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ABSTRACT 
3D computer graphics models and digitally-controlled manufacturing have come together to enable the design, visualiza-

tion, simulation, and automated creation of complex 3D objects. In our work, we propose and implement a framework for 
designing computer graphics objects and digitally manufacturing them such that no adversary can make imitations or coun-
terfeit copies of the physical object, even if the adversary has a large number of original copies of the object, knowledge of the 
original object design, and has manufacturing precision that is comparable to or superior to that of the legitimate creator of 
the object. Our approach is to design and embed a signature on the surface of the object which acts as a certificate of genuini-
ty of the object. The signature is detectable by a signature-reading device, based on methods in computer graphics and com-
puter vision, which contains some of the secret information that was used when marking the physical object. Further, the 
compromise of a signature-reading device by an adversary who is able to extract all its secrets, does not enable the adversary 
to create counterfeit objects that fool other readers, thereby still enabling reliable copy detection. We implemented a proto-
type of our scheme end-to-end, including the production of the physical object and the genuinity-testing device. 

Categories and Subject Descriptors (according to ACM CCS): I.3 [Computer Graphics], I.3.3 [Picture/Image Gen-
eration], I.3.7 [Three-dimensional Graphics and Realism], I.4.1 [Digitization and Image Capture].  

 
1. Introduction 

Our work provides algorithms for encoding into a digital 
3D object information that enables determining genuinity of 
a physical object after its automated manufacturing. In to-
day’s technological world, many physical objects are manu-
factured using 3D computer graphics models and digitally-
controlled devices (e.g., milling machines, 3D printers, and 
robotic arms). The manufactured objects can range from 
inexpensive steel screws to costly and carefully designed 
parts, for example, for engines and for medical instruments. 
Our algorithms provide a way to encode a unique signature 
into a computer-designed and fabricated object and a way to 
decode the signature in order to verify object genuinity. 

The digitization of the 3D design and manufacturing 
process of objects enables creating intricate structures that 
may have required a significant investment of time, infra-
structure, and personnel. A growing worry amongst design-
ers, manufacturers, and buyers of digitally-built parts is 
knowing whether they have a genuine part fabricated by the 
advertised company. While for simple objects a visual in-
spection might be sufficient to detect irregularities, this is 
not the case for more complex objects or for verifying ma-
terial composition, density, and product quality. Thus, imi-
tations and “knock-offs” may float around the black market 
and fall into unexpected hands. The replicas are designed to 

unknown specifications, which may lead to catastrophic 
problems (e.g., failures in an engine). A recent manufactur-
ing industry report [http://mema.org] called counterfeiting 
“the crime of the century”. Even in 1997, the cost of coun-
terfeit parts to the global automotive industry was already 
$12 billion, and the numbers are up sharply since then.  

The challenge is to encode information into the object 
that cannot be reproduced by an adversary and to do so 
without depending on the legitimate manufacturer having 
technology superior to the adversary or on security-through-
obscurity. The high-resolution etching of logos or serial 
numbers is an option but can be imitated by an adversary 
that develops equal or better technological ability than the 
legitimate manufacturer -- a fact that can be true without the 
legitimate manufacturer knowing so. An instance of securi-
ty-through-obscurity would be in assuming the digital mod-
el itself or the location of unique markings on the object is 
kept secret. However, if this information leaks out, security 
is compromised and the adversary is able to make copies 
indistinguishable from genuine objects. 

Our main observation is that upon copying any physical 
object, the adversary cannot obtain the exact same combina-
tion of manufacturing errors. For digital data, perfect copies 
can be obtained; thus digital watermarking is a known 
process for encoding ownership data into a digital object. 
However, our problem is quite different from digital water-
marking and investigates an under-explored area of re-
search. For physical objects, copying is always an imperfect 
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and noisy process. We interpret the change of manufactur-
ing error as a change in the “signature” of the object. Thus, 
we design a method to inject a small amount of additional 
and carefully designed manufacturing error into a subset of 
the object’s surface (that is inconsequential to its intended 
use). During a verification process, we reliably discover 
unexpected error and determine object genuinity. 

Our approach creates a genuinity signature for an object 
by using a 3D synthetic model of the object, a set of accura-
cy values for the manufacturing and verification processes, 
and an arbitrarily-chosen object serial number. The serial 
number and a private “master key” are used, for example, in 
a cryptographically secure one-way hash (e.g., SHA-2) to 
generate apparently random numbers for defining the ge-
nuinity signature. The signature is composed of a set of 
random yet smoothly varying surface displacements that, 
under user control, is applied to the signature’s footprint on 
the object (i.e., a subset of or the entirety of the object’s 
surface). The secret key assists in generating random num-
bers that determine both where and how the signature is 
embedded, but reverse engineering the key is hard because 
there are an exponential number of possibilities. Moreover, 
even if the adversary was willing to exhaustively try all 
possibilities, the adversary has no clear "success criterion" 
to know when a correct guess has been made. 

The displacements have been carefully designed so that 
upon either re-instancing (i.e., making copies from scratch 
using the original digital model) or replication (i.e., making 
copies by digitally acquiring and then re-manufacturing the 
object) the signature is distorted. To verify genuinity of an 
object, our process acquires a high-resolution surface model 
of the signature’s footprint on the object and uses statistical 
tools to determine if the signature is still present. Further, 
our signature is also designed to include some redundancy 

so that very precise alignment of the captured footprint and 
the synthetic signature is not necessary. Figure 1 shows the 
process for an exemplary object. 

