chain Monte Carlo (MCMC)
and inspired by recent inverse procedural modeling of 2D in-
put [SBM∗10], 3D shapes [TLL∗11], or cities [VGDA∗12].

Our framework has created 3D urban models containing
up to 360 km of roads, 300,000 vehicles, and typically span-
ning four hours of simulated time. Our system is estimated to
be 77 to 81 times faster for large road networks as compared
to other traffic simulators (e.g., [SUM, SWML10]), and it
provides per-vehicle (disaggregated) information. Our sys-
tem has altered traffic behavior in novel cities as well as
in road networks from OpenStreetMap [OSM] for Boston,
Manhattan, and Madrid. A typical total interactive design
time is two to five minutes.

Our main contributions include

• a fast traffic microsimulation engine including per-vehicle
simulation, lane changing, car following, and intersection
modeling (i.e., traffic lights, stop signs); our engine ex-
ploits our traffic atlas concept and our efficient approxi-
mation of time-dependent shortest path;

• a traffic manipulation framework that enables specifying
a desired traffic behavior (and thus animation) and auto-
matically generating the underlying urban model includ-
ing road, parcel, and building geometries; and

• a road optimization method that reduces travel time or CO
emission, for example, with a minimum change (i.e., cost)
to the original road network.

2. Previous Work

2.1. Procedural Road Modeling

Procedural road modeling has received significant inter-
est (e.g., [VGDA∗12, CEW∗08, GPGB11]). However traf-
fic behavior is not simulated during design. Weber et
al. [WMWG09] simulate traffic flow to estimate road widths
and to improve a land use simulation. Their simulation only
performs a stochastic sampling of a subset of all trips and es-
timates road occupancy. A detailed traffic microsimulation is
not used.

2.2. Traffic Simulation

Traffic simulation/flow models can be categorized into the
following three broad categories.

• Microscopic models simulate traffic interaction at an indi-
vidual vehicle level including quantifying driver behav-
ior, vehicle spacing, headway, speeds and lane chang-
ing (e.g., [MAT]SIM, MITSIM [YK96], [SUM]O, and
[VIS]SUM). The key drawbacks are (i) agent-level cali-
bration and (ii) large computational time.

• Macroscopic models provide aggregated representations
of traffic (e.g., [LMS07, Ngo11]). Traffic is modeled as a
continuum based on hydrodynamic kinematic wave equa-
tions using the fundamental relationships of speed, flow,
and occupancy [Pay71]. These models are faster but lack
realism (and data) of individual vehicle behavior.

• Mesoscopic models simulate individual vehicles, but ve-
hicle movement (or flow) is governed by macroscopic re-
lationships rather than detailed per-car models.

All these simulation models are "forward generating" in the
sense that traffic is simulated for a given road network. In
contrast, we seek an interactive method which finds city-
scale urban geometry yielding a desired traffic behavior.

2.3. Traffic Design and Animation

Network (re)design to satisfy a set of traffic objectives is
studied in the transportation community (e.g., [SUM09]).
Often solutions are formulated as bi-level leader-follower
games typically known as Stackelberg games [SBUH11].
However, it is well known that these types of problems are

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley &

Sons Ltd.



I. Garcia-Dorado & D. G. Aliaga & S. V. Ukkusuri / Designing Large-Scale Interactive Traffic Animations for Urban Modeling

NP-hard. Approximations are typically analytical optimiza-
tions at non real-time speeds. Recently, within the com-
puter graphics community, Go et al. [GVK06] animate ve-
hicles using control and motion planning. Van den Berg et
al. [SvdBLM11] reconstruct and visualize continuous traf-
fic flows from discrete data provided by traffic sensors.
Sewall et al. [SWML10] extend a continuum based (i.e.,
macroscopic) approach to include some lane and speed limit
changes. Sewall et al. [SWL11] extend the method to include
microsimulation in selected parts of the road network while
obtaining roughly similar performance. Similar to Section
2.3, all these methods are also forward-generating. In con-
trast, our method supports our novel traffic design concept.
Further, Sewall et al. [SWML10] claims a performance of
about 100x over real time; our method yields a microsimu-
lation at 9000x improvement over real-time.

3. Overview

As an overview, we describe the initial road network, sum-
marize our interactive traffic editing system, and highlight
how the road network can be automatically changed.

3.1. Initial Road Network

Our method uses a well-connected initial road network with
lanes and intersections obtained from OSM or from an ur-
ban procedural modeling engine. In both cases, we store
the road network as a directed graph. Each edge (i.e., road
segment) stores the number of lanes, the lane directionali-
ties, road geometry, to be computed probability, road width,
and speed limit. Each node (i.e., intersection) stores whether
there is a traffic signal, stop sign, or a right-of-way. Our
system’s urban procedural modeling engine is an enhanced
version of the Vanegas et al. [VGDA∗12] that was inspired
by CityEngine [ESR]. Our engine uses high-level procedu-
ral parameters with a focus on road geometry. Our engine
takes as input a terrain, a distribution of people and jobs,
and several stylistic parameters. Then, it generates a road
network (of highways, avenues, and collector roads), sub-
divides areas enclosed by roads into parcels, and places a
building structure inside each parcel based on whether it is
residential (i.e., only people are located there), commercial
(i.e., only jobs are located there), or mixed-use. The building
is one of several predefined types.

