
AUTOMATICALLY REDUCING AND BOUNDING
GEOMETRIC COMPLEXITY BY USING IMAGES

by
Daniel G. Aliaga

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the
Department of Computer Science.

Chapel Hill

1998

Approved by

Advisor: Anselmo Lastra

Reader: Gary Bishop

Reader: Steven Molnar

Reader: Frederick Brooks

Henry Fuchs

Henry Rich

ii

©1998

Daniel G. Aliaga

All Rights Reserved

iii

ABSTRACT

Daniel G. Aliaga. Automatically Reducing and Bounding Geometric

Complexity by Using Images.

(Under the direction of Anselmo A. Lastra)

Large and complex 3D models are required for computer-aided design, architectural

visualizations, flight simulation, and many types of virtual environments. Often, it is not

possible to render all the geometry of these complex scenes at interactive rates, even with

high-end computer graphics systems. This has led to extensive work in 3D model

simplification methods.

We have been investigating dynamically replacing portions of 3D models with

images. This approach is similar to the old stage trick of draping cloth backgrounds in order

to generate the illusion of presence in a scene too complex to actually construct on stage. An

image (or backdrop) once created, can be rendered in time independent of the geometric

complexity it represents. Consequently, significant frame rate increases can be achieved at

the expense of storage space and visual quality. Properly handling these last two tradeoffs is

crucial to a fast rendering system.

In this dissertation, we present a preprocessing and run-time algorithm for creating a

constant-frame-rate rendering system that replaces selected geometry with images enhanced

with depth at each pixel. First, we describe the preprocessing algorithm to automatically

bound the geometric complexity of arbitrary 3D models by using images. Second, we explore

two general approaches to displaying images, surrounded by geometry, at run time. Third, we

present a system tailored to architectural models.

iv

ACKNOWLEDGMENTS

 I owe a tremendous amount of gratitude to the many people that have helped me

during my graduate school years. In particular, I would like to thank my advisor, and friend,

Anselmo Lastra. He kept me heading in the right direction and has spent many long hours

helping me with this research. I also greatly appreciate the wisdom and guidance of the rest

of my dissertation committee: Gary Bishop, Fred Brooks, Henry Fuchs, Steve Molnar, and

Henry Rich.

 I am also grateful to the long list of keen graduate students that have surrounded me.

The enthusiasm and energy I received from them has helped me throughout the dissertation

process. I especially acknowledge Bill Mark, my officemate and friend, for always lending an

ear to me, and Yunshan Zhu, my roommate, friend and colleague for several years.

Furthermore, I wish to thank Jon Cohen, David Harrison, Todd Gaul, Steve Hutson, David

Luebke, Carl Mueller, Michael North, Marc Olano, Voicu Popescu, Matthew Rafferty, Keith

Sykes, and many others.

 I appreciate the support of the entire Computer Science Department, especially that

of the Walkthrough Project, led by Fred Brooks, Dinesh Manocha and Mary Whitton, and

that of the entire PixelFlow team. I also thank Henry Fuchs for introducing me into the

department and Andries vam Dam for first bringing me into the field of Computer Graphics.

Finally, I thank Leigh “pooquita” Atkinson for her love and support during this long

marathon as well as my parents and sister for their endless encouragement.

v

TABLE OF CONTENTS

LIST OF FIGURES..ix

LIST OF TABLES..xi

1. INTRODUCTION ... 1

1.1 THESIS STATEMENT... 1

1.2 MODELS AND APPLICATIONS ... 2

1.3 RENDERING ACCELERATION METHODS ... 4

1.4 REPLACING GEOMETRY WITH IMAGES... 6

1.4.1 Overall System Design .. 6

1.4.2 Automatic Image-Placement ... 9

1.4.3 Image Warping.. 10

1.4.4 Geometry Warping.. 11

1.4.5 Architectural Models... 11

1.5 CONTRIBUTIONS .. 12

1.5.1 Automatic Image-Placement Algorithm.. 12

1.5.2 Geometry-Warping Algorithm .. 12

1.5.3 Portal Images.. 12

1.5.4 Efficient Hierarchical-Culling Algorithm ... 13

1.6 A GUIDE TO CHAPTERS.. 13

2. RELATED WORK.. 15

2.1 TEXTURES AND IMAGE CACHING... 15

2.1.1 Individual Objects... 16

2.1.2 Nodes of a Hierarchical Partitioning Tree ... 18

2.1.3 Arbitrary Model Subsets ... 19

2.2 ADDITIONAL RENDERING ACCELERATION METHODS .. 20

2.2.1 Geometric Simplification .. 20

 2.2.1.1 Static Simplification ... 20

 2.2.1.2 Dynamic Simplification.. 20

2.2.2 Visibility Culling ... 22

vi

2.3 FLIGHT SIMULATORS ... 23

2.4 IMAGE-BASED RENDERING.. 25

3. AUTOMATIC IMAGE PLACEMENT... 27

3.1 OVERVIEW... 27

3.2 VIEWPOINT GRID ... 30

3.3 IMAGE PLACEMENT AT A GRID VIEWPOINT.. 31

3.3.1 View-Directions Set... 31

3.3.2 Image Placement: A Discrete Optimization.. 33

 3.3.2.1 Cost-Benefit Function .. 34

 3.3.2.2 Representing Octree-Cell Subsets.. 35

 3.3.2.3 Inner Optimization Loop.. 37

3.4 ADAPTING THE VIEWPOINT GRID TO THE MODEL COMPLEXITY... 39

3.4.1 Star-shapes.. 39

3.4.2 Recursive Procedure ... 41

3.4.3 Star-Shape Minimal Viewpoint Sets.. 43

3.5 COMPLEXITY ANALYSIS... 44

3.5.1 How many images? ... 45

 3.5.1.1 Best-Case Scenario .. 45

 3.5.1.2 Worst-Case Scenario.. 49

 3.5.1.3 Example Average-Case Scenario... 50

3.5.2 How much time does it take? .. 52

3.6 RESULTS .. 53

3.6.1 Implementation ... 53

3.6.2 Performance.. 54

4. DEPTH-IMAGE WARPING.. 59

4.1 OVERVIEW... 59

4.2 IMAGE WARPING ... 59

4.2.1 Formulation .. 59

4.2.2 Reconstruction .. 62

4.2.3 Limitation of Single-Image Warping... 62

4.3 LAYERED DEPTH IMAGES .. 64

4.3.1 Constructing and Warping LDIs... 65

4.3.2 Optimizing LDIs for the Viewpoint Grid... 67

4.4 IMPLEMENTATION.. 69

4.4.1 Image Cache ... 69

vii

4.4.2 Preprocessing ... 70

4.4.3 Run Time ... 71

5. GEOMETRY WARPING... 73

5.1 ALGORITHM... 73

5.1.1 Partitioning the Geometry .. 75

5.1.2 Geometric Continuity .. 75

5.1.3 Smooth Transitions ... 77

5.1.4 Artifacts... 77

5.2 MULTIPLE IMAGES... 77

5.2.1 Common Viewpoint ... 78

5.2.2 Different Viewpoints ... 79

5.3 IMPLEMENTATION.. 80

5.3.1 Geometry-To-Image Transition .. 81

5.3.2 Image-to-Geometry Transition.. 82

5.3.3 Results ... 83

6. ARCHITECTURAL MODELS.. 85

6.1 IMAGE PLACEMENT IN ARCHITECTURAL MODELS ... 85

6.2 PORTAL IMAGES .. 86

6.2.1 Portal Culling vs. Portal-Image Culling... 86

6.2.2 Creating Portal Images... 87

6.3 GEOMETRY-WARPING SYSTEM ... 89

6.3.1 Overview ... 89

6.3.2 Implementation ... 90

6.3.3 Results and Observations.. 91

 6.3.3.1 Performance... 91

 6.3.3.2 Portal Images on Demand ... 92

 6.3.3.3 Single Portal-Image Case .. 92

 6.3.3.4 Image Quality... 93

6.4 IMAGE-WARPING SYSTEM ... 93

6.4.1 Overview ... 93

6.4.2 Implementation ... 94

6.4.3 Results and Observations.. 94

7. EFFICIENT HIERARCHICAL CULLING ... 96

7.1 HIERARCHICAL CULLING ... 96

7.1.1 Conventional Hierarchical Culling... 97

viii

7.1.2 Efficient Hierarchical Culling... 99

8. CONCLUSIONS AND FUTURE WORK ... 101

8.1 SUMMARY ... 101

8.2 EXTENSIONS TO AUTOMATIC IMAGE-PLACEMENT... 103

8.3 EXTENSIONS TO IMAGE WARPING.. 104

8.4 EXTENSIONS TO PORTAL IMAGES... 105

9. REFEFENCES... 106

ix

LIST OF FIGURES

1-1A TORPEDO ROOM.. 3

1-1B AUXILIARY MACHINE ROOM ... 3

1-2A FALLINGWATER HOUSE .. 4

1-2B BROOKS HOUSE... 4

1-3 POWER PLANT... 5

1-4 PIPELINE FOR REPLACING GEOMETRY WITH IMAGES... 6

1-5 EXAMPLE AUTOMATIC-IMAGE PLACEMENT .. 8

1-6 IMAGE WARPING ... 9

1-7 GEOMETRY WARPING ... 10

1-8 PORTAL-IMAGE CULLING .. 11

2-1 IMAGE-SAMPLING SPHERE FOR INDIVIDUAL OBJECTS ... 16

2-2 IMAGES FOR A HIERARCHICAL PARTITIONING TREE .. 17

3-1 GEOMETRY+IMAGE EXAMPLE... 27

3-2 DECOMPOSITION OF GEOMETRY+IMAGE EXAMPLE... 28

3-3 KEY OBSERVATION FOR VIEWPOINT GRID .. 29

3-4 AUTOMATIC IMAGE-PLACEMENT ALGORITHM SUMMARY... 29

3-5 TORPEDO ROOM VIEWPOINT GRID .. 30

3-6 VIEW-DIRECTIONS SET.. 31

3-7 EXAMPLE YAW-ROTATION DISK ... 32

3-8 OCTREE-CELL SUBSET REPRESENTATION ... 35

3-9 IMAGE PLACED BEHIND THE EYE .. 39

3-10 EVEN-LEVEL STAR-SHAPE .. 40

3-11 EVEN- AND ODD-LEVEL GRID VIEWPOINT SUBDIVISION... 41

3-12 ODD-LEVEL STAR-SHAPE.. 42

3-13 STAR-SHAPE MINIMAL SETS.. 43

3-14 NUMBER OF GRID VIEWPOINTS ... 45

3-15 NUMBER OF IMAGES PER GRID VIEWPOINT... 47

3-16 STORAGE PERFORMANCE .. 54

3-17 HISTOGRAM OF IMAGES PER VIEWPOINT... 55

3-18 THEORETICAL PLOT OF M ... 55

3-19 OPTIMIZATION RESULTS FOR POWER PLANT WITH POPT=200K PRIMITIVES 56

3-20 PATH THROUGH POWER PLANT MODEL.. 56

4-1 IMAGE WARPING ... 61

4-2 LIMITATION OF SINGLE-IMAGE WARPING.. 62

4-3 EXAMPLE LAYERED DEPTH-IMAGE... 64

x

4-4 CONSTRUCTION OF A LAYERED DEPTH-IMAGE.. 65

4-5 LAYERS OF A LDI.. 66

4-6 SUMMARY OF GENERAL LDI CONSTRUCTION ALGORITHM... 67

4-7 SELECTING CONSTRUCTION IMAGES FOR A LDI .. 68

5-1 GEOMETRY-WARPING EXAMPLE... 73

5-2 NO GEOMETRY-WARPING EXAMPLE... 74

5-3 SMOOTH-TRANSITION EXAMPLE ... 74

5-4 MODEL PARTITIONING FOR GEOMETRY WARPING... 75

5-5 SEQUENCE OF TRANSFORMATIONS FOR SMOOTH TRANSITIONS .. 76

5-6 COMMON VIEWPOINT, ADJACENT IMAGES.. 78

5-7 SMOOTH TRANSITIONS .. 78

5-8 MULTIPLE IMAGES... 80

5-9 GEOMETRY-TO-IMAGE TRANSITIONS .. 81

5-10 IMAGES AND WARPED GEOMETRY IN THE CHURCH MODEL.. 83

6-1 PORTAL IMAGES .. 85

6-2 PORTAL-IMAGE CULLING .. 86

6-3 CONSTRAINED MODEL-DEPENDENT VIEWPOINTS ... 88

6-4 PORTAL-IMAGE VISIBILITY CULLING USING GEOMETRY WARPING ... 90

6-5 PORTAL IMAGES RENDERING TIMES.. 91

6-6 COLD-CACHE RENDERING TIMES.. 92

6-7 PORTAL-IMAGE VISIBILITY CULLING USING IMAGE WARPING... 93

6-8 RENDERING TIME WARPING ONE AND TWO REFERENCE IMAGES... 94

7-1 EXAMPLE TILING OF SCREEN GEOMETRY.. 96

7-2 CULLING COMPARISON.. 98

xi

LIST OF TABLES

3-1 PREPROCESSING SUMMARY FOR TEST MODELS .. 58

4-1 LDI STORAGE REQUIREMENTS.. 70

4-2 RUN-TIME IMAGE-WARPING PERFORMANCE .. 71

5-1 PERFORMANCE SUMMARY OF STAND-ALONE GEOMETRY WARPING SYSTEM 84

1. Introduction

1.1 Thesis Statement

Large and complex three-dimensional (3D) models are required for applications such

as computer-aided design (CAD), architectural visualizations, flight simulation, and virtual

environments. These databases currently contain hundreds of thousands to millions of

primitives; more than high-end computer graphics systems can render at interactive rates. We

would like to improve our rendering strategies so that even mid-range systems can render

these massive models.