Our algorithm does not rely upon the legitimate manufac-
turer having technology superior to the adversary nor on 
storing secret information, except for the aforementioned 
master key. In fact, in our work we assume that the entire 
encoding/decoding algorithm and the digital model itself are 
public knowledge. The master key can be specific to an 
object or group of objects. Thus, even if the master key 
becomes public knowledge, only that object or small group 
of objects is compromised. Moreover, for verification only a 
partial-key that decodes some of a particular signature is 
needed. If this key becomes public, an adversary cannot 
copy the entire affected object or objects. 

In more detail, let’s consider the case of a genuine object 
that can be manufactured with variance ݉  > 0 and an ad-
versary able to produce a similar object with a manufactur-
ing variance ݉ > 0. Given an operational tolerance ߬, we 
can assume ݉  ߬ and ݉  ߬; but, we do not know if ݉ 
≤ ݉ or vice versa. In our work, subsets of the object’s 
surface are intentionally displaced by up to ሺ߬ െ ඥ݉ሻ. If 
the object has been re-instanced or replicated, then the ob-
served displacements and their distribution is different than 
expected because either the desired displacements were 
unknown or a variance ݉ appeared unexpectedly. Even if 
݉ is smaller than ݉, the number of displacements can be 
made larger so as to reliably detect a smaller ݉.  

To demonstrate our method, we design several objects, 
encode a signature, either digitally manufacture the object 
using 3D printing facilities or using simulation, and then 
capture and verify genuinity. Our main contributions are 

Figure 1: Genuinity Signatures. We address the problem of detecting whether a physical object is genuine or is a coun-
terfeit. (a, d) Using our algorithm, the user designs a unique “genuinity signature” and encodes it into a subset of a 3D 
synthetic model. (b, e) The physical object is built using automated digital manufacturing. (c, f) An automated system 
determines if the object is genuine or is an imitation (even if manufactured using higher accuracy than the genuine). 

e) f) 

c) 

d) 

b) a) 
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• an approach enabling the detection of physical coun-
terfeit objects created in today’s world of digital de-
sign and manufacturing, 

• a specific encoding method to “write” a unique sig-
nature into a physical 3D object without affecting the 
object’s functionality, in the sense of not exceeding 
an operational error tolerance, and 

• a general decoding method to “read” a signature 
from a physical 3D object such that if the object has 
been copied, even with higher accuracy than the 
manufacturer’s technology, the signature cannot be 
extracted. The reading process does not have to re-
construct the entire object, is not highly sensitive to 
alignment, and does not need a priori calibration. 

2. Related Work 
Before the rampant digitization of the manufacturing 

process, the authenticity of an object could be determined 
by the presence of a unique set of marks at a particular (pos-
sibly inconspicuous) location, e.g., a special etching, a serial 
number, etc. The digitization of manufacturing made many 
of these schemes obsolete. In the past the adversary could 
produce the same markings on the physical object while not 
necessarily creating objects to the same specifications of 
quality, shape, and material compositions as the original. 
Today’s counterfeiters can often have the same manufactur-
ing technology, or better, and without the original manufac-
turer even knowing it. Other approaches in use today consist 
of attaching to the physical object an electronic device (e.g., 
RFID [RVW*07]) or a smartcard coupled with a holograph-
ic-watermarking scheme. While our method can be used 
without such attached electronics (AEs), an adversary could 
make copies of the AE device and attach each such copy to 
a superior-quality counterfeit copy. Using our method in 
coordination with AEs prevents such attacks because the AE 
would no longer match the object to which it is attached. 

A related effort is copy-evident technology and physical 
watermarking for secure paper documents (e.g., [Vol*96]). 
These approaches either use a printing resolution greater 
than a typical paper copier to embed special markings onto a 
document or embed special light absorption and reflection 
material into the paper itself making a copied document 
very evident. By visual inspection or by using a magnifying 
glass the markings can be visually verified. 

Watermarking has been extended to the digital domain 
(e.g., [CGE*07, WLD*07]) and is concerned either with 
robustness (e.g., [LDD*07, PYC*03]) or with fragility (e.g., 
[CHL*01, YY*99]) for ensuring the integrity of images and 
other digital objects. These approaches have been designed 
for digital data which can be created, read, and replicated 
with zero error. In contrast, for physical objects there is an 
error involved at each of the aforementioned steps. Al-
though the second group of watermarking methods could be 
adapted to our targeted problem, the schemes would fail our 
requirement of selective robustness in the face of our own 
manufacturing errors, and the inaccuracies of our verifica-
tion tools. Traditional uses of fragile watermarking have not 
had a counterfeiting adversary in mind. Their model of the 
adversary was of one who wishes to modify the object with-
out causing the disappearance of the fragile mark – it was 

really anti-tamper. But our adversary and has no interest in 
tampering. Instead, they seek to produce a faithful reproduc-
tion of the object, mark, and all. 

3. Genuinity Signatures 
A genuinity signature is composed of a large set of sam-

ples organized by a two-level stratification which has been 
designed to robustly detect physical imitations created via 
re-instancing or replication (Figure 2). Each sample in the 
signature stores both a surface displacement value and a 
surface variance value. The former helps to create a signa-
ture with a unique configuration and the latter helps to 
detect unwanted replication attacks. The organization into 
strata provides additional structure that improves the sensi-
tivity for detecting attacks yet can still maintain the appear-
ance of a random signature. All sample values and stratifica-
tion are determined using a secure key-based pseudorandom 
number generator and randomly parameterized Perlin noise 
[Per*02]. Perlin noise is employed in order to generate 
smoothly changing displacement and variance values. The 
smoothness and stratification also has the side-effect of 
relaxing the alignment requirement between the synthetic 
and captured signature thus making verification easier. 