3.2. People and Jobs Distribution

Our system requires storing and modifying the distribution
of people and jobs over the urban area. While we could store
people/jobs as spatially-located agents, it would be hard (and
inefficient) to relocate them during traffic manipulation. In-
stead, we store them as Gaussian probability distributions
over a regular grid of cells – typically 200x200 meter cells.
To sample the people or jobs distribution, we first randomly
choose a cell proportional to its Gaussian probability distri-
bution. Then, we find values within the cell by performing a
2D sampling of its Gaussian distribution.

Figure 2: Traffic Zones. a) The user can "paint" one or
more traffic zones to specify a traffic behavior. b) Each traffic
zone has an area of influence that may be altered during the
traffic manipulation algorithm.

3.3. Traffic Zone Specification

The designer uses a virtual paint brush to specify a set of
K traffic zones Z = {Z1,Z2, . . . ,ZK} each with desired con-
straints or objectives for its contained traffic (Figure 2).
Each traffic zone is modeled as a union and/or difference of
user drawn circles (or polygons). Further, individual streets
can be added/removed from traffic zones. The zone can be
specified as constrained (black) or unconstrained. If uncon-
strained, the paint color indicates whether the traffic is to
increase (red) or decrease (green).

3.4. Urban Model Solutions

Given an urban model, road network, and traffic zones, our
traffic manipulation strategy explores a set of road network
and model changes to the initial urban model so that it better
satisfies the specified traffic behavior. Potential changes are
selected from a set of topology-preserving (i.e., the connec-
tivity of the roads does not change) and topology-changing
(i.e., roads are added or deleted) road network change types.
After a change, our traffic simulator is executed to predict
the effect of said changes. Traffic editing can be done for:

• design - useful to devise a desired traffic behavior for pro-
cedural models or content generation; or

• optimization - useful to minimize cost once a goal traffic
behavior has been sufficiently achieved.

4. Traffic Simulation

Traffic is simulated over many small time steps (e.g., Δt ∈
[0.1,0.5] secs). All our traffic-related models and parame-
ters stem from well-known traffic simulation literature and
are considered important in practice. First, our simulator ex-
ecutes per-vehicle trip planning. In each simulation step, a
car’s trip plan is used to update its position, velocity, and
acceleration while inspecting the network, others cars, and
intersections. Finally, we compute traffic performance met-
rics.

4.1. Trip Planning

If not provided as input, we augment the people/jobs distri-
bution of the urban model with individualized trip plans con-
sisting of a randomized schedule and desired route(s). Each
person is assigned a home location and a job location. Start-
ing at different times during the simulation period (e.g., 6

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons
Ltd.



I. Garcia-Dorado & D. G. Aliaga & S. V. Ukkusuri / Designing Large-Scale Interactive Traffic Animations for Urban Modeling

to 10 am), the vehicle departs its home location to reach the
employment location and returns at a later time. To simu-
late trip chaining, for some vehicles additional random des-
tinations are added during the simulation period. To com-
pute each vehicle’s route, we approximately solve a time-
dependent shortest path (TDSP) problem. Normally, solving
the TDSP problem requires computing the effective travel
time of each lane segment during all time steps within the
simulated period. The effective travel time is used to update
the shortest paths for all vehicles. This process repeats until
the effective travel time does not significantly change (i.e.,
equilibrium). This methodology is very time consuming and
the update time is not bounded. In contrast, our approxi-
mate solution uses average travel time per lane (instead of a
sampling of travel times during the simulated period), route-
source grouping (Section 4.1.1), and progressively-decaying
route updating (Section 4.1.2) which bounds the number of
passes. The result is a fast approximate solution to TDSP
(Section 6).

4.1.1. Route-Source Grouping

The first simplification assigns each vehicle to the intersec-
tion closest to their source position (e.g., home, office). Di-
jsktra’s shortest path algorithm computes the shortest path
from a vertex to all other vertices. Thus, rather than execut-
ing Dijkstra for each vehicle during each update pass, we ex-
ecute it only for each graph vertex (i.e., intersection) having
at least one vehicle assigned to it. Hence, the number of exe-
cutions of Dijsktra’s algorithm is proportional to the number
of vertices times the number of update passes. In practice, it
is even less since only a fraction of the vertices correspond to
home or job locations. As an example, for a graph with 3000
intersections and 200,000 vehicles, we update all vehicles’
shortest paths in only 0.09 milliseconds.

4.1.2. Progressively-Decaying Route Updating

The second simplification progressively reduces the num-
ber of vehicles that are updated during each pass of shortest
path re-computation. After running the initial pass, although
all vehicles are used in all passes we gradually reduce the
percentage of the vehicles whose shortest paths are updated
(e.g., 75%, 50%, 25%, 12%, etc.). This decay reflects that
all vehicles do not necessarily follow the "best" shortest path
and it also typically bounds the number of passes to 5 or less
with reasonable trip planning.