This demand for interactive rendering has brought about algorithms for model

simplification. For example, techniques have been presented for geometric levels of detail,

visibility culling, and for representing objects using images.

In this dissertation, we present a preprocessing and run-time algorithm for creating

constant-frame-rate rendering systems by dynamically replacing selected geometry with

images. Using images is desirable because we can render them in time proportional to the

number of pixels. In addition, increasingly simplified geometric levels of detail, viewed from

the same distance, eventually lose shape and color information. A fixed resolution image, on

the other hand, maintains an approximately constant rendering cost and given sufficient

resolution maintains the apparent visual detail.

First, we describe the preprocessing algorithm to automatically compute a data

structure that determines which subsets of an arbitrary 3D model to replace with images in

order to limit the number of primitives to render. Second, we present two general approaches

for displaying images surrounded by geometry at run time. We apply our algorithms to

accelerate the interactive walkthrough of several large CAD models. We also take advantage

of the inherent structure of buildings and present a system tailored to architectural

walkthroughs.

2

We summarize this work in the following thesis statement:

“We can accelerate the interactive rendering of complex 3D

models by replacing subsets of the geometry with images.

Furthermore, we can guarantee a specified level of performance

by bounding the amount of geometry that must be rendered each

frame.”

1.2 Models and Applications

Computer graphics [Foley90] and interactive rendering systems are used to assist in

the design, visualization, and construction of complex objects such as submarines, ships,

airplanes, buildings, and power plants. The models are often created by a large number of

structural and mechanical designers divided into teams. A complete model is obtained by

combining the latest versions of all objects in a common model database. The teams then

view the model, assign new tasks, and periodically perform computations on the model, for

example interference detection and computational fluid dynamics. The whole design process

can take from months to years, employing hundreds of designers. Any effort to reduce the

length of the design cycle or improve the model quality is a profitable investment.

Our laboratory worked together with a simulation-based design team to create an

interactive walkthrough of compartments of a nuclear submarine. A model of the torpedo

room contains over 850,000 primitives (Figure 1-1a). The auxiliary machine room in a

similar submarine has 525,000 primitives (Figure 1-1b). The latter model contains an

irregular distribution of piping, batteries, and other mechanical and electrical components.

Both of these models are a challenge for simplification algorithms.

Architectural walkthroughs allow us to see a building before it is constructed or to

visualize famous structures. To make the walkthroughs realistic, a large amount of detail is

required as well as sophisticated lighting methods (e.g. radiosity illumination [Cohen93]). A

model of a single room of the FallingWater house designed by Frank Lloyd Wright contains

over one million primitives (Figure 1-2a). A complete one-story model of Dr. Fred Brooks’

house contains 1.7 million triangles (Figure 1-2b). In some situations, we use head-mounted

displays coupled with a position and orientation tracking system to immerse ourselves in

3

these virtual buildings. We require at least twelve updates per second [Tom Piantanida,

personal communications] to give us a sense of presence.

Very large-scale (or massive) models can be too large to store in main memory. They

require significant rendering acceleration as well as a compact database representation and

efficient disk paging. For example, the prototype model of a coal-fired power plant, shown in

Figure 1-3, consists of 13 million triangles and requires 1.3 GB of disk space.

Figure 1-1a. Torpedo Room. This
is a 850,000 triangle model of the
torpedo room of a notional
nuclear submarine. In view are
the rollers to load the torpedoes
into the launching tube. Courtesy
of Electric Boat Division of
General Dynamics.

Figure 1-1b. Auxiliary Machine
Room. This is a 525,000 triangle
model of the auxiliary machine
room in a notional nuclear
submarine. Courtesy of Electric
Boat Division of General
Dynamics.

4

1.3 Rendering Acceleration Methods

It is not possible to render all the geometry of these complex models at highly

interactive rates. Hence, a large body of literature exists that describes algorithms to reduce

the amount of geometry to render (Chapter 2). We can divide such techniques into three

general categories:

• Geometric Simplification: these methods reduce the complexity of geometry that is

rendered. Often the reduction is performed as a preprocess by generating multiple

levels of detail of objects in the scene (e.g. [Turk92][Eck95][Cohen96][Garland97]

Figure 1-2a. Living room of the
FallingWater House, a famous
house designed by Frank Lloyd
Wright. This room is modeled
using one million geometric
primitives. Courtesy Program of
Computer Graphics, Cornell
University.

Figure 1-2b. Brooks House. A 1.7
million triangle model of Dr. Fred
Brooks’ house. This view is
looking inwards from one corner
of the study. Courtesy of the UNC
Walkthrough Project.

5

and many others). Another approach involves dynamically simplifying the scene

using view-dependent simplification [Xia96][Hoppe97][Luebke97]. This latter

approach can achieve better simplification for the same quality but requires

significant run-time overhead.

• Visibility culling: these algorithms compute, conservatively, the subset of the model

that is visible [Airey90][Teller91][Luebke95] or, conversely, what conservative

subset is occluded [Hudson97][Zhang97][Coorg97]. These methods (usually) do not

alter the final rendered image, instead they avoid processing geometry known to be

hidden.

• Textures and Image Caching: the third general category involves replacing geometry

in the scene with images. Flight simulators have used images to represent terrain and

other specialized datasets (e.g. [Clark90][Pratt92] and many others). Recently, several

systems have been developed for models that replace objects with precomputed

images [Maciel95][Ebbesmeyer98] or a hierarchy of spatially adjacent objects with

dynamically generated images [Shade96][Schaufler96].

Figure 1-3. Coal-fired Power Plant. This is a very large model (over 13 million triangles) of a
coal-fired power plant. The main building is over 250 feet high (50 levels) and contains large
arrays of piping, generators, and other machinery. Courtesy of ABB Engineering.

6

1.4 Replacing Geometry with Images

The work presented in this dissertation builds upon the concepts of the third

rendering-acceleration category. Figure 1-4 outlines a general pipeline for replacing geometry

with images. The algorithms we present can be applied alone or together with visibility

culling and level-of-detail methods. In this dissertation, we focus on the image aspect. The

applications outlined in Section 1.2 are typically limited by the number of transformations

performed each frame. Consequently, the number of primitives rendered mostly determines

frame rate. In our approach, we automatically select distant geometry to replace with images

so that what geometry remains does not exceed a specified number of primitives per frame.

 Distant geometry is dynamically culled from the model and an image is displayed.

We define an image to be a quadrilateral on which we place a view of the geometry it

replaces. We assume the approximately constant cost of displaying images can be afforded

each frame. Moreover, to maintain a constant frame rate, an image must be created before we

reach that part of the model. The images can be precomputed or generated at run time and

then stored in main memory. If the total number of precomputed images exceeds available

main memory, we use auxiliary processors or idle time to load the images from secondary

storage.

1.4.1 Overall System Design

In order to guide our task of devising an efficient system to display images, we have

identified four important design issues:

Figure 1-4. Pipeline for Replacing Geometry with Images. Starting with a geometric
model, we apply visibility culling and level-of-detail algorithms. We replace some of the
remaining geometry with images. These images are obtained from an image cache. In
principle, they can be precomputed or dynamically computed.

Model Visibility Culling,
Level-of-Detail

Cull Geometry
to Replace

Render
Geometry and

Images
Display

Create Images Image Cache

7

• Automatic Image-Placement: the images should be inserted into the model at

predetermined locations or an algorithm should be used to determine which subsets of

the model to replace with images.

• Temporal Continuity: the system should take into consideration that an image is a two-

dimensional (2D) snapshot of a 3D model. The geometry represented by the image will

only have the correct perspective projection and occlusion for a single viewpoint, namely

the image-sampling viewpoint. We want to avoid a visual popping artifact as we move

through a model and switch between images created at discrete locations.

• Geometric Continuity: the system should control or eliminate artifacts that occur at

the geometry-image border. For example, if we represent an object partially as

geometry and partially as image, then we do not want to see a visual discontinuity at

the geometry-image border as we move from the image-sampling viewpoint. By

addressing this issue, a system can provide much more freedom for image placement

than if the images must encompass whole objects.

• Smooth Transitions: the system should be able to provide smooth transitions for

switching between geometry and images. This allows the rendering acceleration using

images to be transparent to the viewer. Moreover, we can always choose to render a

subset of the model (e.g. the portion we wish to interact with) as conventional

geometry.

In our work, we create a preprocessing algorithm to automatically determine the

location of images for an arbitrary 3D model. Then, with the remaining issues in mind, we

must display the images at run time, together with the remaining geometry. We could use one

of a variety of methods listed below:

• Texture-mapped quadrilaterals: use an image applied as a texture map onto a

quadrilateral. This simple method does not provide geometric continuity, temporal

continuity nor smooth transitions.

• Textured depth meshes: use a (simplified) depth mesh that represents the scene from the

single viewpoint used to create the mesh [Darsa97][Sillion97]. Apply an image as a

8

projective texture onto the mesh. This approach provides approximate geometric

continuity, temporal continuity, and smooth transitions, but consumes graphics resources.

• Image warping: use per-pixel depth values to warp an image to compensate for changes

in viewpoint [Chen93][McMillan95b]. This approach addresses all three design issues.

• Geometry warping: use conventional images and warp the surrounding geometry to

provide geometric continuity and smooth transitions; but, do not provide temporal

continuity.

While all of these are viable approaches, we chose to investigate the latter two

methods. Of the two, image warping provides the most promising results. Image warping

reprojects pixels to their correct location in the image plane. By the use of multiple samples

per pixel (sorted in depth), we can reconstruct initially hidden surfaces that become visible.

Thus, given sufficient resolution and surface samples, we can produce high quality

renderings. We combine our automatic image-placement algorithm with image warping to

create a fast rendering system for large, complex models.

Geometry warping does not render the scene accurately, but surprisingly is useful for

applications that do not require temporal continuity or for applications that sample multiple

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

Figure 1-5. Example Automatic-Image Placement. This figure illustrates an
automatically computed viewpoint grid for the torpedo room model. The left snapshot
shows an exterior view of the model rendered in wireframe. The right plot shows a grid
of 1557 viewpoints from where images are computed to limit the number of primitives
per frame to at most 150,000 triangles. Note the cluster of geometry in the middle of the
left snapshot and the corresponding cluster in the grid.

9

images to provide approximate temporal continuity. Moreover, we are able to use

conventional, static images and achieve higher frame rates.

In the following sections, we summarize our automatic image-placement algorithm

and run-time system for arbitrary models, our image-warping implementation, and our

geometry-warping algorithm. We also summarize two versions of a walkthrough system

tailored to architectural models. One version uses geometry warping to produce a low-

memory-budget system while the other uses image warping to provide better scene quality.