The large set of samples is beneficial to enabling an ab-
undant number of unique signatures and to yielding the 
precision needed to guard against an adversary with tech-
nology superior to that of the legitimate manufacturer. We 
chose to use samples consisting of local displacements, 
rather than global alterations (e.g., of volume, surface area, 
or ratios of the sizes of different parts of the object), because 
verification can be performed without reconstructing the 
entire object. Furthermore, the size of the signature’s foot-
print on the object is proportional to the desired robustness 
against attacks. Recovering a surface fragment of the object 
visible from a single viewpoint is often sufficient.  

Our method can be applied to any object as long as some 
visible surface area can be manufactured with our specified 
displacements. The absolute value of the errors is not impor-
tant. Instead, the effectiveness of genuinity detection de-
pends on the number and grouping of the displacements and 
on the ratio between the accuracies of the legitimate’s and 
adversary’s technology. Thus, our method can be used with 
both low-end and high-end manufacturing technology.  

CreateGenuinitySignature(Key K) 
   Select signature footprint on object. 
   Define per-pixel displacements di  
      and variances vi. 
   Divide pixels into contiguous patches Ai. 
   Sort patches by their variances. 
   Define non-adjacent but equal-variance  
      groups Bk. 
   Subdivide model into small triangles and  
      perturb footprint using displacement map. 

PerformGenuinityTest(Key K) 
   Acquire 3D model of signature footprint. 
   Align with synthetic model of displaced 
      surface geometry. 
   Compute value of the test statistic W 
      to determine genuinity. 

Figure 2: Pseudocode Summary of Method. 
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3.1 Error Model 
While not all fabrication processes can be used to gener-

ate a surface fragment with detailed displacements, we re-
strict fabrication of the subset of the object intended for the 
signature to a suitable method. These processes are assumed 
to be imperfect and are modeled by an unbiased normal 
error distribution, and of a standard deviation that is pre-
specified or determined experimentally.  

We define the genuine object’s manufacturing variance 
݉ and verification variance ݒ as the square of a chosen 
multiple of the standard deviation of the corresponding 
process. Specifically, ݉ ൌ ሺ݇ߪሻଶ and ݒ ൌ ሺ݇ߪ௩ሻଶ for 
some value of ݇    is the standard deviation of theߪ ,0
legitimate manufacturer’s technology, ߪ௩ is the standard 
deviation of the verification technology (e.g., the 3D acqui-
sition method). Thus, for ݇ ൌ 3 approximately 99% of the 
object will be manufactured within ඥ݉ of ideal. Further, 
by using variances (and not standard deviations), we can 
state that the total variance of the system is ݉   ,. Alsoݒ
the difference between the operational tolerance ߬ and ඥ݉ 
provides the freedom to introduce surface displacements.  

The corresponding values for the adversary are defined as 
fractions of the legitimate manufacturer’s: ݉ ൌ ሺ1 β⁄ ሻ݉ 
and ݒ ൌ ሺ1 ⁄ߚ ሻݒ. We succinctly refer to the adversary 
having technology ߚ times better than the legitimate creator.  

3.2 Signature Samples 
To obtain the displacement ݀ and variance ݒ for each 

sample ݅, we use Perlin noise ߩ parameterized by the secret 
key ܭ (Figure 3a-b). The key is used to generate parameters 
for Perlin noise and to generate the random numbers within 
the procedure. Thus, sample ݏ ൌ ሼሺ݀,   ሻሽ andݒ

݀ ൌ ሻܭሺ ߩ2݉ െ ݉    
ݒ ൌ ሻܭሺ ߩݎ2 െ  ሺ1ሻ          ݎ

where ߩ ሺܭሻ generates Perlin noise in the range [0,1], ݉ is 
the sample displacement magnitude, and ݎ is the desired 
sample variance value. For ܼ ൌ ܻܺ and ݅ א ሾ1, ܼሿ, both ݀ 
and ݒ are stored in 2D arrays of size ܺ x ܻ. 

Displacement and variance values are collectively used to 
compute the amount by which to displace a surface frag-
ment along the direction of the surface normals. To keep the 
surface area of the signature within operational tolerance, 

the signature sample must satisfy  
݉  ݎ√  ൫߬ െ ඥ݉൯.        (2) 

Uniqueness of the signature is accomplished by having 
the displacement image be of non-trivial size (e.g., a 
100x100 resolution displacement image already yields a 
huge number of possible signatures). The smoothness of the 
displacements and variances is implicitly obtained via Perlin 
noise. We control the range of smoothness of the noise by 
limiting the cloud density and cloud coverage values. 