4.2. Traffic Atlas

A given road network is converted into a compact 2D traffic
atlas representing sampled road locations and an array of in-
tersection records (Figure 3). One option to maintain the per-
vehicle data for microsimulation is to maintain a set of lists.
However, this requires sorting and queuing operations that
are time consuming for crowded roads. Since vehicles can
be treated fairly independently, efficient memory access and
easy separation of tasks is crucial for a parallelized imple-
mentation, our approach is to store vehicle data in a compact

Figure 3: Traffic Atlas. a) Each road lane is a row in the
traffic atlas; b) the traffic atlas (top right) is sampled into
delta segments (bottom right).

but parallel-access friendly traffic atlas. Our traffic atlas, akin
to a texture atlas, compactly stores sampled road segments.
Each road segment (i.e., graph edge) is stored as a set of rows
(one per lane) of bytes where each byte represents tm meters
of a lane. Each byte can at most be occupied by one vehicle.
The byte stores the car’s speed (in m/s) times three (e.g., 55
mph or 88 kmh corresponds to 24.4 meters/second and to
the value 73). In practice, we found this quantization to be
adequate. Intersections (i.e., graph nodes) are much sparser
then sampled road segments and are stored separately. This
data structure can efficiently store very large road networks
(e.g., using tm = 1 we can store 250,000 km of 4 lane roads
in 1 GB of memory - this is roughly the length of all roads
in Germany or Spain).

4.3. Simulation Steps

Given a set of per-vehicle trip plans and current traffic con-
dition (traffic atlas), we update each vehicle’s acceleration
value and position, perform mandatory or discretionary lane
changes, and update travel times.

4.3.1. Car-Following Model

Our simulation model is based on a discretized car-following
principle: the current speed and acceleration depends on the
distance to the following car (i.e., the next, or following,
car in the direction of the current lane). As in Sewall et
al. [SWL11], we use the Intelligent Driver Model [THH00].
The acceleration/breaking function has two main terms:

• free flow: the vehicle’s acceleration to reach its desired
speed in absence of others (i.e., the speed limit), and

• following-car closeness: this term represents the deceler-
ation when it comes too close to the one in front of it.

Altogether, we can write a vehicle’s acceleration as

v̇ = a
(

1− (v/vo)
4 − (s∗(v,Δv)/s)2

)
(1)

where a is the acceleration ability of the car, v is the current
speed of the car, v0 is the desired speed, s is the distance gap
to the following car, and s∗ is

s∗(v,Δv) = s0 +T v+ vΔv/2
√

ab (2)

where s0 is the minimum following distance, T is the desired
time headway, and b is a comfortable braking deceleration.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley &

Sons Ltd.



I. Garcia-Dorado & D. G. Aliaga & S. V. Ukkusuri / Designing Large-Scale Interactive Traffic Animations for Urban Modeling

We follow the range guidelines from Treiber et al. [THH00]
to assign random values to a, b, and T .

4.3.2. Lane-Changing Model

This model predicts when and where a vehicle will make a
lane change based on two fundamental behaviors:

• mandatory behavior: the necessity of changing the lane in
order to reach an exit or turn at an intersection.

• discretionary behavior: the desire to change lane in order
to increase speed and bypass a vehicle.

Our model is based on a combination of the approaches
of Yang and Koutsopoulos [YK96] and of Choudhury et
al. [CTBA07]. A vehicle always enters a new road in discre-
tionary behavior and with an exponential probability might
change to a mandatory behavior. The probability to enter a
mandatory behavior can be written as:

mi =

{
e−(xi−x0)

2
xi > x0

1 xi ≤ x0
(3)

where mi is the probability of vehicle i to be changed to
mandatory behavior, xi is the current distance from the vehi-
cle to an exit/intersection, and x0 is the distance of a critical
location to the exit/intersection (e.g., last exit warning).

4.3.3. Gap-Acceptance Model

Once the vehicle has decided to change lanes, the maneuver
is performed if the lead and lag gaps are acceptable. Using
car speeds and distances, we compute the critical lead gap
gD

ia (i.e., minimum distance to the following car at which a
lane change can be performed) and the critical lag gap gD

bi
(i.e., minimum distance to the lagging car at which a lane
change can be performed):

gD
ia = maxgD

a ,g
D
a +αD

a1vi +αD
a2(vi − va)+ εia (4)

gD
bi = maxgD

b ,g
D
b +αD

b1vb +αD
b2(vb − vi)+ εbi (5)

where gD
a is the desired lead gap for a lane change, gD

b is
the desired lag gap for a lane change, α is a system param-
eter (typically α = [0.05,0.40]) that controls the gap based
on speed, vi is the speed of the vehicle, va is the speed of the
lead vehicle, vb is the speed of the lag vehicle, and εia and εbi
are terms that add randomness to the behavior. We use typi-
cal values for these parameters obtained from [CTBA07]. If
a vehicle’s actual lead and desired gaps are within the criti-
cal and desired range and the lane changing mode is discre-
tionary, a lane change occurs.