1.4.2 Automatic Image-Placement

We have designed a preprocessing algorithm that takes as input a 3D model and

automatically bounds the geometric complexity for all viewpoints and view directions in the

model (Chapter 3). The algorithm creates a grid of viewpoints adapted to the local model

complexity (Figure 1-5). At each grid viewpoint, an image-placement process selects the

smallest and farthest subset of the model to remove from rendering to meet a fixed geometry

budget. This process takes advantage of hierarchical spatial data structures [Clark76], used

for view-frustum culling, to reduce the infinite set of viewpoints and view directions to a

finite, manageable set. An image with depth values is then created to represent each selected

subset.

Figure 1-6. Image Warping. The view through the doorway is rendered as an image. In
the right snapshot, we have translated and rotated the viewpoint to one side. Per-pixel
depth values are used to “warp” the image to the new viewpoint. We employ a layered
depth image to store information for surfaces visible in the right snapshot that are not
visible in the original snapshot.

10

Our run-time component displays the selected subset in constant time by warping the

corresponding depth image to the current viewpoint (as will be described in the next section).

The remaining geometry is rendered normally. Thus, if we can afford the time it takes to

warp an image, we can render a 3D model of any size at a predetermined frame rate.

1.4.3 Image Warping

Once we have determined image locations, we must now address how to display

images surrounded by geometry. Our preferred approach to displaying images surrounded by

geometry is to correct the image to the current viewpoint (Figure 1-6) [McMillan95a]. The

geometry behind the image is culled. By altering the image, we prevent temporal and

geometric discontinuities. Moreover, the smooth-transition problem is greatly alleviated. The

cost of image warping is approximately constant, but introduces a set of visual artifacts. We

will present more details on image warping and layered depth images [Max95][Shade98] in

Chapter 4.

Figure 1-7. Geometry Warping. The upper right portion of each snapshot (outlined in red)
is an image. We have translated (slightly) from the center of projection of the image. In the
left snapshot, the geometry bordering the image appears discontinuous with the image. In
the right snapshot, we have warped the geometry to match the image.

11

1.4.4 Geometry Warping

Our second approach to displaying images modifies the geometry to match the image.

We employ a geometry-warping algorithm to maintain geometric continuity and provide

smooth transitions between geometry and images. Arbitrary subsets of a model are replaced

with a conventional image, texture-mapped onto a quadrilateral. The algorithm maintains

positional continuity at the geometry-image border by warping vertices of surrounding

geometry (Figure 1-7). When a part of the model changes from image to geometry (or vice

versa), we achieve a smooth transition by warping, over several frames, the vertices of the

geometry from their actual position to their apparent position in the image (and vice versa).

We have observed that as long as the eye does not translate too far from the image-sampling

viewpoint, the algorithm provides good visual quality. The warp operations require a linear

transformation and can be performed using the graphics hardware’s matrix stack. Details will

be given in Chapter 5.

1.4.5 Architectural Models

The cells and portals framework [Airey90][Teller91][Luebke95], commonly used for

architectural walkthroughs, provides a very natural set of locations for images. Architectural

models can easily be divided into disjoint rooms (cells). Each room is connected to adjacent

cells through doors and windows (portals). We render the geometry of the cell containing the

Figure 1-8. Portal-Image Culling. The portals (doorways, windows, etc.) of the current
room are replaced with images, optionally warped to the current viewpoint. Consequently,
the system never needs to render more than one room’s worth of geometry, even if a long
sequence of rooms is visible. The right snapshot shows the portal image and geometry
rendered in wireframe.

12

viewpoint. Then, instead of rendering the geometry of the cells attached to visible portals, we

replace portals with images (Figure 1-8). This approach reduces the amount of geometry to

render to that of the current room – the amount of geometry to render is not bounded but in

practice significant rendering acceleration can be achieved.

We designed two variants of this system (Chapter 6). The first one is a low-memory-

budget approach that uses only one image per portal. Then, as the viewpoint approaches a

portal, we smoothly change back to geometry by warping the vertices of the adjacent cell

from their position on the portal image to their actual position (or vice versa). The second one

warps the portal image to the current viewpoint. In both, we have seen significant reductions

in rendering time as compared to standard cells and portals.

1.5 Contributions

This dissertation presents several algorithms for dynamically replacing selected

geometry with images. We briefly summarize the contributions.

1.5.1 Automatic Image-Placement Algorithm

We have designed a preprocessing algorithm to reduce and bound the number of

primitives to render for all viewpoints and view directions within an arbitrary 3D model. The

algorithm automatically determines the subsets of the model to replace with images.

1.5.2 Geometry-Warping Algorithm

We have developed an algorithm for warping the geometry surrounding an image in

order to prevent discontinuities at the geometry-image border and to provide smooth

transitions between geometry and images [Aliaga96][Aliaga98b]. This method can be used in

conjunction with systems that use multiple images to control temporal continuity.

1.5.3 Portal Images

We have developed two architectural walkthrough systems that use images to

accelerate rendering. The first one replaces portals with images and reduces the rendering

13

load to one or two cells [Aliaga97]. We significantly improve the frame rate even when a

long sequence of portals is visible.

The second system warps the portal image to the current viewpoint, thus requiring

fewer reference images per portal [Rafferty98a][Rafferty98b][Popescu98]. We achieve the

same reduction of geometry as with the first system, although the smoother changes between

portal images is achieved at an additional constant cost (proportional to the image size).

1.5.4 Efficient Hierarchical-Culling Algorithm

In order to maximize the benefit of replacing geometry with images, we developed an

efficient hierarchical culling algorithm that eliminates redundant primitives when culling a

model multiple times per frame. Conventional culling would cause some primitives to be

rendered more than once.

1.6 A Guide to Chapters

The rest of this dissertation is organized as follows:

• Chapter 2 presents related work. We summarize texture and image caching

systems as well other rendering acceleration methods. Then, we describe relevant

flight simulator work and image-based rendering.

• Chapter 3 elaborates on our automatic image-placement algorithm for 3D models.

The chapter includes theoretical and empirical results of applying our algorithm to

the interactive walkthrough of large 3D models.

• Chapter 4 presents our image-warping approach to displaying images. We

describe an efficient layered-depth-image implementation for correcting depth

images to the current viewpoint.

• Chapter 5 details our geometry-warping approach to displaying images, as well as

a stand-alone rendering acceleration system used to develop the algorithm.

• Chapter 6 summarizes two rendering systems that use images to accelerate

architectural walkthroughs.

14

• Chapter 7 describes an efficient hierarchical culling algorithm.

• Chapter 8 presents conclusions and future work.

We give implementation details and results at the end of the associated chapters.

2. Related Work

In this chapter, we present related work for accelerating interactive rendering of large

and complex 3D models. First, we describe rendering acceleration methods that use textures

and image caching. We partition existing algorithms into three general strategies (two of

previous work and one corresponding to the strategy we adopted). Second, we summarize

additional rendering acceleration techniques, namely geometric simplification and visibility

culling. Third, we provide a section on flight simulators and terrain databases. The use of

computer graphics for flight simulation began in the 1960’s. Those systems have employed a

very specialized usage of images and rendering acceleration. Fourth, we present an overview

of image-based rendering as exploited later in the dissertation. Starting with a collection of

images (e.g. photographs), these techniques reconstruct a 3D environment.

2.1 Textures and Image Caching

Textures have been used for some time to represent apparent geometric complexity,

but usually in an ad hoc fashion [Cohen91][Haeberli93][Maillot93]. The Evans and

Sutherland CT-6 machine (mid-1980’s) was one of the first to use real-time photo-textures

(e.g. terrain, trees, etc.). SGI Performer Town uses textures to represent the details of objects

that are far away (e.g. background) and to give increased visual detail for objects (e.g.

buildings).

Regan and Pose [Regan94] created a hardware system that employed large textures as

a backdrop. The foreground objects were given a higher priority and rendered at faster update

rates. Image composition was used to combine the renderings. The system also performed

orientation viewport mapping after rendering, which means head orientation does not need to

be known until less than a microsecond before the first pixel of an update frame is actually

sent to the display. This helped to reduce the apparent rendering latency.

16

Torborg and Kajiya [Torborg96] proposed the Talisman architecture. This

architecture allowed rendering of geometry and images, the latter warped with affine

transformations. The scene was segmented so that the rendered image of some moving

objects could be warped and reused for several frames. They did not address (automatically)

selecting what to display as image.

We have observed three general strategies used for replacing complex geometry with

images. Images can cull and replace individual objects, nodes of a hierarchical partitioning

tree or arbitrary subsets of a model. In the following sections, we describe the advantages and

disadvantages of each of these.

2.1.1 Individual Objects

An image that replaces an individual object provides the easiest culling operation.

Either the image or the corresponding object is displayed. Furthermore, it is straightforward

to create images that represent an object from a discrete set of view directions at a fixed

distance. The image-sampling viewpoints for the images are located on the surface of an

image-sampling sphere centered on the object (Figure 2-1). The images are created as during

preprocessing or on demand. Then, at run time, the image closest to the current eye location

is displayed.

Representing an entire object with a single image has the advantage that it trivially

provides geometric continuity at the geometry-image border (Section 1.4.1). The border

Figure 2-1. Image-Sampling Sphere for Individual Objects. The images to represent the
house are created from viewpoints on the surface of a virtual sphere (or hemisphere)
surrounding the house. The radius of the sphere is the predetermined distance from which
all images are created.

17

region of the image contains empty pixels (e.g. black) that are rendered with alpha=0 (fully

transparent). These billboards are rendered in back to front order on top of any

conventionally rendered geometry.

Unfortunately, the model must be divided into a set of spatially disjoint objects.

Furthermore, because of nonlinear perspective foreshortening, the images cannot be linearly

scaled to correctly represent the object from viewpoints inside or outside the image-sampling

sphere. The first restriction is difficult to enforce on many models, such as those presented in

Section 1.2. In addition, a large diversity in object complexity makes the load-balancing task

difficult.

Maciel and Shirley [Maciel95] described such a system. They employed textures and

other imposters to render clusters of geometry more efficiently. The system precomputed a

hierarchy of representations (multiple geometrical LODs, textures sampled from different

viewpoints and colored cubes) and chose at run time which representation to use

[Funkhouser93]. The system worked well for outdoor environments where there were distinct

clusters of geometry but was too coarse for indoor or walkthrough-type environments.

Figure 2-2. Images for a Hierarchical Partitioning Tree. This top-down view of an
architectural model outlines the boundaries of leaf nodes that partition the model space.
For each leaf node, we can create images from viewpoints on its image-sampling sphere.
The right half of the figure shows a 2D slice of the sphere for a particular leaf node.

18

2.1.2 Nodes of a Hierarchical Partitioning Tree

The restriction to spatially disjoint objects can be removed by using an image to

replace geometry contained inside a leaf node of a hierarchical spatial partitioning (e.g.

octree, BSP-tree, k-D tree, etc.). Moreover, this method achieves better load balancing. The

tree is created using the criteria that all leaf nodes have a maximum geometric complexity or

a maximum physical size. During the run-time traversal, a cost-benefit function is used to

decide whether to render the leaf node or the corresponding image. Similar to the previous

strategy, images are created from viewpoints on an image-sampling sphere surrounding each

leaf node (Figure 2-2).

This approach results in many overlapping images. For example, when looking

inwards from the edges of the model, images for a large number of leaf nodes need to be

rendered. Given two adjacent sibling nodes, their combined depth complexity could be

reduced by creating an image for the parent node. If two adjacent nodes are not siblings, then

the tree must be traversed upwards until a common ancestor is found. Then, the entire subtree

is rendered into an image. In the limit, we could reduce the overall depth complexity by

creating images from viewpoints on the image-sampling spheres surrounding all nodes in the

tree.

Moreover, geometric continuity is not maintained at the geometry-image border. The

images can bisect an object or even individual primitives. For example, if we use a spatial

partitioning and split primitives at the node boundaries, then a primitive might appear as half

geometry and half image. The halves will only be correctly aligned when the viewpoint is at

the image-sampling viewpoint. If we do not split primitives, then primitives rendered as

geometry will only cover the proper “hole” in the image from the image-sampling viewpoint.