3.3 Signature Strata  
We organize the samples ݏ into a two-level stratification: 

a spatial stratum and a variance stratum (Figure 3c). The 
spatial stratum defines patches ܣ where each patch contains 
samples spatially adjacent to each other. The variance stra-
tum ܤ defines groups of patches such that the variance 
value of each group is nearly constant but the variance 
changes from group to group. Each stratum contains a refer-
ence to all signature samples. Signature ܵ can be compactly 
written as 

ܵ ൌ ሾ൛ܣ: ݆ א ሾ1, ܰሿൟ, ሼܤ: ݇ א ሾ1,  ሿሽሿܯ
ܣ ൌ ൛ݏభ, ,మݏ  ,యݏ … ൟ       (3) 

ܤ ൌ ሼܣభ, ,మܣ ,యܣ … ሽ 
containing ܰ patches of the form ܣ in the spatial stratum 
and ܯ groups of the form ܤ in the variance stratum. All 
the elements of a particular ܣ are spatially adjacent and all 
the elements of a particular ܤ have (almost) the same va-
riance value stored in all contained samples. 
Spatial Stratum 

Re-instancing is guarded against by the use of the key-
based displacement amounts. However, the spatial stratum 
is helpful to reduce the need to precisely align the synthetic 
version of the signature with the acquired signature during 
verification and thus account for tangential errors in measur-
ing and in manufacturing. Since both the displacement and 
variance values are generated using a smooth noise func-
tion, the aforementioned patches provide some slack which 
implies that the synthetic version of the signature does not 
need to be perfectly aligned with the captured object. For 
example, a bad alignment or unexpected tangential distor-
tion (with respect to the reading device) might cause a small 
subset of the samples of one patch to be compared against 

signature footprint displacement ݀  

displacement ݀
  כ

 ܣ

భܤ  

మܤ  a) b) c) 

Figure 3: Genuinity Signatures. a) User selects a signature footprint. b) Random but smooth per-pixel displacements ݀ 
are computed. c) A smoothly-varying additional variance ݒ per pixel is calculated, yielding a total displacement of ݀

 .כ
Adjacent samples are joined into patches ܣ and spatially disjoint but of equal variance patches into groups ܤ.  
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samples of an adjacent patch. While this is not desirable, the 
use of smooth noise makes it such that the adjacent patch 
has a different but similar value. 
Variance Stratum 

The variance stratum is useful to make verification more 
sensitive to a change of the amount of variance as a result of 
an attack. Changing the variance amongst the groups ex-
acerbates the need to know the correct way to group the 
patches (and samples). The likelihood of randomly grouping 
patches and samples to yield the same particular set of va-
riances is extremely small. For example, if a replication was 
performed and all groups in the signature had no additional 
variance added then all the copied object groups would 
exhibit homogeneity of variance. While the variance is not 
exactly equal to that of the legitimate creator’s manufactur-
ing and verification processes (because of the additional 
variance introduced by the adversary’s replication), the 
homogeneity of all the variances makes it more difficult to 
detect an overall change of the amount of variance. In con-
trast, by providing each group with a different additional 
variance, homogeneity of variance is not obtainable unless 
the correct grouping is known.  

3.4 Creation Algorithm 
We use a three-phase algorithm to generate the genuinity 

signature and to apply it to an arbitrary object. 
• First, signature image size ܺ ൈ ܻ and signature 

strength values ݉ and ݎ are chosen (subject to inequa-
lity (2)) and then equations (1) produce displacement 
values and variance values per image sample.  

• Second, the patches ܣ of the spatial stratum are 
created. They are determined by joining a contiguous 
block of ݓ ൈ ݄ samples in the signature image into a 
single unit. This yields patches consisting of different 
displacement values and, as will be computed in the 
next step, a constant variance value. When ݓ ൌ ݄ ൌ 1, 
each sample maps to a surface fragment on the object 
consisting of many adjacent vertices. This yields 
patches with a smooth change in the displacement val-
ue (e.g., using a bilinear or bicubic interpolation) and a 
constant variance value. This setup relaxes even more 
the need for accurate alignment during verification. 
Since the number of samples can be made to be suffi-
cient, this variant is usually more advantageous. 

• Third, the groups ܤ of the variance stratum are se-
lected. To form the groups, all patches are sorted by 
their variance values and then divided into ܯ groups 
each of approximately መܼ/ܯ samples, where መܼ ൌ
ܻܺ/ሺ݄ݓሻ. To ensure spatially-near variances are simi-
lar, we compute a group’s variance ݒҧ as the average 
of the variances of all contained samples (rather than 
randomly picking a group variance value), namely 

ҧݒ ൌ ଵ
∑ หೕหೕאಳೖ

∑ ∑ ೖאೕאݒ .     (4) 

To map the signature to the object, the user selects the 
signature footprint as a subset of the object’s surface and 
then maps the signature image to the footprint. In our proto-
type, selection is done via a simple interactive process of 
clicking-and-selecting on triangles. The selected triangles 

are recursively subdivided such that no triangle edge is larg-
er than ඥ݉. The new triangulation is at the resolution of 
the manufacturing process. As previously mentioned, the 
mapping between signature image pixels and object vertices 
does not need to be one-to-one. Rather, the signature image 
resolution can be less than the resolution of the object trian-
gulation in order to yield patches of samples of smoothly-
changing displacement but constant variance value. While 
several image-to-object mappings are possible, our proto-
type uses orthographic projection. Further, since the signa-
ture footprint is not necessarily rectangular, clipping may 
occur when mapping the rectangular signature image to an 
object; nevertheless, the loss of samples is not problematic 
because the signature can be made suitably larger so that the 
actual number of mapped samples is sufficient. 

The total per-sample displacement, stored in the image, is 
݀

כ ൌ ݀  ܰሺ0, ඥݒҧሺሻሻ        (5) 
where ܰሺߤ, -ሻ returns a random value with a normal distriߪ
bution of mean ߤ and standard deviation ߢ ,ߪሺ݅ሻ returns the 
index of the group containing ݏ. Given ܲ points in the sig-
nature footprint, object point ݔ ( א ሾ1, ܲሿ) in general cor-
responds to fractional positions on the signature image. The 
total displacement ݀

כ  from ݔ and along the surface normal 
݊ is calculated by a bilinear equation of the surrounding 
displacement values in the signature, e.g. 