4.3.4. Simulation Update

During each simulation step, the traffic atlas, traffic lights,
and vehicle information are updated. To avoid synchroniza-
tion overhead and dependency on update execution order, we
swap between two atlases by simply exchanging atlas point-
ers. Traffic lights are updated using round robin logic or us-
ing light phasings and timings based on real-world data. The
simulator checks if a vehicle is waiting to start a new trip.
If there is room in the first segment of the vehicle’s route,

Figure 4: Lane-Changing Operations. a) Initial network
occupancy. b) The user "paints green" so as to reduce traffic.
c) After MCMC, new road occupancy values closely match
the painted traffic behavior. d-f) An analogous process but
for increasing lane traffic.

the vehicle is positioned on the traffic atlas with v = 0. The
position and velocity of this now active vehicle, and all other
active vehicles, is updated.

For each active vehicle, the simulator performs several up-
date steps. First, it checks the distance to the following car.
If none is found on the current lane, the simulator inspects
the traffic signaling at the following intersection. If the traf-
fic light is red or it’s the car’s turn to stop at a stop sign, it
corresponds to there being a following car at the intersection
with v = 0. If the traffic light is green or it’s not the car’s
turn to stop at the stop sign, our method finds the follow-
ing car on the next lane segment of the vehicle’s route. At
a stop sign, the intersection tells the car when it can pass
through. Second, given the distance to the following car (if
any), the vehicle’s acceleration, velocity, position and rele-
vant traffic indicators (Section 4.4) are updated. Third, the
simulator considers vehicle lane changes (Section 4.3.2). If
a lane change is desired, the gap-acceptance model (Section
4.3.3) is evaluated. Fourth, if an intersection is reached and
it is not the destination, then the vehicle attempts to move
to the next lane segment. If there is no space in the lane, it
remains at the current location (i.e., v = 0).

4.4. Traffic Indicators

Our simulator calculates several indicators which are im-
portant for decision-making and policy setting. We measure
metrics such as average travel time, distance travelled, and
emissions. For example, to report total or per-vehicle CO
emission, our system uses the following equation [AU12]

Ω =−0.064+0.0056vm +0.00026(vm −50)2 (6)

where Ω is the emission rate (in grams of CO per vehicle per
second) and vm is speed of the vehicle in mph.

5. Traffic Manipulation

We describe our traffic manipulation methodology and its
use of the traffic simulation engine. During our MCMC pro-
cess, the probability of a road network change is computed
as a product of a change-type probability and a location

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons
Ltd.



I. Garcia-Dorado & D. G. Aliaga & S. V. Ukkusuri / Designing Large-Scale Interactive Traffic Animations for Urban Modeling

probability. Each proposed change is evaluated for accep-
tance and the search continues until satisfying an objective
function (or reaching a maximum "cost").

When so desired, the aforementioned traffic painting can
be used to constrain areas of the road network and ensure
only local road network changes. However, due to the global
and complex nature of traffic flow, a closer to optimum solu-
tion for a locally specified objective might actually involve a
global set of changes – thus stability can be enforced but is
not always beneficial.

5.1. Change-Type Probability

The following topology-preserving and topology-changing
operations worked well with our examples. For a lane i or
person/job grid cell k, we define four change types and their
probabilities.

• Lane direction change. With probability di this topology-
preserving change alters the directionality of a road seg-
ment’s lane (Figure 4). To decrease traffic in a zone, we
switch the lane direction to direct vehicles away from the
zone middle. Conversely, to increase traffic, we swap the
lane direction so that vehicles pour into the zone.

• Number of lanes change. With probability ni this
topology-preserving change alters the number of lanes
per direction of a road segment. To decrease traffic in the
zone, a lane is added to a road segment inside or outgoing
from the traffic zone. Conversely, to increase traffic a lane
is removed from a road segment.

• People change. With probability pk this topology-
changing operation relocates the people within the ur-
ban space and potentially triggers a significantly different
procedural urban model (Figure 5). To reduce traffic, we
need to know the cells that generated people who passed
through the traffic zone and then relocate their distribution
energy to elsewhere in the urban space. To increase traf-
fic, we move the distribution energy from a random area
to the most common people distribution area with vehi-
cles passing through the traffic zone. Whenever possible,
we transfer people from a zone wishing to decrease traffic
to another zone seeking to increase traffic.

• Job change. With probability jk this topology-changing
operation is analogous to the previous category but moves
job distributions instead.

These four types of changes may alter the cityscape. In
particular, people/job distribution may alter buildings (e.g.,
dense areas will have smaller setbacks and bigger buildings)
and the road network (e.g., MCMC adds roads to fill a dense
area – even to OSM networks).

To avoid excessively altering lane directions/number of
lanes, changes are done to a neighborhood of lanes. Further,
to find origin-destination link pairs that pass through the traf-
fic zone for people/jobs changes, we create a hash table to
lookup the vehicles used by each edge. Then, we create a
histogram of origin-destination link pairs of those roads and

Figure 5: People/Jobs Changes. Such changes can impact
network topology. a) Input city. b) City with changed roads
and buildings satisfying new traffic.

find which were the most common edges that made the ve-
hicles cross the traffic zone.