Also, as in the previous strategy, the images are only perspectively correct for the viewing

distance from which they were created.

Shade et al. [Shade96] presented an image-caching system that tried to preserve

object boundaries and exhibit fewer visual discontinuities. Ultimately, such a partitioning is

equivalent to replacing individual objects with images. Their method replaced nodes of the

hierarchical space partitioning of a model with texture-mapped quadrilaterals. Each

quadrilateral contained the rendered image of a node from a specific viewpoint. As the

19

viewpoint changed, the system maintained the error of the texture representation and a

predicted lifetime for the texture. Based on this information, the system decided whether to

compute a new texture or to switch the node back to geometry. The visual artifacts (e.g.

popping, geometric discontinuities, etc.) were kept under control by the error metric. As with

the approach of Maciel and Shirley, this does not work well for indoor environments, or for

replacement of relatively near geometry. Furthermore, the Shade et al. system did not run at

interactive rates on the hardware they used.

Simultaneously, Schaufler and Stuerzlinger [Schaufler96] developed a slightly

different image-caching system. As a preprocess, they used k-D trees to hierarchically

subdivide the model primitives into approximately cube-shaped boxes. At run time, the

system stored with each box a texture-mapped quadrilateral that represents the geometry

contained within the box. The textures of adjacent boxes were used to build the textures for

boxes higher up in the k-D tree. A cost-benefit function decided when to collapse textures,

when to recreate textures and when to display geometry.

2.1.3 Arbitrary Model Subsets

The third strategy allows arbitrary (contiguous) subsets of a model to be replaced with

images. This freedom of image placement exacerbates the geometric continuity problem but

provides great flexibility, especially if we are trying to compute the best subsets of a model to

replace with images. Moreover, if these images are opaque they have a depth complexity of

one. They represent all the geometry shadowed by the image from a fixed distance. Since

images can be arbitrarily placed, we must assume objects will be split. Furthermore, almost

all primitives along the border will be rendered as partially image and partially geometry.

Thus, geometric discontinuities appear from all viewpoints other than the image-sampling

viewpoints.

Ebbesmeyer [Ebbesmeyer98] described an algorithm that replaced arbitrary subsets.

He manually inserted virtual textured walls into a model. The wall quadrilateral spanned the

entire model area – thus eliminating the geometric discontinuity problem. An image

representing the scene behind the quadrilateral from a predetermined image-sampling

viewpoint was texture-mapped onto the wall. Geometry behind the wall was culled.

20

Sillion et al. [Sillion97] manually selected arbitrary subsets of a city model and

replaced them with textured depth meshes. The meshes mimic parallax effects of the

buildings and surrounding scenery but at a reduced rendering expense.

The algorithm we introduce in Chapter 3 automatically replaces subsets of a model

with images positioned anywhere in the model space. We present in Chapter 4 an algorithm

to warp depth images in order to maintain geometric continuity and in Chapter 5 we describe

an approach which uses geometry warping. To compensate for the perspective

foreshortening, we create images at multiple distances or warp the image.

2.2 Additional Rendering Acceleration Methods

The work presented in this dissertation is not meant to completely replace other

rendering acceleration methods. On the contrary, we believe the next research step is to

combine geometry-based and image-based techniques. There is a large number of rendering

acceleration algorithms. All of them concentrate on reducing the number of primitives (e.g.

polygons, triangles, surface patches, etc.) to be sent down the graphics pipeline. We classify

them into two groups: geometric simplification and visibility culling. The following two

sections summarize multiple algorithms from each group.

2.2.1 Geometric Simplification

The methods in this group use the model’s geometric description to generate

simplifications. A typical algorithm either eliminates or collapses primitives. If the primitives

have a mathematical form (e.g. curved surfaces), they can be tessellated at run time. We

further subdivide geometric simplification into static simplification and dynamic

simplification.

2.2.1.1 Static Simplification

These algorithms create, as a preprocess, multiple levels-of-detail (LOD) of the

geometry in the scene. The run-time cost of these methods is often negligible. For each

frame, one of the LODs is simply selected for rendering according to performance

requirements and distance from the viewpoint.

21

The reduction strategy often depends on how the model is obtained. DeHaemer and

Zyda [DeHaemer91] used an adaptive polygon subdivision algorithm to reduce the number of

triangles in laser-scanned objects. Given a collection of points, another approach views the

problem as connecting the vertices of the model to form an input mesh and compute a

simplified output mesh [Schroeder92][Hoppe93][Eck95][Certain96][Klein96].

Other sophisticated methods process individual objects in the model. For example,

Turk [Turk92] presented an algorithm which used an intermediate representation (called a

mutual tessellation) from which vertices are removed. The surface is locally re-triangulated in

such a fashion as to maintain the original surface as well as possible. Cohen et al. [Cohen96,

Cohen98] presented algorithms that maintain local topology and guaranteed that all

approximations are within a user-specified distance of the original object. Garland and

Heckbert [Garland97] presented a simplification algorithm that can rapidly produce high

quality approximations of polygonal objects. Their method iteratively collapses vertex pairs

and maintains surface error approximations by using quadric matrices. Rossignac and Borel

[Rossignac92] and Low et. al. [Low97] described methods that are less dependent on an

object hierarchy. They use vertex clustering to produce a continuum of representations

containing a decreasing number of faces and vertices.

The algorithms for generating LODs can be combined with run-time systems to create

a bounded frame rate rendering system. Funkhouser et al. [Funkhouser93] proposed an

adaptive and predictive algorithm for LOD selection, which when combined with zero-

polygon LODs, can always reach a desired frame rate.

Aliaga et al. [Aliaga98a] proposed a system that combined geometric and image-

based acceleration techniques. They divided the model into near and far geometry. Near

geometry was reduced to a desired geometric complexity by using level-of-detail

simplification and visibility culling. Far geometry was rendered using an approximately

constant-size image-based representation. This system also rendered models larger than main

memory using viewpoint prediction and disk paging.

22

2.2.1.2 Dynamic Simplification

These algorithms perform the simplification at run time, although auxiliary data

structures might be created during a preprocessing phase (these are sometimes referred to as

continuous level-of-detail algorithms). The simplified set of primitives is typically dependent

on viewpoint and view direction. Hoppe [Hoppe96, Hoppe97] introduced (view-dependent)

progressive meshes as a scheme for storing and transmitting arbitrary triangle meshes. In

addition, he presented a new mesh simplification procedure that tried to preserve the

geometry and appearance of the original mesh. Luebke and Erikson [Luebke97] extended the

basic vertex clustering idea to produce a dynamic hierarchy of simplifications. At run time,

they chose the largest vertex clusters for a given screen-space error threshold. Silhouette

preservation was also used. Xia et al. [Xia96] used a dynamic view-dependent simplification

method. The algorithm also employed a larger number of geometric primitives near the object

silhouette and illumination highlights.

Finally, curved surfaces lend themselves well to dynamic simplification. Kumar et al.

[Kumar95, Kumar97] presented serial and parallel algorithms for dynamically tessellating

NURBS surfaces into triangles.

2.2.2 Visibility Culling

Visibility culling algorithms determine which subset of a model is visible from the

current viewpoint. A variant of these algorithms is occlusion culling, which determines the

opposite, namely: the obscured portions of a model to not render. Neither algorithm, alone,

can guarantee a frame rate, since some viewpoints might require a large number of

primitives.

Airey [Airey90] and Teller [Teller92] did extensive work in visibility computations

for densely occluded polyhedral environments (e.g. architectural walkthroughs). The methods

proposed use a precomputation scheme to divide the model into cells (e.g. rooms) and portals

(e.g. doorways). At run time, an online algorithm tracked visibility between the cells and

produced a reduced set of geometry to render. Luebke and Georges [Luebke95] presented a

fast conservative algorithm for dynamically determining visibility in a cell-partitioned model.

23

Zhang et al. [Zhang97] used a hierarchical set of occlusion maps, generated at run

time, to reduce the rendering workload. For each frame, the algorithm rendered a small set of

previously selected occluders to form an initial 2D screen-space occlusion map, from which a

hierarchy of maps was built. The occlusion maps were used to cull away geometry not visible

from the current viewpoint. Coorg and Teller [Coorg97] and Hudson et al. [Hudson97] also

proposed occlusion-culling algorithms. Both methods performed culling in 3D object-space

(as opposed to screen space) and only supported convex-shaped occluders.

2.3 Flight Simulators

Flight simulation is a specialized use of computer graphics that dates back to the

1960's [Schachter83]. Extensive work has been done in generating LODs, terrain models and

terrain textures [Mueller95]. The focus is on meeting quality and performance goals for very

specific datasets. Frequent manual intervention occurs to tune the dataset for performance.

Nevertheless, the developers are among the first to produce rendering systems with high-

fidelity imagery and 30 or 60 updates per second. The following paragraphs sample published

work that has emerged from flight simulators.

As early as the seventies, Rife [Rife77] created a system with vector displays and

LODs. The hardware imposed a maximum number of edges and vertices to render. This

determined which LOD to use. Soon after, multiple experiments were conducted to

characterize the effects of scale, shape, orientation, aerial perspective (e.g. fog), and texture

gradients among other effects in low-level-high-speed flights and landing sequences

[Stevens81]. One experiment used fog to desaturate the color of objects as distance increased.

Another experiment used texture patterns to reflect distance [Crawford77].

Texture mapping has been widely used to add apparent complexity to flight-simulator

scenery. Many systems used a terrain model (polygonal representation of the surface, often

available at multiple LODs) and a terrain texture (which also became available at multiple

LODs – MIP mapping). Gardner et al. [Gardner81] combined quadric surfaces with texture-

mapping. Robinson [Robinson85] introduced the notion of texture maps, contour maps

(textures used as masks to enable a subset of the pixels for rendering), modulation maps

(textures used to change surface color), and combinations of these. Because of the limited

24

storage capacity of systems of this era, Clark and Brown [Clark87] described MRIP, a

process to generate self-repeating textures from non-repeating photographic images.

Scarlatos [Scarlatos90] investigated geometric simplification of terrain triangulation.

Hooks et al. [Hooks90] was concerned with efficiently draping a photo-realistic texture over

terrain. In general, flight simulator systems try to maintain a clear independence between the

terrain model and the terrain texture, so that the LOD of the terrain model can change

arbitrarily and the edges of the terrain texture need not coincide with the edges of the terrain

model. [Ferguson90] used an enhanced triangulation to slowly subdivide the terrain to higher

levels of detail while minimizing the geometric differences from one level to the next.

As the external storage capacity of systems increased, it became necessary to create

more extensive texture database managers. Pratt et al. [Pratt92] described a fast terrain

paging system that only rendered the "tiles" near the user. The tiles were rendered at different

resolutions according to their distance from the user. The system was designed to work over a

collection of systems connected by Ethernet. Moshell et al. [Moshell92] dynamically

computed portions of a terrain by using physical models. Cosman [Cosman94] presented a

system capable of managing very large terrain databases. He strictly maintained a separation

between terrain model and terrain texture. Clark and Cosman [Clark90] also described a

system, which allows for easy terrain and texture independence. In addition, these systems

started using in-betweening of LODs. This process consisted of interpolating between the

vertices of one level and the next. Transparency fading was used to ease the visual transition

between two levels.

Flight simulator research is still very active. As computer graphics technology has

become more widespread, there has been a growing overlap of rendering acceleration

algorithms. The careful tuning of terrain databases used in flight simulators makes it difficult

for general algorithms to produce superior results. On the other hand, automatic algorithms

greatly reduce the development time and make high-fidelity visualization of arbitrary 3D

models much more accessible.

25

2.4 Image-Based Rendering

Image-based rendering systems reconstruct a scene from a set of 2D images of the

environment. Often, the images are gathered beforehand. Then, depth information is

extracted from the images (e.g. stereoscopic vision) or is obtained from external sensors. One

of the major goals of such systems is to avoid creating a complete geometrical model of a

complex environment but to still be able to move around a synthetic visualization

[Chen93][McMillan95a][McMillan95b]. For our work, we do not use real-world images, but

rather computer-generated images. Hence, we trivially obtain per-pixel depth values from the

hardware’s z-buffer. We exploit the method of McMillan and Bishop [McMillan95a] to warp

depth images to the current viewpoint (Chapter 4). This method uses depth values to correct

the pixels of a reference image to their proper projected location for the current viewpoint.