݀
כ ൌ ሺ1 െ ሻ݀భݏ

כ  మ݀ݏ
כ  ሺ1 െ ሻ݀యݐ

כ  ర݀ݐ
כ      (6) 

where ݏ and ݐ are the fractional positions of ݔ on the dis-
placement image and (݀భ

כ , ݀మ
כ , ݀య

כ , ݀ర
כ ሻ are the surrounding 

displacement values. The new model is composed of points 
ݔ

כ ൌ ݔ  ݊݀
כ           ሺ7ሻ. 

4. Genuinity Testing 
To verify genuinity, we need a digital copy of the original 

unmodified object model, the key (or the relevant part the-
reof), and the physical 3D object. Either the manufacturer or 
a client can perform the verification. However, while the 
digital object model and signature creation and verification 
algorithms can be public, the key must be kept secure. In 
addition, we desire genuinity testing to be fast, accurate, and 
easy-to-use. These characteristics permit a widespread 
process that can be encapsulated into a simple “reader”. 

It is worth noting that because of the potentially large 
number of groups, not all of the groups ܤ are needed for 
genuinity testing. Instead, a random subset of them suffices. 
Thus, we can design the signature to have an excessive 
number of groups such that only a subset of them is needed. 
This redundancy yields two abilities: 1) the entire signature 
does not have to be reconstructed for genuinity testing – 
reducing the burden for the verification system, and 2) ge-
nuinity testing can be provided with only a "partial key", 
which we define as a subset of the bits of the master key and 
decodes only a subset of the groups and samples. This 
yields added security because if the partial-key becomes 
public, the object can still not be fully imitated because the 
rest of the genuinity signature is not known. 
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4.1 Acquisition 
To verify the genuinity of the signature, we need to cap-

ture the signature footprint. Since the displacements are 
usually subtle, high-resolution acquisition is needed. How-
ever, we note that the macro-structure of the area to capture 
is usually quite simple (e.g. planar or a smooth curved sec-
tion). Thus, one suitable option is to use a photogeometric 
capture approach. Namely, capture the general geometric 
structure and then refine the details using a photometric-
based reconstruction. Photometric-based approaches are 
good at obtaining fine details but not so good for accurately 
obtaining the global structure. Photogeometric approaches 
have been successfully used before to obtain reconstructions 
accurate up to a fraction of a millimeter. For example, the 
Digital Hammurabi project [KSD*04] performed a 3D 
scanning of cuneiform tablets at 0.025mm accuracy (1/1000 
inches = 0.025mm). [NRD*05] used a geometric and a pho-
tometric setup to obtain high accuracies (between 0.01mm 
and 0.1 mm). The recent examination of the Mona Lisa 
done by NRC (Canada) used a custom 3D color-scanner of 
0.06x0.06x0.01 mm resolution [BGM*07]. [AX*08] created 
a self-calibrating approach that used projectors as both light 
sources and virtual cameras yielding multi-viewpoint pho-
togeometric reconstructions sampled at 0.05mm. These 
example works show that reconstructions of sufficient quali-
ty are possible. 
Photogeometric Capture 

In our prototype, we created a “signature reader” similar 
to the aforementioned photogeometric capture approaches. 
Our particular system is based on [AX*08] in the sense of 
being self-calibrating and combining both geometric and 
photometric data, however our method is single-viewpoint 
(like [NRD*05]). The surface fragment is placed approx-
imately perpendicular to the optical axis of the camera and 
thus can be reconstructed at the full resolution of the pho-
tometric method (i.e., that of the camera), which in our case 
is about 10x times greater than that of the projectors (Figure 
1f). We refer the reader to [AX*08] for more details. 
Signature Alignment 

The presence of sample patches and the smoothness of 
the displacement value relax the need for very accurate 
alignment between the physical object and the synthetic 
version of the object (perturbed by ݀

כ ). As is typically the 
case with single-viewpoint capture methods observing an 
object head-on, the dominating error is in the distance mea-
surements along the camera ray direction (and not errors in 
the tangential directions). Thus, the local smoothness of the 
signature displacements helps to diminish the effect of not 
precisely aligning the synthetic object with the physical 
object – a small tangential displacement results in only 
small distance measurement changes. Moreover, this relaxa-
tion also compensates for small manufacturing errors tan-
gential to the displacement direction. 

In our prototype, the user interactively places the captured 
surface fragment over its synthetic equivalent. Then, itera-
tive-closest-point (ICP) is used to further refine the align-
ment [RL*01]. The fragment is resampled so that each point 
- on the fragment is the closest possible point to the corݔ

responding point ݔ
כ  on the synthetic model. Only the sur-

face fragment corresponding to the signature needs to be 
processed. Also, if the surface and signature are very differ-
ent, ICP might fail. This is not problematic since that most 
likely indicates object genuinity should be rejected. 