5.2. Location Probability

The probability of changing all lanes, people, and jobs in-
side a zone is related to their location relative to the zone.
The location probability xi of a lane changing direction, or
the corresponding road segment having a number of lanes
change, is inversely proportional to the distance from the
lane’s midpoint to the exterior border of the traffic zone. Our
function is setup so that a lane inside a zone has probability
one and those outside the zone are computed using a Gaus-
sian weighting function; i.e.,

xi =

{
1

wZ
φ ti

wZ
i f outside zone

1 i f inside zone
(7)

where ti is the distance of lane i to the zone perimeter and
wZ is the width of a zone’s area of influence on the surround-
ing urban space. In our system, ti is computed as number of
graph edges links (e.g., breadth first search).

The location probability qk of a people change, or job
change, is proportional to its usage as an origin, or desti-
nation, for a route passing through the traffic zone. Thus, its
location probability does not depend on whether the cell is
near the traffic zone but on whether the cell is used by a route
that passes through, or near, the traffic zone. The aforemen-
tioned histogram of origin-destination pairs is sorted and top
candidates are given the highest probability. Thus,

qk =

{
1

wS
φ sk

wZ
i f outside zone

1 i f inside zone
(8)

where sk is the histogram count for cell k and wS is a nor-
malization constant. In order to instill some additional ran-
domness in the solution exploration process for people and
job changes, we add an additional probability r. The term r
mimics behaviors in a city where people, or jobs, periodi-

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley &

Sons Ltd.



I. Garcia-Dorado & D. G. Aliaga & S. V. Ukkusuri / Designing Large-Scale Interactive Traffic Animations for Urban Modeling

cally change due to a variety of reasons. In predictive agent-
based urban simulations (e.g., [Wad02]), such periodic ran-
dom change of people or jobs is modeled by allowing a small
percentage (e.g., 10%) of changes per year.

5.3. MCMC Search Strategies

Our search strategy to manipulate traffic is to alternate be-
tween updating the traffic values using our traffic simula-
tor and performing an MCMC optimization step until the
specified traffic behavior is met. Using the aforementioned
change-type and location probabilities, our search process
starts with an initial urban model configuration X0 and seeks
an improved urban model Xn that better satisfies an objec-
tive function; i.e., F(Xn,Z1,Z2, . . . ,ZK) → 0. Our MCMC
optimization uses nT simultaneous threads and each thread
performs up to n state changes. Each thread starts using a dif-
ferent random seed and a different temperature β with values
that were empirically found to range from 4 to 256. Further,
our optimization process includes two objective functions:
goal-driven and cost-driven.

A candidate state change Ŷ is obtained by sampling over
a subset of the possible lanes. The probability is equal to the
product of the corresponding change-type probability and
location probability: for each lane dixi or nixi; whereas for
each grid cell pk(qk+r) or jk(qk+r). Starting with the lanes
nearest to or inside a zone and the people/job cells highest in
the origin-destination histogram, we randomly select lane di-
rection changes, number of lanes changes, people relocation,
and/or jobs relocation. We grow the subset until H changes
occur amongst all change types. The collection of lanes, peo-
ple, and jobs changes define a candidate state change Ŷ .

The candidate Ŷ is then evaluated for acceptance. The
search process executes our traffic simulation and then re-
evaluates the objective function. Our Metropolis ratio com-
putes the acceptance probability of going from current state
Xc for c ∈ [1,n] to the candidate state Ŷ as

a
(

Xc → Ŷ
)
= min

{
1,

e−βF(Ŷ ,{Z1,Z2,...,ZK})

e−βF(XC ,{Z1,Z2,...,ZK})

}
(9)

where β is the thread’s temperature. We use the Metropolis
ratio because our probability distributions are Gaussians and
our proposal function is symmetric. The rejection probabil-

ity is
(

1−a(Xc → Ŷ )
)

; i.e., Xc+1 =Xc. Once c= n, we have

reached the final state and the best solution over all threads
and states is selected.

5.3.1. Goal-Driven Optimization

Our goal-driven optimization drives the simulated traffic be-
havior to the road occupancy specified by the traffic zone set.
Road segment s’s occupancy is defined as

us =
cs

Lsns/bv
(10)

where cs is the average of the number of vehicles on the
road segment over the simulated period and the denomina-
tor is the maximum number of vehicles per road segment

(also known as the "jam density"). The maximum vehicles
per road segment is computed using Ls= length of the road
segment, ns= number of lanes in the road segment, and bv=
minimum distance between vehicles (e.g., 5m). The objec-
tive function can be then written

F(Xn,{Z1,Z2, ...,ZK}) = ∑
S
‖us − ûs‖ (11)

where S is the set of roads inside the traffic zones and ûs is
the desired per road segment occupancy value.

5.3.2. Cost-Driven Optimization

Our second strategy minimizes the cost of the network
changes once traffic behavior is sufficiently similar to the
one specified by the traffic zones. For traffic design, this en-
ables finding a low-cost solution satisfying the behavior. To
measure cost C, we quantify the cost of all changes:

C = (wL/NL)∑
NL

‖ei − ēi‖+(wS/NS)∑
NS

‖ns − n̄s‖+

(wP/NP)∑
NP

‖P− P̄‖+(wJ/NJ)∑
NJ

‖J − J̄‖ (12)

where (wL,wS,wP,wJ) and (NL,NS,NP,NJ) are the cost
weights and number of entries for lane direction changes,
number of lane changes, people moving changes, and jobs
moving changes, respectively; ei = {0,1} refers to the cur-
rent lane direction and ēi is the initial lane direction; sim-
ilarly for number of lanes ns, 2D distribution of people P,
and 2D distribution of jobs J.