Unfortunately, as pixels are warped, previously occluded surfaces become visible.

There is no visibility information for these exposed surfaces; thus, we do not know what to

display. One way to reduce these artifacts is to warp additional images. For example, Mark et

al. [Mark97a] used a second computer-generated image created from the user’s predicted

position. Max and Ohsaki [Max95] described the concept of creating images with multiple

samples per pixel to render trees. They warp all pixel samples, in back-to-front depth order,

and are able to fill-in most of the exposures. Shade et al. [Shade98] expanded this idea to

layered depth images for arbitrary scenes (acquired or computer-generated images). We build

upon these techniques to display our images. Chapter 4 will provide more details on our

implementation.

Another set of image-based methods uses a very large number of images to create a

database of lighting rays for an object (Lumigraph [Gortler96] and Lightfield [Levoy96]).

Subsequently, the database is indexed to render a view from any position and camera

direction. In the first half of Chapter 6, we show the results of using a dense sampling of

images to represent scenery. The large storage requirement is prohibitive for some systems.

Thus, we also develop an image warping approach that uses less storage.

Some image-based rendering approaches do use geometry to reconstruct a synthetic

scene. Darsa et al. [Darsa97] used cubical environment maps pre-rendered from manually

26

selected viewing positions. As a preprocess, an image-segmentation algorithm was applied to

each of the six faces of a cubical environment map. The resulting segmentations were then

triangulated. Texture coordinates were assigned to the geometric primitives in order to create

a textured mesh that approximates the scene from the center of the cubical environment map.

At run time, the closest cubical environment map was selected for rendering. A second

cubical environment map was optionally rendered using alpha-blending in order to fill-in

some of the exposure artifacts. Alpha-blending of two or more cubical environment maps

helps to hide artifacts for images sampled relatively closely. In a similar fashion, Sillion et

al.’s method [Sillion97] used textured meshes specialized to a city model. While these

methods are promising, we ultimately chose the image warping approach to display our

images. Our image warping implementation does not require geometry rendering. Thus, we

can fully utilize the graphics hardware for rendering the remaining model geometry. The

main CPUs are used to perform the image warp.

3. Automatic Image Placement

Our approach to replacing geometry with images has a preprocessing component and

a run-time component. In this chapter, we describe the preprocessing algorithm to determine

the location of all images that may potentially be required to represent geometry during

subsequent rendering.

3.1 Overview

 The goal of the preprocessing algorithm is to limit the number of primitives to be

sent down the graphics pipeline. The standard approach to this problem has been to reduce

the scene complexity by using geometric simplification (e.g. levels of detail) and visibility

culling. We have taken a different approach: we limit the number of primitives to be rendered

for each viewpoint and each view direction within the model space by replacing a contiguous
Figure 3-1. Geometry+Image Example. In this view of the power plant, we have
automatically determined what contiguous subset of the visible geometry to render as an
image in order to not exceed a maximum primitive count for the complimentary subset. The
piping and structures in the background are actually a warped image.

28

subset of the visible geometry with an image. Then, we render each replaced subset as an

image displayed in constant time (Figures 3-1 and 3-2).

The image and the subset of the model it culls define a solution for a given viewpoint

and view direction. Clearly it is impractical to compute a solution for all viewpoints and view

directions. Instead, we approximate by using a finite grid of viewpoints in the space of the

model. A frustum, with the same field-of-view (FOV) and view direction as the eye, centered

on the closest grid viewpoint in the reverse projection of the eye’s frustum will contain at

least as much geometry as the frustum at the eye. Hence, we can use the same image to limit

rendered geometry for both locations. Figure 3-3 illustrates this key observation. Frustum B

has the same FOV and view direction as frustum A. The center-of-projection (COP) of

frustum B is also the closest grid viewpoint contained within the reverse projection of

frustum A. Clearly, the total number of primitives contained in frustum B is greater than or

equal to the number of primitives in frustum A. Thus, if we compute images to bound the

number of primitives to render from all grid viewpoints, we have also limited the number of

primitives to render for any eye location within the model space. Our preprocessing task

reduces to

• finding a good set of viewpoints and view directions to sample the space, and

• finding an appropriate subset of the scene to represent as an image.

Figure 3-2. Decomposition of Geometry+Image Example. These three snapshots
illustrate how the power plant example was rendered. In the left snapshot, we render
the portion of the model represented as geometry. In the middle snapshot, we render
the portion of the model represented as a warped depth image. The right snapshot
depicts a bird’s eye view of the model, where: the four red lines outline the view
frustum, the small red box represents the image-sampling viewpoint of the image, the
transparent yellow plane is the image quadrilateral, the white outlined boxes are the
octree-cells rendered as geometry, and the yellow outlined boxes are the octree-cells
culled by the image.

29

Our system stores a model in a hierarchical spatial partitioning data structure. We

recursively construct an octree [Clark76] to partition the model into a hierarchy of boxes. At

run time, we dynamically cull the subset of the octree occluded by the image associated with

the closest grid viewpoint contained in the current reverse projection. Octree boxes on the

other side of the image plane that are completely obscured can be safely culled from the

model. Boxes that are partially visible can be further partitioned or not culled at all. We

choose not to cull these boxes. Thus, some geometry is rendered “behind” the edges of the

image quadrilateral and is never actually visible; in practice this amounts to only a small

number of primitives. Figure 3-4 summarizes the entire preprocessing algorithm.

Enqueue all initial grid viewpoints
Repeat

Dequeue grid viewpoint
Compute view directions with unique culling results
While (most expensive view > geometry budget)

Compute octree subset to remove
If (solution invalid) then

Subdivide local grid
Enqueue additional grid viewpoints

Endif
Endwhile

Until (queue empty)

Figure 3-4. Automatic Image-Placement Algorithm Summary.

Figure 3-3. Key Observation for Viewpoint Grid. Frustum B has the same FOV and
view direction as frustum A. Furthermore, frustum B is centered on the closest grid
viewpoint contained in the reverse projection of frustum A (as indicated by the lightly
dashed lines). Clearly, frustum B contains at least as much geometry as frustum A.
Thus, if we compute images to bound the number of primitives to render from frustum
B’s grid viewpoint, we have also limited the number of primitives to render for any eye
location that contains the same grid viewpoint in its reverse frustum.

AB

30

3.2 Viewpoint Grid

The algorithm starts by creating a uniform grid of viewpoints that spans the model

space. The resolution of the grid affects not only how tightly we can bound the geometric

complexity but also the final image quality. A higher resolution grid requires more

preprocessing time and storage for the image data but decreases image warping artifacts

(Chapter 4). We first assume a uniform grid and describe an image placement process at each

viewpoint (Section 3.3). Subsequently, we locally adapt the resolution of the grid at

viewpoints where we cannot produce a valid image placement (Section 3.4). The resulting

grid will contain a set of viewpoints from where to place images in order to guarantee a

maximum number of primitives to render anywhere inside the model space. Figure 3-5 shows

an example grid for the torpedo room model.

If the eye location is near the edge of the model space and looking into the model,

there might not be a grid viewpoint behind the eye. To address this, we make the viewpoint

grid slightly larger than the model space (Section 3.4).

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

Figure 3-5. Torpedo Room Viewpoint Grid. This figure illustrates an automatically
computed viewpoint grid for the torpedo room model. The left snapshot shows an
exterior view of the model rendered in wireframe. The right plot shows a grid of 1557
viewpoints from where images are computed to limit the number of primitives per frame
to at most 150,000 triangles. Note the cluster of geometry in the middle of the left
snapshot and the corresponding cluster in the grid.

31

3.3 Image Placement at a Grid Viewpoint

In this section, we describe how to compute an image location that will limit the

amount of geometry to render for any view direction centered on the given grid viewpoint.

We start by describing an algorithm that computes a set of view directions adapted to the

model complexity. Given this set of view directions, the placement task is reduced to a

discrete optimization. We present a cost-benefit function to guide our optimization, as well as

additional data structures.

3.3.1 View-Directions Set

We need to limit the number of primitives to render for all view directions centered

on a grid viewpoint. The basic approach we have followed is to create a sampling of view

directions. Then, for each sampled view direction, we ensure that the maximum primitive

count is not exceeded.

We could use a uniform sampling of view directions. To prevent accidentally missing

a high complexity view, we would make sure to use view directions that produce overlapping

fields-of-view. Unfortunately, a coarse sampling of view directions will make it difficult to

Figure 3-6. View-Directions Set. This example depicts a 2D slice of an octree (i.e.
quadtree) and two view frusta. If we rotate counter-clockwise about the viewpoint from
view frustum A to view frustum B, the group of octree leaf cells in view remains the
same. Only if we rotate beyond B, will cell D be marked visible, thus changing the
group of visible octree cells.

viewpoint

D

A

B

32

place an image near its optimum location. Moreover, we would like to prevent an

unnecessarily dense sampling, since that would increase the preprocessing time.

Our alternative is to create a view-directions set automatically adapted to the model

complexity surrounding a grid viewpoint. We exploit the fact that the model is stored in an

octree (or another hierarchical spatial partitioning data structure). In an octree, culling is

applied to the groupings of geometry stored in the tree and not to the individual geometric

primitives. Thus, as we examine view directions obtained by rotating about a grid viewpoint,

the geometry to render will be the same until view-frustum culling adds or removes an octree

cell. This fact turns the infinite space of view directions into a finite one, proportional to the

model complexity.

The granularity of the culling operations is that of the leaves of the tree. Because of

this granularity, there are varying angular ranges of movement around a grid viewpoint that

will not change the results of view-frustum culling (Figure 3-6). Consider only allowing yaw

rotation of a pyramidal view frustum centered on a grid viewpoint (1-D rotation). The culled

set of octree cells remains constant until the left or right edge of the view frustum encounters

a vertex from an octree cell. Therefore, we divide the 360-degree yaw range about a grid

viewpoint into a disk with sectors (Figure 3-7). All views, using a fixed FOV, whose view

direction (the vector from the viewpoint to the center of the FOV) fall within the same sector,

Figure 3-7. Example Yaw-Rotation Disk. The above disk approximates 15 yaw-ranges
that would produce different culling results for a hierarchical spatial subdivision of the
depicted model. Thus, given a fixed viewpoint and FOV, view-frustum culling outputs a
different set of geometry only when the view direction vd rotates out from sector 13.

viewpoint

vd

01
2

3

4

5

6 7
8

9
10

11

12

13

14

view frustum

33

will cull to the same set of octree cells. In our implementation, we use such a disk to

represent the 1-D rotation-space. This representation contains a finite number of sampled

views. We associate with each view the visible octree cells of the model. These data are used

during the image placement process.

 We could expand this representation to allow for yaw and pitch rotation of a

pyramidal view frustum (the latter only has an interesting range of ±90 degrees). We would

represent this 2D rotation-space using the yaw and pitch values to index a position on a

manifold surface. At each sampled location, we would store the visible set of octree cells. In

our experience with interactive walkthroughs, roll is a rare operation, so we would not need

to account for it.

 If the octree has a large number of leaf cells, we might sample a large number of

views per grid viewpoint. The abundant leaf cells reduce the typical angular range a view

frustum can move before changing the visible set. In order to reduce the number of views and

reduce preprocessing time, we can select an arbitrary tree depth to temporarily act as leaf

cells (pseudo-leaf cells). The shallower octree conservatively represents the complexity

surrounding the grid viewpoint. Then, we use this shallow octree to determine the views

around a grid viewpoint. In essence, we sacrifice granularity for preprocessing performance.

3.3.2 Image Placement: A Discrete Optimization

Our image placement process will compute octree-cell subsets to not render from a

given grid viewpoint. Then, images are placed immediately in front of these subsets and the

subsets themselves are culled. We define

• a geometry budget P, this value represents the maximum number of geometric primitives

to render during any frame, and

• an optimization budget Popt this value is slightly less than the actual geometry budget. A

larger difference between these two budgets requires fewer images per grid viewpoint but

increases the overall number of grid viewpoints—we discuss this tradeoff later.