4.2 Verification 
The objective of the verification process is to ensure that the 
signature is sufficiently intact so as to conclude the object is 
genuine. We use statistical tests to yield a nearly continuous 
probability value indicating object genuinity. First, we de-
scribe the use of a simple similarity of means test. This test 
is straightforward and easy to implement but is not always 
sensitive enough for replication attacks. Second, we de-
scribe a more sophisticated test that is able to robustly and 
correctly reject a re-instanced or replicated object. 
Similarity of Means Testing 

Re-instancing can be detected with the use of a key-based 
generation of displacements and a similarity of means statis-
tical test. Since the key is kept secure, it is extremely unlike-
ly that the adversary can recreate all the displacement values 
of the signature. A re-instanced object will most likely have 
a different signature and thus a simple similarity of means 
test is sufficient. Using the synthetic model with the signa-
ture displacements applied, each synthetic point ݔ

כ  is sub-
tracted from the corresponding reconstructed object point 
 . The mean of the magnitude of these difference vectorsݔ
should be zero for all reconstructed points. A z-test or Stu-
dent’s t-test can be used to check for a mean with a statisti-
cally significant difference from zero. 
Group-based Sampling and Median-based Testing 

In our verification tests, we use the stratification of the 
samples and median-based testing to determine homogenei-
ty of variance [Lom*07]. A replicated object will contain an 
unexpected additional variance within the captured groups 
  that was introduced by the adversary. Re-instancing willܤ
also cause the captured variance within each group ܤ to be 
different than the expected variance. Intuitively, we desire 
two properties: 1) the variance of all samples in a group to 
be the same and 2) the variance of each group to be ݒҧ plus 
݉   . We express this by using a modified version of aݒ
Brown-Forsythe test which checks for homogeneity of va-
riance (i.e., homoscedasticity) using medians and variable 
transformation. The use of medians, as opposed to means, is 
known to be more robust to samples with an error distribu-
tion straying from perfect normalcy (e.g., a simple F-test is 
rarely useful unless the distribution is perfectly normal). 

We modify the Brown-Forsythe test so that it tests for 
homogeneity of variance and for equality of that variance to 
a desired variance. The signature samples of each group ܤ 
mapped onto a genuine object are composed of a displace-
ment ݀, a group variance ݒҧ, and an additional (݉   ሻݒ
variance introduced by the manufacturing and verification 
processes. Once we account for the first two components, 
on average the group should exhibit values with a variance 
equal only to the third component. The magnitude of ݒҧ 
changes from group to group and its value is ݒҧ only if we 
group the points correctly. Thus, obtaining a leftover va-
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riance of (݉  -ሻ is only the case if the proper organizaݒ
tion of the strata is known, the sample displacements are 
known, and the only additional variance is (݉   .ሻݒ
Moreover, since we have a large number of groups, we can 
robustly test if the variance is in fact (݉    .(ݒ

If the test statistic exceeds a chosen threshold value, then 
it indicates rejection (i.e., object is re-instanced or repli-
cated). For this test, the transformed measurement variable 
for group ݇ and element  א ݕ  isܤ ൌ ݔ െ ݔ

כ  and ݕത୩ 
= median(൛ݕ:  א  ൟ). Then, we define the termsܤ

ݖ ൌ หݕ െ  ,ത୩ห, absolute difference with group medianݕ

ݖ ൌ ଵ
ௌೖ

∑ ೖאݖ , mean of group ݇, and 

ݖ ൌ ሺ݉   ሻ, desired overall varianceݒ
where ܵ is the number of elements in each group. These 
terms are used in the test statistic 

ܹ ൌ ሺିெሻሺ∑ ௌೖሺ௭ೖି௭ሻమሻೖ

ሺெିଵሻሺ∑ ∑ ൫௭ೖି௭ೖ൯మ
אಳೖ ሻೖ

 (8) 

which if it exceeds ܨሺߙ, ܯ െ 1, ܲ െ -ሻ means the homoܯ
geneity of variance fails with ܯ െ 1 and ܲ െ  degrees of ܯ
freedom and at a significance level ܨ) ߙ is a function that 
returns the upper critical value of an F-distribution). For 
convenience, we swap the numerator and denominator of 
equation (8) in order to make ܹ  1 at all times. 
Mutual Verification 

One potentially problematic situation is if both the legiti-
mate manufacturer and the adversary attempt to include a 
genuinity signature in the same object; who will be recog-
nized as the genuine manufacturer? This situation is, how-
ever, not problematic with our approach. If manufacturer ܤ 
acquires and copies the object from manufacturer ܣ and 
produces a new object with their own genuinity signature, 
then the new object will fail the genuinity test for manufac-
turer ܣ and succeed for that of manufacturer ܤ. This is the 
desired and appropriate behavior. 

5. Results and Discussion 
We have used our algorithms to encode and verify ge-

nuinity signatures on several types of objects. First, to en-
code a signature our software system reads in a description 
of a 3D model. A digital key is provided and used to gener-
ate the unique genuinity signature. Second, the newly 
created model is either fabricated using a stereolithography 
process or provided to a simulator. Our simulator enables us 
to thoroughly explore the parameter space. Third, a recon-
struction of an object is obtained and checked for the pres-
ence of the genuinity signature. Our prototype verification 
system uses a Canon Rebel XTi 10 MP camera and three 
Optoma EP910 DLP projectors of 1400x1050 pixels each.  

In the following, we present results including several 
graphs that analyze the behavior of the signature and its 
verification in a given situation. The horizontal axis in all 
graphs represents the number of groups used when design-
ing the signature. The vertical axis represents the value of 
the test statistic of equation (8). Each individual curve cor-
responds to either a particular size of the signature dis-
placement image or to a particular verification scenario. 