A proposed state change is considered to be accepted
only if Equation (11) is beneath a threshold value. Then
F(Xn,{Z1,Z2, ...,ZK}) =C is used as the objective function.
While this might not yield the quickest convergence it works
well in practice. This score function can defined as the av-
erage travel time, CO emissions, or distance to desire traffic
pattern.

5.4. Search Initialization

To improve performance when the desired traffic behavior
is significantly different from the current one, we make an
initial guess of the desired distribution of people and jobs.
This task is related to the networking problem of comput-
ing a traffic matrix which specifies the amount of traffic be-
tween source-destination pairs (i.e., person-job pairs). We
adapt the tomo-gravity model [ZRDG03] which is one such
well-known method to infer the traffic matrix from the link
loads (i.e., road segments). Once such initial locations are
computed, we use MCMC optimization to refine the result.

6. Implementation and Results

We used our framework to create and edit a variety of city-
scale 3D models obtained from OSM or from our procedu-
ral engine having up to 360 km of roads. The simulation
is implemented both on the CPU and on the graphics card
(CUDA). All rendering is done using our custom shader (see
video). All editing is interactive, and results appear while

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons
Ltd.



I. Garcia-Dorado & D. G. Aliaga & S. V. Ukkusuri / Designing Large-Scale Interactive Traffic Animations for Urban Modeling

Figure 6: Performance. a) Times (in minutes) to perform
a 4-hour simulation b) The number of simulation steps per
second.

editing. All example sessions were completed in less than
10 minutes (and typically in less than 5).

Performance. We present a performance summary using
up to 300k vehicles on 200 km of roads (with no rendering
overhead). Performance is shown for CPU and GPU versions
(Figure 6a). A four-hour peak traffic period simulation (i.e.,
6am-10am) of 300k cars takes as little as 24 seconds, includ-
ing trip planning, simulation, and estimating occupancy and
indicators. Figure 6b shows that with 300k cars our system
can compute 636 simulation steps per second.

We compare performance to those of Sewall et al.’s
[SWML10] macrosimulation engine and to SUMO’s open
source microsimulation engine. SUMO’s performance, as
well as ours, is dependent on the number of vehicles and
on the simulation time. Sewall et al.’s [SWML10] method is
claimed to be linearly dependent on road network size and
on the simulation time. Their largest reported network has
140,000 cars and only 10 km of roads. Their fastest system
(8 cores) was reported as 50 seconds which was 54 times
faster than their SUMO performance. For a network with
the same number of cars but with 200 km of roads, our ap-
proach only takes 13 seconds which is 81 times faster than
our SUMO performance. The amount of simulated time is
not reported for Sewall et al. [SWML10] thus a direct com-
parison is hard to make. However, if we linearly extrapo-
late their performance from 10 km to 200 km of roads, our
method would be 77 times faster than Sewall et al. More-
over, our method yields disaggregated per-vehicle data. Fi-
nally, we use SUMO to evaluate simulation accuracy (Figure
7). Our method produces occupancy values that, on average,
are within 6% of SUMO-computed values.

Analysis. Figure 8 compares the behavior of our two
search strategies for 30k cars (Sections 5.3.1 and 5.3.2). Note
that due to the non-linear nature of traffic, solution process
is not monotonic. We define traffic zones that reduce traf-
fic through one of the main arterial roads. Further, we set the
cost function to be the total number of changed lanes. On the
left, the goal-oriented optimization minimizes the objective
function without any constraints. The found low-score solu-
tion requires almost 350 lane changes. On the right, the cost-
driven optimization finds solutions with even lower score

Figure 7: Occupancy Comparison - SUMO vs. Our Sys-
tem. Traffic flow measured by our system (a) and SUMO (b);
red = complete utilization, green = empty street; c) Error of
occupancy measurements over time.

b)a)

Figure 8: Search Strategy Comparison. a) As the iterations
pass, goal-driven optimization is able to find solutions of a
lower score, but their cost is unbounded. b) In contrast, a
cost-driven optimization attempts to reach near the desired
score and then it continues but tries to minimize cost.

and with much lower cost (i.e., just 50 lane changes!). This
occurs because the second acceptance formula is more re-
laxed and thus other state changes can occur.

Example Designs. Figures 9-11 show the results from
several example design sessions. Figure 9 demonstrates a lo-
cal inverse design using downtown Boston (9a) with 1393
streets, 4767 intersections, and a total road length of over
290km. The people and job distribution has been extracted
from a GIS. The user first runs the simulation with 110k ve-
hicles. Results show significant traffic crossing the Boston
Commonwealth Park and the nearby government buildings.
The user then draws two areas to reduce the road occupancy
and defines the maximum occupancy to be 20% of those
roads. Next, the simulation is run in three different scenar-
ios. In the first scenario, the user only allows changes in lane
directions (9f). This restriction sparks changing 48 lane di-
rections to reach the desire behavior. Then, the user only al-
lows changes in job distribution (9g); this could be useful to
improve traffic with the cost of a company office realloca-
tion. However, it causes 37% of the jobs to relocate. Finally,
the user enables lane direction change and job re-distribution
resulting in just 16 lane changes and 3% of the jobs moving
(9h). Moreover, we reduce the occupancy to just 9% as indi-
cated by the specified traffic zone behavior.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley &

Sons Ltd.