The image placement process starts with the view direction containing the most

primitives. If the number of primitives in this view is less than or equal to the geometry

34

budget, then we move on to the next grid viewpoint until all have been processed. If the view

exceeds our geometry budget, we compute a contiguous subset of the model to remove from

rendering in order to meet the optimization budget. We compute only one contiguous subset

per view because it will require at most one image per frame—this simplifies the image

placement process. If, after removing the computed subset, there is another view that violates

the geometry budget, we compute a different subset for that view. The process is repeated

until the geometry budget is met for all views.

3.3.2.1 Cost-Benefit Function

In order to determine which subset of the model to omit from rendering, we define a

cost-benefit function CB. The function is composed of a weighted sum of the cost and benefit

of selecting the given subset. It returns a value in the range [0,1].

 The cost is defined as the ratio of the number of primitives gc to render after

removing the current subset, to the total number of primitives Gc in the view frustum. Thus,

the cost is proportional to the number of primitives left to render. We divide by Gc in order to

obtain a normalized value in the range [0,1].

Cost = gc/Gc

The benefit is computed from the width Iw and height Ih of the screen-space bounding

box of the current subset of the model and the distance d from the viewpoint to the nearest

point of the subset. Smaller (in screen space) and farther subsets will have larger benefit

values. These criteria will benefit our image quality (Chapter 4).

Benefit = B1*(1-max(Iw,Ih)/max(Sw,Sh)) + B2*d/A

 The above equation contains multiple constants. We experimented with various

values for these constants and converged on a single set of constants for our test models. The

constants are

• B1, the weight for image size component,

• B2, the weight for image depth component,

• A, length of the largest axis of the model,

35

• Sw, screen width, and

• Sh, screen height.

The final cost-benefit function CB will tend to maximize the benefit component and

minimize the cost. We considered using a ratio of the cost to the benefit or a weighted sum of

the two. Both formulations are valid, but we chose to use a weighted sum. This gave us the

flexibility to experiment with evaluations that ignored cost. As with the benefit function

constants, we experimentally determined a single set of weights to combine cost and benefit

evaluations for our test models. A function value near 0 implies a very large-area subset

placed directly in front of the eye that contains almost no geometry; 1 implies a subset with

small screen area placed far from the viewpoint that contains all the visible geometry.

 CB = B*Benefit(Iw,Ih,d) + C*(1-Cost(gc, Gc))

3.3.2.2 Representing Octree-Cell Subsets

The image placement process will search through the space of all possible contiguous

subsets of octree-cells associated with the current view. This process does not need to create

Figure 3-8. Octree-Cell Subset Representation. These diagrams show two (of the six)
sorted lists of a 2D slice of the octree cells in a view frustum (i.e. quadtree). The left
diagram shows the bottom-to-top ordering of the topmost coordinates of the visible
octree cells. The right diagram shows the top-to-bottom ordering of the bottommost
coordinates. A subset of the visible octree cells can be represented by a minimal index m
from the left diagram and a maximal index M from the right diagram. All cells that have
a minimal index ≥ m and a maximal index < M are part of the 2-tuple [m,M]. By using
this same notation in the XY plane and YZ plane, we can represent an arbitrary
contiguous subset in 3D using a 6-tuple of such indices.

viewpoint

1
0

32

4

5
projection

plane

x

z

viewpoint 53 4
10

projection
plane

x

z

2
6

7
8

9

10
, 1

1,
 12

6

7
8

9
10, 11

12

36

all subsets but does need to enumerate them in order to perform a binary search through the

space. Thus, we need a fast and efficient method to represent and enumerate contiguous

subsets. Furthermore, the cost-benefit function needs to compute the screen-space bounding

box and primitive count of octree-cell subsets.

One approach is to choose a screen-space bounding-box and compute the octree cells

that fall within it. Then, use a step factor to increment or decrement the bounding-box size

and compute a new group of octree cells and so forth. Given an arbitrary model, it is difficult

to choose a step factor to balance preprocessing time and search granularity.

We enhance this basic approach to a more powerful one that automatically adapts to

scene complexity and easily allows binary searches through the space of all octree-cell

subsets. A large number of octree leaf cells are rendered in high complexity areas. We

position the screen-space bounding-box for our search to coincide with octree leaf cell

boundaries and snap between cells. Consequently, we can finely change the bounding box in

areas of high complexity and coarsely change the bounding box in areas of less complexity.

The bounding box is exactly that of the octree cell subset it surrounds.

We represent an arbitrary, contiguous octree-cell subset with a 6-tuple of numbers.

We store with each octree cell its positions in six sorted lists. The 6-tuple is a set of indices

into the sorted lists representing the leftmost, rightmost, bottommost, topmost, nearest, and

farthest borders of a subset (Figure 3-8). All octree cells whose indices lie within the ranges

defined by a 6-tuple are members of the subset. We can change one of the bounding planes of

the subset to its next significant value by simply changing an index in the 6-tuple. With this

representation, it is straightforward to incrementally update the screen-space bounding box of

the subset as well as the count of geometry. We simply determine which octree cells have

been added or removed from the subset and update the corresponding values.

 We create the lists by first projecting the octree cells to screen space and use their

minimal projected x and y values to create sorted lists 1,3 in ascending order. Then, we use

their maximal projected x and y values to construct sorted lists 2,4 in descending order.

Finally, we construct sorted lists 5,6 in ascending and descending order using the projected z

values (i.e. distance from eye to nearest and farthest point of each octree cell).

37

For example, consider a view with 100 octree cells (each cell is labeled from 0 to 99).

The 6-tuple [0,99,0,99,0,99] represents the entire set. If we wish to obtain a subset whose

screen-space projection is slimmer in the x-axis, we increment the “left border” index, e.g.

[1,99,0,99,0,99], or decrement the “right border” index, e.g. [0,98,0,99,0,99]. If two or more

octree cells have an edge that projects to the same location in screen space, we set a flag in

the associated sorted list to mark them as coincident. Subsequently, we move the index

pointer past all coincident cells as if they were one entry.

3.3.2.3 Inner Optimization Loop

Our inner optimization loop meets the optimization budget for the current view by

using the cost-benefit function and the 6-tuple subset representation to perform a binary

search through the space of all contiguous subsets. The optimizer starts with the set of all

octree (leaf) cells in the view frustum, e.g. [0,99,0,99,0,99]. At each iteration, moving the

border along the x-, y-, and z-axis produces five new subsets. Specifically, the

• near border is moved halfway back (e.g. [0,99,0,99,50,99]),

• top border is moved halfway down (e.g. [0,99,0,50,0,99]),

• bottom border is moved halfway up (e.g. [0,99,50,99,0,99]),

• right border is moved halfway left (e.g. [0,50,0,99,0,99]), and

• left border is moved halfway right (e.g. [50,99,0,99,0,99]).

(note: since we eventually create an image immediately in front of the subset, we do

not change the far border, the sixth-tuple value, because it will not affect image placement)

To decide which of these subsets to use next, we recurse ahead a few iterations with

each of the five subsets. We then choose the subset that returned the largest cost-benefit

value. In case of a tie between subsets, preference is given to the subsets in the order they are

listed. The iterations stop when the subset no longer culls enough geometry. The subset with

the highest cost-benefit value is kept. Section 3.5.2 describes the time complexity of this

algorithm.

We then define the image plane to be a quadrilateral perpendicular to the current view

direction and exactly covering the screen-space bounding box of the computed subset. The

38

four corners of the quadrilateral together with the current grid viewpoint determine a view

frustum for creating the image to replace the subset. Chapters 4 and 5 explain in more detail

how we create the images and display them at run time. For now, we simply associate the

computed subset with this view direction and grid viewpoint.

 Next, we temporarily cull the subset from the model and move on to the next most

expensive view from the current grid viewpoint. If the total number of primitives in the view

frustum is within the geometry budget, we are done. Otherwise, we restore the subset to the

model and compute another solution for the new view. By using the full model during each

optimization, we enforce solutions that contain exactly one subset, thus enabling us to use no

more than one image per frame.

39

3.4 Adapting the Viewpoint Grid to the Model Complexity

3.4.1 Star-shapes

Image distance from the viewpoint is determined by the image placement process

described in the previous section so as to leave no more than the specified amount of

geometry. Images may be placed near their grid viewpoint. For eye locations not near a grid

viewpoint, the closest grid viewpoint in the reverse projection of the eye’s frustum might be

behind the eye (Figure 3-9). In this case, no geometry or images would be rendered.

The first step to addressing this problem is to understand for what eye locations might

a particular viewpoint’s solution be used. Intuitively, we need to answer the question: “what

is the locus of eye locations for which a given grid viewpoint might be the closest grid

viewpoint in the reverse projection of the eye’s frustum?”. The left half of Figure 3-10

depicts a grid of viewpoints. This grid has a uniform distribution of viewpoints and is defined

to be a level 0 grid -- thus an even-level. If we only allow rotations about the vertical axis (i.e.

eye

Figure 3-9. Image Placed Behind the Eye. We show a top-down view of an architectural
model. A plane of viewpoints from a uniform grid is shown. The image computed for the
closest grid viewpoint in the reverse view frustum is behind the eye. This problem occurs
because scene complexity forces the image to be very near its grid viewpoint. The reverse view
frustum is drawn with dashed lines. The image plane and culled geometry are shaded in

ll

40

y-axis) and translations in the plane, the right half of the figure shows the locus of locations

(even-level star-shape) that might contain grid viewpoint a4 as the closest grid viewpoint in

the reverse projection of the square viewing frustum. E is the farthest eye location from

which there is a view direction that still contains a4 as its closest grid viewpoint in the reverse

view frustum. The distance s2k is less than r2k, the separation between grid viewpoints, as

long the FOV is greater than or equal to 54 degrees. Thus, we can approximate the star-shape

with a circle of diameter 4r2k. Because of the symmetry of the uniform grid and the square

FOV, we construct a similar star-shape for the vertical planes and fit a sphere of diameter

4r2k.

 Hence, for a practical FOV of 60 degrees, we can prevent the problematic situation

by ensuring that no grid viewpoint has an image placed within its star-shape. If we

superimpose the problem case of Figure 3-9 with the star-shape, we see that the image is

indeed inside the star-shape.

We could reduce the star-shape to a simpler shape by allowing for images with a

field-of-view wider than the view frustum’s. This would potentially decrease the overall

a0

a1

a2

a3 a6

a7

a9a5

a4

2α
E

r2k s2k

4r2k

a2

a4 a7

a6

a8a5

a3a0

a1

Figure 3-10. Even-Level Star-Shape. To the left, we show a uniform grid of 3x3x3
viewpoints. The initial grid is considered to be at recursion level 0 (i.e. k=0) -- thus an
even-level. To the right, we show a top-down view of the horizontal plane defined by grid
viewpoints a0-a8. If we rotate about the vertical axis and translate a square view frustum,
the star-shape represents the plane of locations that might use grid viewpoint a4. The
distance s2k equals r2k/(2tanα); thus, for a FOV 2α ≥ 54 degrees, s2k< r2k. We can
approximate the star-shape with a sphere of diameter 4r2k.

Z

X

Y

X

Z

41

number of images surrounding a grid viewpoint. But, in order to keep the same approximate

image quality, we would need to increase the image resolution. It is unclear whether this

approach will achieve an overall win, but the larger image size would create even more

conservative solutions, thus suggesting a less desirable approach.

Eye locations near the edge of the model might not contain a grid viewpoint in the

reverse projection of the frustum. Thus, we expand the grid by two viewpoints in all six

directions (i.e. positive and negative x-, y-, and z-axis) to ensure that such eye locations have

a grid viewpoint behind it.