Each datapoint is the averaged result of 10 repeated simula-
tions of creating a signature image, perturbing it according 
to the legitimate manufacturer’s and adversary’s relative 
accuracies for manufacturing and verification, and perform-
ing a genuinity test. While arbitrarily more groups can be 
used by increasing the total number of samples, our graphs 
focus on the minimum number of samples and on the mini-
mum (or maximum) number of groups needed for a given 
sample size. Also, since our methods scale to any accuracy 
level, we arbitrarily fix ߬ ൌ 1 and adjust other parameters. 

The simplest interpretation of the numerical value of the 
test statistic (y-value of the graphs) is that a value near 1 
implies success of the genuinity test. Given the total number 
of samples, the number of groups, and the test statistic val-
ue, we can compute the statistical significance level at 
which the genuinity test will fail. This value varies with 
each datapoint in the graphs and can be computed using 
statistical tables or software equivalents. While we do report 
it for some examples, usually a test statistic value near 2 or 
greater strongly implies the object is not genuine. 

We have analyzed in simulation the behavior of the signa-
ture and its verification for various parameter values. While 
we have performed the simulations for a range of values, in 
these representative results we assume that the operational 
tolerance is about twice the manufacturing accuracy and 
there is a 5:1 ratio between ݉ and √ݎ; more precisely ߬ ൌ
1, ݉ ൌ ݒ ൌ 0.5, ݉ ൌ 0.25 and ݎ ൌ 0.0025 – these num-
bers guarantee the operational tolerance is not exceeded by 
the signature displacements and manufacturing process. 
Figure 4a shows the effectiveness of our method in recog-
nizing a truly genuine object using several signature image 
sizes. Once a sufficient number of groups are used (i.e., 
 60), genuinity testing robustly succeeds in keeping the test 
statistic near 1. Figure 4b shows the ability of our genuinity 
test in discovering a re-instanced object. Using a 200x200 
signature image or larger, yields sufficient samples to ro-
bustly detect the re-instanced object. The effectiveness of 
the test increases as the number of groups reduces because 
each group is assigned more samples resulting in a stronger 
change of variance. However, the desire to have fewer 
groups with more samples runs counter to the need for more 
groups that is needed for verifying truly genuine objects. 
For a signature image size of 200x200 about 60 to 100 
groups yields a compromise between the two scenarios. 
More groups can be used for larger signature image sizes. 

The use of the signature variance helps make the test 
more robust to attacks. Figures 4b-c report the test statistic 
using a ratio of 5:1 and 1:5 between ݉ and √ݎ. For all cas-
es, a variance difference between groups improves the ro-
bustness of the tests but yields a less smooth signature that 
is difficult to fabricate and to maintain undamaged. 

Figures 4d-f show the behavior of our approach during 
replication attempts for an adversary with ߚ ൌ ߚ ,1 ൌ 10 
(“10 times better technology”) and ߚ ൌ 100 (“100 times 
better technology”). In these tests, the relative values of 
݉, ,ݒ  as ,ߚ ௩ are not important – the value forݏ ௗ, andݏ
well as the image size and group count, dominate the beha-
vior. For ߚ ൌ 1, a 50x50 displacement image is sufficient. 
For ߚ ൌ 10, at least a 250x250 image is needed to robustly 
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reject such a replicated object. For ߚ ൌ 100, a larger signa-
ture displacement image of 2500x2500 is needed. In all 
cases, using up to about 140 groups is possible. Hence, even 
if the adversary has manufacturing and acquisition accuracy 
100 times superior to the legitimate manufacturer, the repli-
cated object can still be robustly identified. 

In Figure 5, we summarize the behavior of our genuinity 
signature and its verification in several “attacks” by an ad-
versary. Figure 5a shows the behavior of the genuinity test 
when using a signature displacement image of 250x250 
samples and ߚ ൌ 10. Figure 5b shows give a similar report 
but for ߚ ൌ 100 and using a signature displacement image 
of 2500x2500 (note: the test-value for the re-instance attack 
is very large, for convenience we divide it by 1000). In all 
cases, our approach clearly discerns the genuine object.  

Figure 1 (on the first page) shows a synthetic object, a fa-
bricated object, and an acquired fragment used for genuinity 

testing of a CAD object. Figure 1a and 1d show the 3D 
computer model. The signature is visible on the bottom side. 
Figure 1b and 1e are photographs of the fabricated physical 
object. Figure 1c is the acquired surface fragment of the 
signature. Since our genuinity detection is designed for 
fragility upon copying (i.e., success is hard), our real-world 
experiments test accurately recovering the signature at the 
expected levels of error. The effects of re-instancing and 
replicating an object can be accomplished, respectively, by 
comparing the same captured object to a different signature 
and by changing the variances of the signature. 

The signature we design and verify uses a displacement 
image of 35x35 samples and 100 groups. The square dis-
placement image is mapped onto the object with only sim-
ple scaling and orthographic projection, thus only about 
2/3’s of the samples are actually used. The object measures 
102x100x45 mm. The accuracy of the stereolithography 
fabrication device available to use can be set between 0.1 

a)  d)  

b)  e)  