I. Garcia-Dorado & D. G. Aliaga & S. V. Ukkusuri / Designing Large-Scale Interactive Traffic Animations for Urban Modeling

Figure 9: Local design. a) Fragment of central Boston. b) Job and people distribution from GIS sources. c) Initial road
occupancy as per our traffic simulation. d-e) Close-ups. Three solution options: f) solution by only changing lane directions, g)
similar as previous but only jobs distribution changes, and h) using both change types (best solution).

Figure 10: Global Design. a) Fragment of Madrid. b) User draws the desired traffic and c-d) our system first uses the tomo-
gravity model and then MCMC refines it. e-g) Another editing iteration produces the final output.

Figure 10 represents an interactive session with a global
design objective. The user loads the map of Madrid, Spain
from OSM (10a). It contains 2288 streets, 6141 intersec-
tions, and more than 330km of roads. The user defines a
desired traffic behavior for the entire city and for 220,000
vehicles (10b). Our system finds a solution that produces the
given traffic zones with just a few iterations (10c-d). This is
possible thanks to the tomo-gravity model (this is the only
result that uses Section 5.4 initialization). Afterwards, the
user wanted an alternate traffic behavior of the city (10e).
The system was also able to find the model that yields such
a traffic behavior (10f-g). This session took under 5 minutes.

Figure 11 shows a global traffic optimization. We proce-
durally generate a fragment of New York City using GIS
data, producing over 900 streets, 620 intersections, 25k cars,
and 360 km of roads. The initial urban model yields an aver-
age travel time of 60 minutes and 1012 gr of CO per person
(11a). The user defines three desired travel time values (i.e.,
50 minutes, 40 minutes and 30 minutes). Our system finds
that it is possible to improve the traffic to a 50 minute travel
time by changing 52 lane directions (11b). However, in or-
der to achieve a 40 minute travel time, more radical changes
are required –16% of the jobs and 31% people should be re-
located (11c). Finally, to achieve a 30 minute average travel

time even more changes are required (11d). Each of these
sessions took 10 minutes or less.

Limitations. Our system is not without limitations. It is
possible to specify a target traffic behavior for which the sys-
tem is over-constrained and no solution can be found. Also,
we cannot specify behaviors for specific people and/or jobs.
While we can indicate a desired behavior for a lane, our ap-
proach is generally more tuned for medium to large-scale
network modifications (i.e., our simulator is not as accurate
in traffic prediction for very small network changes).

7. Conclusions

We presented an approach to interactively "paint" a desired
vehicular traffic behavior and animation and then the system
automatically computes a realistic 3D urban model yielding
the specified behavior. We used our system to control traf-
fic behaviors such as road occupancy, travel time, and CO
emission. Our framework includes a novel traffic microsim-
ulation approach which yields the high performance needed
for our interactive design tool. Our traffic manipulation strat-
egy adapts a MCMC method to explore the solution space
by performing a set of topology-preserving and topology-
changing road network changes. In addition, we define a

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons
Ltd.



I. Garcia-Dorado & D. G. Aliaga & S. V. Ukkusuri / Designing Large-Scale Interactive Traffic Animations for Urban Modeling

Figure 11: Global Optimization. a) Fragment of New York. It has an average travel time (TT) of 60min and CO emission of
1012gr. Our system finds that b) by just changing lanes it is able to achieve the 50min goal. c-d) To reach 40min and 30min, it
is necessary to change people, jobs, and lanes.

novel road network optimization strategy that reduces travel
time or CO emission, for example, with a minimum cost.

As future work, there are several avenues. First, we will
provide better controls to avoid excessive changes in direc-
tion and in number of lanes. Second, we will explore ad-
ditional topology-preserving changes, such as altering inter-
section type and speed limit. Third, our simulator will be im-
proved to support more complex traffic lights, on/off ramps,
random driver behavior, and more.

Acknowledgment. Partially funded by NSF 1250232,
0964302, and 1302172. We thank NVidia’s collaboration.

References
[AU12] AZIZ H. M. A., UKKUSURI S. V.: Integration of envi-

ronmental objectives in a system optimal dynamic traffic assign-
ment model. Computer-Aided Civil and Infrastructure Engineer-
ing 27, 7 (2012), 494–511. 5

[CEW∗08] CHEN G., ESCH G., WONKA P., MÜLLER P.,
ZHANG E.: Interactive procedural street modeling. ACM Trans.
Graph. 27, 3 (2008), 103–112. 2

[CTBA07] CHOUDHURY C., TOLEDO T., BEN-AKIVA M.:
Modeling cooperative lane changing and forced merging behav-
ior. Transp. Research Board (2007). 5

[ESR] ESRI. esri.com/software/cityengine. 3
[GPGB11] GALIN E., PEYTAVIE A., GUÉRIN E., BENES B.:

Authoring Hierarchical Road Networks. Comput. Graph. Forum
30, 7 (2011), 2021–2030. 2

[GVK06] GO J., VU T. D., KUFFNER J. J.: Autonomous behav-
iors for interactive vehicle animations. Graphical Models 68, 2
(2006), 90 – 112. 1, 3

[LMS07] LEBACQUE J., MAMMAR S., SALEM H.: Generic sec-
ond order traffic flow modeling. Transp. and Traffic Theory
(2007), 755–776. 2

[MAT] Multi-Agent Transp. Sim. matsim.org. 2
[MWA∗13] MUSIALSKI P., WONKA P., ALIAGA D. G., WIM-

MER M., VAN GOOL L., PURGATHOFER W.: A survey of urban
reconstruction. Comput. Graph. Forum 32, 6 (2013), 146–177. 1

[Ngo11] NGODUY D.: Multiclass first-order traffic model using
stochastic fundamental diagrams. Transportmetrica 7, 2 (2011),
111–125. 2

[OSM] OSM. openstreetmap.org. 2
[PAB08] PELECHANO N., ALLBECK J. M., BADLER N. I.: Vir-

tual Crowds: Methods, Simulation and Control. Morgan and
Claypool Publishers, 2008. 1

[Pay71] PAYNE H. J.: Models of freeway traffic and control. Sim-
ulation Councils, 1971. 2

[SBM∗10] STAVA O., BENES B., MECH R., ALIAGA D.,

KRISTOF P.: Inverse procedural modeling by automatic genera-
tion of l-systems. Comput. Graph. Forum 29, 2 (2010), 665–674.
2

[SBUH11] STACKELBERG H. V., BAZIN D., URCH L., HILL

R. R.: Market structure and equilibrium. Springer, 2011. 2
[SS11] SCHRECKENBERG M., SHARMA S. D.: Pedestrian and

Evacuation Dynamics. Springer, 2011. 1
[SUM] Simulation of Urban MObility. sumo-sim.org. 2
[SUM09] SHARMA S., UKKUSURI S., MATHEW T.: Pareto op-

timal multiobjective optimization for robust transportation net-
work design problem. Transp. Research Record: J. of the Transp.
Research Board 2090 (2009), 95–104. 2

[SvdBLM11] SEWALL J., VAN DEN BERG J., LIN M. C.,
MANOCHA D.: Virtualized traffic: Reconstructing traffic flows
from discrete spatiotemporal data. IEEE Trans. on Vis. and Com-
put. Graph. 17, 1 (2011), 26–37. 1, 3

[SWL11] SEWALL J., WILKIE D., LIN M. C.: Interactive hybrid
simulation of large-scale traffic. ACM Trans. Graph. 30, 6 (2011),
135–146. 1, 3, 4

[SWML10] SEWALL J., WILKIE D., MERRELL P., LIN M. C.:
Continuum traffic simulation. Comput. Graph. Forum 29, 2
(2010), 439–448. 1, 2, 3, 8

[THH00] TREIBER M., HENNECKE A., HELBING D.: Con-
gested traffic states in empirical observations and microscopic
simulations. Phys. Rev. E 62 (2000), 1805–1824. 4, 5

[TLL∗11] TALTON J. O., LOU Y., LESSER S., DUKE J., MĚCH

R., KOLTUN V.: Metropolis procedural modeling. ACM Trans.
Graph. 30, 2 (2011), 11–24. 2

[VAW∗10] VANEGAS C., ALIAGA D. G., WONKA P.,
MÃIJLLER P., WADDELL P., WATSON B.: Modelling the
appearance and behaviour of urban spaces. Comput. Graph.
Forum 29, 1 (2010), 25–42. 1

[VGDA∗12] VANEGAS C., GARCIA-DORADO I., ALIAGA D.,
BENES B., WADDELL P.: Inverse design of urban procedural
models. ACM Trans. Graph. 31, 6 (2012), 168–178. 2, 3

[VIS] PTV VISSIM. vision-traffic.ptvgroup.com. 2
[Wad02] WADDELL P.: Urbansim: Modeling urban development

for land use, transportation and environmental planning. Journal
of American Planning Assoc. 68 (2002), 297–314. 7

[WMWG09] WEBER B., MÜLLER P., WONKA P., GROSS M.:
Interactive geometric simulation of 4d cities. Comput. Graph.
Forum 28, 2 (2009), 481–492. 2

[WSL13] WILKIE D., SEWALL J., LIN M.: Flow reconstruc-
tion for data-driven traffic animation. ACM Trans. Graph. 32, 4
(2013), 89–98. 1

[YK96] YANG Q., KOUTSOPOULOS H. N.: A microscopic traffic
simulator for evaluation of dynamic traffic management systems.
Transp. Research Part C 4, 3 (1996), 113 – 129. 2, 5

[ZRDG03] ZHANG Y., ROUGHAN M., DUFFIELD N., GREEN-
BERG A.: Fast accurate computation of large-scale ip traffic ma-
trices from link loads. Proc. of Sigmetrics (2003), 206–217. 7

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley &

Sons Ltd.