3.4.2 Recursive Procedure

To allow images to be placed nearer to grid viewpoints, we created a recursive

procedure for reducing the size of star-shapes by locally subdividing the grid. Consequently,

the images selected for the current viewpoint and view direction will always be in front of the

eye. The recursive procedure alternates between two sets of recursion rules: one for even

levels (2k) and one for odd levels (2k+1). This two-step procedure first introduces grid

viewpoints at the midpoints of the existing viewpoints and then introduces the

2k+12k

2k+1 2k+2

even to odd

odd to even

Figure 3-11. Even- and Odd-Level Grid Viewpoint Subdivision. We show even-to-odd and
odd-to-even grid viewpoint subdivisions. In the upper half, we subdivide a level 2k viewpoint,
in the middle of a grid, to produce 15 level 2k+1 viewpoints. They are placed at the midpoints
between the original subdivided viewpoint and the neighboring viewpoints. In the lower half,
we subdivide a level 2k+1 viewpoint to produce 13 level 2k+2 viewpoints. Thus, we have
returned to an even-level grid configuration.

42

complementary viewpoints to return to a denser original configuration. At each new level, we

verify that for all viewpoints a valid image placement can be produced (Section 3.3). We

recursively subdivide viewpoints that fail until all viewpoints have image placements in front

of any eye location that might use them.

Even-level recursion creates fifteen new viewpoints to replace the original level 2k

viewpoint (subdivided viewpoint). Fourteen level 2k+1 viewpoints are created at the

midpoints between the subdivided viewpoint and the surrounding level 2k viewpoints (Figure

3-11). A level 2k+1 viewpoint also replaces the subdivided viewpoint. In a similar fashion to

before, we construct a star-shape that surrounds the new viewpoints. The resulting odd-level

star-shape is slightly different. Figure 3-12 illustrates the star-shape as well as how the

extrema are computed. In this case, we require a sphere with diameter 6r2k+1 to approximate

the star-shape.

 If a new level 2k+1 viewpoint still produces an image that lies within the star-shape,

we proceed to an odd-level recursion. This case produces the remaining viewpoints to return

to an even-level grid configuration. Twelve level 2k+2 viewpoints complete the grid

2α
E

s2k+1

r2k+1

6r2k+1

b0

b2

b4

b3

b1

b0

b4

b3

b2
b1

Figure 3-12. Odd-Level Star-Shape. To the left, we show a portion of a grid subdivided to
an odd-level. To the right, we show a top-down view of the horizontal plane defined by
grid viewpoints b0-b4. If we rotate about the vertical axis and translate a square view
frustum, this star-shape represents the plane of locations that might use grid viewpoint b2.
The distance s2k+1 equals r2k+1/tanα; thus, for a FOV 2α ≥ 54 degrees, s2k+1< 2r2k+1. We
can approximate the star-shape with a sphere of diameter 6r2k+1.

Z

X

Y

X

Z

43

surrounding the subdivided viewpoint (Figure 3-11). As with the previous level, a level 2k+2

viewpoint also replaces the subdivided viewpoint.

3.4.3 Star-Shape Minimal Viewpoint Sets

In order for the star-shapes to represent the locus of eye locations from which a grid

viewpoint’s solution might be used, we must ensure that the minimal viewpoint set is present.

The minimal viewpoint set consists of the viewpoints added to the grid during even-to-odd

and odd-to-even subdivisions (Figure 3-11). We use them as a template to verify that a

similar configuration of neighbors surrounds all grid viewpoints. Otherwise, the star-shapes

no longer delimit the locus of eye locations. If a grid viewpoint has an incomplete minimal

set, we subdivide the adjacent viewpoint that is at the lowest recursion-level. We repeat this

process until a valid star-shape is constructed for every grid viewpoint.

This is similar to a problem that occurs when tessellating curved surfaces. If two

adjacent patches are tessellated to different resolutions, T-junctions (and cracks) occur at the

boundary between the patches. We must perform an additional tessellation of the

intermediate region.

0 0 1

0 0 0

0 0 0

22

2

2

2

?

?

0 0 1

0 1 0

0 0 0

22

2

2

2

1

1

1

Figure 3-13. Star-Shape Minimal Sets. In order for the star-shapes to correctly depict the
eye locations from which a grid viewpoint’s solution might be used, we must ensure their
minimal viewpoint set is present. The left grid depicts a subdivision that produces grid
viewpoints with incomplete minimal sets. In the right grid, we have performed an
additional subdivision to complete the minimal sets. We provide more details in Section
3.4.3 of the text.

44

We illustrate this with a 2D example. For an even-level 2D star-shape, the minimal

set is viewpoint a1, a3, a5, and a7 from Figure 3-10. Without these, a sphere of diameter 4r2k

no longer approximates the eye locations from which a4’s solution might be used. Similarly,

for an odd-level 2D star-shape the minimal viewpoints are b0, b1, b3, and b4 from Figure 3-12.

The left grid of Figure 3-13 is constructed by a sequence of two subdivisions:

1. the upper-right level 0 viewpoint is subdivided (only the subdivided viewpoint

and one of the new level 1 viewpoints fall within the grid), then

2. the new level 1 viewpoint is subdivided (and produces four level 2 viewpoints as

well as replacing itself with a level 2 viewpoint).

 Two of the grid viewpoints have incomplete minimal sets, as indicated by the lightly

shaded dots. The right grid of the same figure shows a subdivision that produces complete

minimal sets for all grid viewpoints. To construct it, we add a third subdivision:

 3. we subdivide an adjacent viewpoint with the smallest recursion-level (we choose

the middle viewpoint).

 If we had chosen another one of the adjacent level 0 viewpoints, we would end up

with a different, yet valid, solution.

3.5 Complexity Analysis

 The automatic image-placement algorithm we have presented allows us to trade off

space for frame rate. In our case, space is proportional to the total number of images needed

to replace geometry and the image size. Higher frame rate is equivalent to reducing the

maximum number of primitives to render.

We pose two questions to measure the complexity of our algorithm. For each

question, we analyze our algorithm by providing bounds on best-case and worst-case

scenarios. The questions are

• how many images do we need for an entire model, and

• how long does it take to compute a single image-placement?

 The models we encounter in practice have complexities that fall somewhere between

the two bounds. A formal specification of the average-case scenario is difficult to construct

45

since it depends on the distribution of geometry within the model space. Nevertheless, we

show how for a given geometric distribution, we combine the two bounds to predict an

average-case performance. Furthermore, we show in Section 3.6 empirical results that

reinforce our analysis.

3.5.1 How many images?

 The total number of images required is equal to the number of grid viewpoints times

the number of images per grid viewpoint. In the following two subsections, we present the

best-case and worst-case scenarios with respect to the total number of images.

3.5.1.1 Best-Case Scenario

The algorithm performs overall best in models with a uniform distribution of

geometry (by best performance, we mean that for a given frame rate, the smallest amount of

Figure 3-14. Number of Grid Viewpoints (View-Frustum Pyramid). Our goal is to
compute a conservative number of grid viewpoints N for a uniform density model. We
start by finding an R that creates a view-frustum pyramid containing no more than P
primitives (for a cubical model space). The pyramid is constructed by connecting the
viewpoint, with a FOV of 2α, and the image plane’s quadrilateral. Then, we use the fact
that r equals at worst 1/3R to determine the spacing between grid viewpoints (Section 3.2)
and compute the value for N.

2α
R

Image
Plane

Viewpoint r

N1/3

N1/3

2R
tan

α

2R
ta

nα

N1/3

46

space is needed). For such models, a fixed-resolution viewpoint grid is sufficient.

Consequently, only even-level star-shapes are needed. If the geometric distribution were

non-uniform, we would need to subdivide at least one viewpoint--thus increasing the number

of the grid viewpoints.

As will become apparent later, a uniform distribution of geometry around each grid

viewpoint produces the largest number of images per viewpoint. Nevertheless, the total

number of images is still significantly less than the worst-case scenario. The balance point

between number of viewpoints and images per viewpoint falls under the average-case

scenario.

To compute the space requirement for a uniform distribution, we must first determine

the fixed resolution of the viewpoint grid. We assume that for all grid viewpoints the image

quadrilateral will cover the entire FOV at some distance R from the eye. The following

formula computes the number of primitives P in a view-frustum pyramid with a constant

FOV of 2α by multiplying the volume with a density term (Figure 3-14). The volume of a

pyramid is equal to 1/3*Abase*H. The constant term λ reflects the primitive count per unit

volume:

We then choose a maximum primitive count P and solve this formula for R, namely

the distance between the eye and the image plane:

The value R is equal to the radius of the associated star-shape. The radii of the star-

shapes of Section 3.4 are at most 3 times larger than the separation between the grid

viewpoints. We then conservatively compute the number of grid viewpoints N for a unit cube

volume:

RRRP 2))tan(2(
3
1)(αλ=

3
2)(tan4

3)(
αλ

PPR =

PPRPRPR
PN)(tan36

)(
3

)(
3

)(
3)(

2 αλ==

47

Next, we need to determine how many images are required per grid viewpoint. We

know the number of primitives between the image quadrilateral and the eye is at most the

optimization budget. Figure 3-15 depicts the new primitives that enter the view frustum as we

rotate counter-clockwise by 2β around a grid viewpoint. The location of the grid viewpoint,

within the model space, determines the height H of a new-primitive pyramid. For a unit cube

volume, Figure 3-15 shows the tallest pyramid possible. To be conservative, we assume the

new-primitive pyramid’s height to be equal to the largest height centered on its associated

viewpoint. The shortest pyramids occur for grid viewpoints in the middle of the model. The

area of the pyramid’s base is determined by the FOV and by the view frustum rotation. Thus,

we approximate the number of new primitives Pnew by multiplying the volume of the new-

primitive pyramid times the primitive density:

Figure 3-15. Number of Images Per Grid Viewpoint (New-Primitive Pyramid). To compute
the number of images M required at a grid viewpoint, we first estimate the number of new
primitives that enter the view frustum as we rotate about the grid viewpoint. The new-
primitive pyramid is defined by the viewpoint, the rotation 2β and the border of the model
space. This figure depicts the pyramid with the largest possible height H, namely the pyramid
constructed when the viewpoint is at the model corner looking inwards. Next, we compute the
rotation 2β that yields a pyramid containing at most D=P-Popt primitives. Finally, we count
how many such rotations we can make to determine M.

2Htanβ

2α

H

Image
Plane

Viewpoint

2β

2Htanα

R

48

The total number of primitives in a rotated view frustum is equal to the optimization

budget plus the number of new primitives (in fact, this is a slight overestimation since the

primitives at the apex of the pyramid are counted twice). The difference D between the

geometry budget and the optimization budget dictates how far we can rotate until the total

number of primitives exceeds the geometry budget. Thus, we assign Pnew=D and solve the

previous equation for β:

We trivially compute the number of images M needed at a grid viewpoint by counting

how many 2β rotations can be made:

 Finally, we combine the equations for N and M to obtain the number of images Itotal

required for the entire model space. M is actually a function of the model-space position of

the grid viewpoint. For the formulation we have given, viewpoints near the middle of the

model will have smaller values for H; thus, they require fewer images than at the edge. We

sum the number of images in an octant of the model. Then, by symmetry, the sum over the

entire model is eight times that value:

P and D are input parameters corresponding to the maximum geometry count and the

difference between the geometry count and the optimization count.

 In order to obtain a more intuitive result, we perform simplifications for a potential

scenario. First, we assume that the model space is a unit cube and assign H to equal half the

length of the diagonal of the XZ plane (this is equivalent to assuming that all grid viewpoints

HHHHPnew))tan(2))(tan(2(
3
1),(βαλβ =

)
)tan(4

3(tan),(
3

1

αλ
β

H
DDH −=

),(2
2),(

DH
DHM

β
π=

2
)(

)(
3 PN

PK = 222)
2

1()
2

1()
2

1()(
K
z

K
y

K
xKH −+−+−=

= = =

=
K

x

K

y

K

z
total DKHMDPI

0 0 0

)),((8),(

49

have short pyramids and, given a large enough number of viewpoints, is roughly the typical

case). Second, we assume a FOV of 60 degrees (2α=π/3). Third, we assign P=ρPtotal and

D=δPtotal, where Ptotal is the total number of primitives and ρ,δ ≤ 1. We now simplify the

equations for N, M, and Itotal:

This result is easier to understand and to graph. The lower line in Figure 3-16 is a plot

of Itotal as a function of ρ ∈ [0,½] with a constant δ.