c)  f)  
Figure 4: Genuinity Testing Analysis. We show the behavior of our genuinity test for a) genuine objects, b-c) for re-
instanced objects, and d-f) for replicated objects. The two reinstancing examples also show the benefit of having a va-
riance component in the signature; b) show a ratio of 1:5 between m and √ݎ and c) show a ratio of 5:1. The replication 
attacks use an adversary with technology d) 1x, e) 10x, or f) 100x better than the legimate’s manufacturer. 
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mm and 0.2 mm (i.e., about 5/1000th to 8/1000th of an inch) 
-- we used 0.1 mm. Our verification system is estimated to 
have an accuracy of 0.5 mm; in this example, 99% of the 
acquired fragment was at most 0.39 mm from ideal (thus 
ݒ ൌ 0.5 is reasonable). Our manufacturing and verification 
variances are taken as ݉ ൌ 0.15ଶ and ݒ ൌ 0.5ଶ. For this 
prototype, we satisfy ߬ ൌ 2 mm by using ݉ ൌ 1.0 mm and 
ݎ ൌ 0.75. The averaged test statistic value for genuine ob-
jects, re-instanced objects, and replicated objects (using 
-is, respectively, 1.26, 3.57, and 2.16. In this signa (10=ߚ
ture, the upper critical F-value for the involved degrees of 
freedom and at a 5% significance level is about 1.26. Thus, 
the truly genuine object passes the test and the re-instanced 
and replicated object are correctly rejected with only a 5% 
chance of getting the classification wrong.  

Figure 6 shows the relative effect of the signature para-
meters ݉ and ݎ. In this example, we assume we have 1 mm 
of “space” for the signature displacements. ݉ provides the 
general shape of the signature (Figure 6a: high ݉ and low 
 :provides variability between the groups (Figure 6b ݎ .(ݎ
low ݉ and high ݎ). High variability between the groups 

yields the most robust test, but the signature itself might be 
hard to manufacture and/or fragile. Our choice is to use a 
balance of the two parameters (Figures 6c-6d). In this small 
footprint signature, the significance level is about 10% (e.g., 
the test may be wrong 10% of the time – this number can be 
improved by further tuning the parameters). 

In Figure 7, we demonstrate the flexibility of our method 
by applying it to a previously scanned object rather than a 
CAD object. The process for our method is identical and the 
signature in fact looks very much like existing noise. 

Figure 8 shows another experimental example. This ob-
ject was fabricated with similar parameters as that in Figure 
1 but using ߬ ൌ 2 and ݉ ൌ 0.2ଶ mm (“standard stereoli-
thography quality” of our supplier). The test statistic values 
for genuine objects, re-instanced objects, and replicated 
objects (using 10=ߚ) is, respectively, 1.23, 2.75, and 1.63. 
The acquired object’s was at most 0.47 mm from ideal. 

We further validate our method by showing the effect on 
the signature for replicated objects. Using the objects from 
Figures 1 and 8, we re-manufacture the objects from the 
acquired version (containing the signature). In Figure 9, we 
show the difference (using a jet colormap) between corres-
ponded points of the digital model with signature (i.e., no 
errors) and scanned surface fragments. The difference 
represents the error introduced by manufacturing and verifi-
cation -- it should be relatively smooth and small. Figures 
9a and 9c use the acquired signatures of the genuine objects 
where test statistic ܹ=1.16 and ܹ=1.22, respectively. Fig-
ures 9b and 9d use the scanned signatures of the replicated 
objects where ܹ=2.86 and ܹ=2.43, respectively -- thus the 
objects are detected to be replicas. Further, Figures 9a and 
9b are created using the same high-resolution manufacturing 
technology; replica Figure 9d is created using high-
resolution manufacturing technology while the correspond-
ing genuine object is created using the lower-quality stan-
dard-resolution process. Nevertheless, the replication 
process introduces additional error that can be detected. 
(Note: the straight-line artifacts of 9a and 9b are due to the 
capture methods; the red-bands on the sides of 9c and 9d are 
because that surface region is not part of the signature.) 

6. Discussion and Future Work 
We have presented a novel approach to encode data for 

detecting object genuinity into the surface of physical ob-
jects. Our problem is quite different from digital watermark-
ing where perfect copies can be made. In the physical world, 
copying is a noisy process that we exploit to detect replica-
tion attempts, re-instancing attempts, or both. Our approach 
encodes a signature into a digital 3D object which after 

a)  

b)  
Figure 5: Example Attacks. a) Attempt of copying using 
ߚ ൌ 10 and a 250x250 signature displacement image. b) 
Another set of attacks using ߚ ൌ 100 and a 2500x2500 
signature displacement image. 
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manufacturing is used to determine genuinity. Our work 
provides a unique blend of computer graphics, information 
security, and advanced manufacturing. 

Our method does have some limitations and aspects that 
need further refinement. First, our approach requires 
“space” to place the signature. Such space might not exist 
on all types of objects. Second, our error model is based on 
an assumption of a near-normal error distribution. While we 
explicitly use techniques to support deviations from normal-
ity, a severe departure will likely confuse verification. 
Third, our technique requires approximate knowledge of the 
variance of the manufacturing process and verification 
process. A significant over (or under) estimation of these 
quantities will also distort the verification procedure. While 
the variance can be determined experimentally, we look to 
more sophisticated statistical processing to support using 
conservative estimates. To provide more robustness and to 
support a wider range of object types and manufacturing 
processes, a promising extension is to use other feature 
spaces (e.g., color) and their combinations. 
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Figure 7: Scanned Object. a) Scanned object, no sig-
nature. b) Object with signature added (middle figure 
highlights the signature footprint). 

a) b) 

Figure 8: Additional Example. a) Top view of original 
3D synthetic model. b) Bottom view of original model. c) 
View of model with encoded signature for ߬ ൌ 2 mm. d) 
Acquired signature footprint. 

a) b) 

c) d) 

Figure 9: Replication Examples. Differences are 
shown between digital model with signature and sur-
face fragments (using jet-colormap). (a, c) Captured 
signatures of genuine objects; (b, d) replicated objects.  

b) 

c) d) 
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