3.5.1.2 Worst-Case Scenario

 The algorithm requires the most images when there are large variations of geometric

density throughout the model space. As opposed to the best-case scenario, this situation

produces a large number of additional grid viewpoints to maintain valid star-shapes (Section

3.4.3). Consider a small-volume cluster of geometry with a large number of primitives.

Assume the geometric distribution within the cluster is approximately uniform. The

primitives outside the cluster might also be uniformly distributed, but we must create

additional grid viewpoints to join the high-resolution grid of the cluster to the lower-

resolution grid outside the cluster. This phenomenon is similar to the additional tessellation

of curved surfaces that must be done to join a high-curvature region with a low-curvature

region. The additional polygons are needed to connect the high- and low-curvature regions

but not necessarily because of the surface curvature.

 In a model, there can be any number of high-density clusters. For example, these

clusters might contain 99% of the model primitives and occupy only 1% of the model space.

The remaining 1% of the model primitives are evenly distributed throughout the remaining

99% of the model space. For an arbitrary model, we have no way of knowing a priori the

number, size, and location of these clusters. But, we do know that the grid resolution outside

the high-density clusters will never exceed the resolution within the clusters.

 We compute the number of images for the worst-case scenario by assuming the grid

resolution of the clusters is the dominant resolution. If we know the number and size of these

)
2
33(tan

)(
1 δ

πδ
−

=M
ρ

ρ 12)(=N)()(),(δρδρ MNI total =

50

clusters, we could determine this resolution quite well. Unfortunately, we do not have this

information. Thus, we assume a case that produces the largest number of grid viewpoints: a

single cluster containing almost all of the primitives and occupying only an infinitesimal-

volume of the model space (the cluster cannot contain the entire model since that would

reduce to the uniform distribution case).

For the worst-case scenario, we use the same formula for N as in the best-case

scenario but increase the density by a factor close to 100% (e.g. 99%). Moreover, only one

image is required per grid viewpoint. The image will lie between the grid viewpoint and the

cluster. Thus, the variable M=1 everywhere outside the cluster. There is almost no volume

inside the cluster, so we disregard its contribution:

If we perform the same simplifying assumptions as in the best-case scenario, we can

rewrite Itotal as a function of ρ:

The upper line in Figure 3-16 is a plot of this simplified result for ρ ∈ [0,½].

3.5.1.3 Example Average-Case Scenario

For our algorithm, it is very difficult to define the average-case scenario since it

would rely on defining the average-case geometric distribution of a 3D model. Given a large

number of 3D polygonal models, it might be possible to use stochastic methods to establish

an average distribution, but we can easily encounter another model that does not fall within

the stereotype. Despite this, we can safely state that a typical model has geometric clusters of

different densities, in addition to regions of uniform distribution.

We approximate a geometric distribution by quantizing the density of portions of a

model. For our purposes, we do not care about the position of the subsets but only about their

relative density and volume. For example, we divide the model into four (potentially

P
PNPI total

)(tan)99(36)()(
2 αλ==

ρ
ρρ)99(12)()(== NI total

51

overlapping) subsets. Each one is evenly distributed within a subvolume of the model space,

e.g.:

• 25% of the model primitives are distributed over 25% of the model space

• 25% of the model primitives are distributed over 50% of the model space

• 25% of the model primitives are distributed over 75% of the model space

• 25% of the model primitives are distributed over 100% of the model space

Then, we compute how many images are required for each subset and sum the results.

We only need to vary the density term to reflect the distribution. For each subset, we use the

same simplifying assumptions as before to obtain formulas for N and M, as a function of ρ

and δ:

We can of course change the distribution and obtain a different result. But, we have

outlined a method to predict an average-case performance. The final Itotal measures the space

requirement for the specified distribution:

ρ
ρ 12)

3
1()(3 =N

ρ
ρ 12)

2
1()(2 =N

ρ
ρ 12)

1
1()(1 =N

))
1
3(

2
33(tan

)(
1

3 δ
πδ

−

=M

))
1
2(

2
33(tan

)(
1

2 δ
πδ

−

=M

))
1
1(

2
33(tan

)(
1

1 δ
πδ

−

=M

ρ
ρ 12)

4
1()(4 =N

))
1
4(

2
33(tan

)(
1

4 δ
πδ

−

=M

=

=
4

1
)()(),(

i
iitotal MNI δρδρ

52

3.5.2 How much time does it take?

The preprocessing time can be obtained by multiplying the optimization complexity

times the number of images and adding the grid-adaptation complexity. In the following

paragraphs, we summarize the grid-adaptation complexity and the optimization complexity.

The preprocessing time for subdividing and adapting the viewpoint grid is

proportional to the number of viewpoints. Using the property that the number of internal

nodes of a tree never exceeds the number of leaf nodes, we know that no more than twice the

final number of viewpoints N are created. The computation is dominated by the time it takes

to construct each grid viewpoint’s view-directions set. For each view, we perform a O(L)

view-frustum culling operation to obtain the visible octree cells, where L is the number of

visible octree leaf cells. Hence, given a maximum of V views per grid viewpoint, the grid-

adaptation complexity is O(NVL).

The preprocessing time for an image-placement optimization is proportional to the

number of visible octree leaf cells. At each iteration, the optimization algorithm creates five

new subsets of octree leaf cells by halving the original subset along each axis (Section

3.3.2.3). To decide which new subset to use, the algorithm recursively computes, for each

new subset, the cost-benefit value that would result in Q iterations. Thus, the resulting

optimization complexity is O(5Q+1 logL).

The number of octree cells L in the current view depends on the field-of-view, the

view direction, the viewpoint position, and the stopping criteria when the octree was built.

The best-case performance occurs when the viewpoint is located at the corner of the model

and looking outwards: there are no octree cells in view. On the other hand, the worst-case

occurs when the view direction turns to face the middle of the model (similar to Figure 3-15).

In this case, the FOV determines what subset of the octree cells is visible. Given a FOV of 2α

and a total count of T octree leaf cells, we can compute the maximum value for L:

)(tan
3

28 2 αTL =

53

3.6 Results

3.6.1 Implementation

We implemented our preprocessing algorithm in C++, on a Silicon Graphics (SGI)

Onyx2, 4 R10000’s @ 195 MHz and Infinite Reality graphics. The algorithm takes as input

• the octree of the 3D model,

• the geometry and optimization budget,

• the FOV,

• resolution of the initial viewpoint grid (minimum 3x3x3, i.e. the size of an even-

level star-shape),

• tree depth to use for defining the octree (pseudo) leaf cells, and

• cost-benefit constants (we use B1 = 0.2, B2 = 0.8, B = 0.6, and C = 0.4).

The preprocessing algorithm uses a single processor to create and adapt the grid;

afterwards, multiple processors are used to simultaneously compute the image-placement

optimizations. We divide the 360-degree range of yaw about a grid viewpoint into a disk with

a finite number of view directions. We use spheres to approximate the star-shapes. If for any

view direction, the amount of geometry inside the FOV and within the sphere exceeds the

geometry budget, the viewpoint is subdivided. Once the grid has been adapted, the

viewpoints are divided among n processors (e.g. n=3). Each processor performs the discrete

optimizations to compute subsets to replace with images.

 Our optimization algorithm queries a grid viewpoint for its most expensive view

prior to computing each image. To accelerate this, we cache the primitive count of each view

using a simple array. Subsequently, we mark the dirty-bit of views that change because of

culled geometry. Furthermore, we usually employ octree pseudo-leaf cells to limit the number

of cells for preprocessing. For our test models, we empirically determined an octree depth of

5 yields a reasonable balance between granularity and performance (thus, a maximum of

32,768 octree leaf cells per view).

54

3.6.2 Performance

 We report the performance of our algorithm on four test models: power plant,

torpedo room, Brooks House, and pipes. The first three of these models are listed in Section

1.2. We use a subset of 2M primitives of the power plant. This is the largest model we can fit

in memory that leaves space for an image cache and does not require us to page model

geometry dynamically. The fourth model was procedurally generated by replication and

instancing of an approximately uniform distribution of pipes (courtesy of Lee Westover). It

contains about 1M triangles.

Figure 3-16 shows the amount of storage required for several maximum primitive

counts. In order to display the results in a single graph, we chose to normalize the values to a

common pair of axis. One way of doing this is to use the horizontal axis to represent

geometry budget as a percentage of model size and the vertical axis to represent the total

number of images divided by the total number of model primitives. The non-monotonic

behavior of the power plant curve is because our optimizer found a local minimum farther

away from the global minimum than the neighboring solutions. The solution at a geometry

budget of 23% converged to a cluster of visible geometry that was large enough to meet the

target primitive count but not necessarily the smallest and farthest subset. This occurrence is

Figure 3-16. Storage Performance. The upper gray line represents the performance of
the worst-case scenario. The lower black line represents the best-case scenario. The
four test models fall in between these two bounds and in fact tend towards the best-
case scenario.

0

0.001

0.002

0.003

0.004

0 10 20 30 40 50

Maximum Rendered Triangles (% of Model)

Im
ag

es
 P

er
 M

od
el

 T
ri

an
gl

e

Power Plant
Torpedo Room
Brooks House
Pipes
Best Case
Worst Case

55

common with optimization algorithms. A potential improvement could be achieved by using

a technique such as simulated annealing to move the solution to a “better” local minimum.

We have observed that for our test models, a difference between the geometry budget

and optimization budget of 5 to 10% of the model primitives (i.e., D equals 5 to 10%) yields

only a few images per grid viewpoint. Figure 3-17 shows a histogram of the number of grid

viewpoints with the images per viewpoint M varying from 1 to 5 images. Figure 3-18 graphs

the theoretical result of plotting M as a function of D from 0 to 100% for a perfectly uniform

Figure 3-17. Histogram of Images Per Viewpoint. We use D equals 5-10% of the model
primitives and obtain M < 5 for all grid viewpoints. There are 14,012 viewpoints with
M=1, 4311 viewpoints with M=2, 862 with M=3, 40 viewpoints with M=4 and 0 with
M≥5.

0

2000
4000

6000
8000

10000

12000
14000

16000

1 2 3 4 5

Im ag e s P e r Vie wpo int

T
ot

al
 N

o.
 o

f V
ie

w
po

in
ts

Pip e s
Bro o ks H o u s e
T o rp ed o Ro o m
Po w er Plan t

Figure 3-18. Theoretical Plot of M. We have graphed the equation for M as a function of
percentage of model primitives. According to this graph, we should use D ≥ 10% of the
model primitives to prevent an explosion of images per viewpoint.

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

0 1 0 2 0 3 0 4 0 5 0
% o f M o d e l

Im
ag

es
 P

er
 V

ie
w

po
in

t

V a lu e f o r M

56

distribution model. According to this graph, we should use D greater than 10% of the model

primitives to prevent an explosion of images per viewpoint. The varying geometric

distribution of real-world models tends to reduce M--thus the empirical and theoretical results

are consistent.

Figure 3-19 illustrates how close the solutions computed by the image-placement

process (Section 3.3.2.3) are to the desired optimization budget. For a given grid-viewpoint

Figure 3-19. Optimization Results for Power Plant with Popt=200k primitives. The
image-placement optimization computes image locations that, for all grid viewpoints,
produce primitive counts within 2% of the desired value (Popt). The results plotted here
are fairly typical for our test models.

195000

196000

197000

198000

199000

200000

Grid Viewpoints

R
em

ai
ni

ng
 P

ri
m

iti
ve

s

Primit iv e Co u n t

0

100000

200000

300000

400000

500000

600000

700000

0 50 100 150 200 250 300

Fram e Nu m be r

Pr
im

iti
ve

s R
en

de
re

d

Vie w -Fru s tu m Cu llin g

Imag e Cu llin g + View -Fru s tu m Cu llin g

Figure 3-20. Path through Power Plant Model. This graph shows the number of
primitives rendered for a sample path through the power plant using a geometry budget
of 250,000. We show the results using only view-frustum culling and using image
culling plus view-frustum culling. Notice that the primitive count never exceeds our
geometry budget; in fact, for this path, it almost never exceeds Popt=200,000.

57

view, we compute image placements that are conservative and typically fall within 2% of the

optimization budget.

Figure 3-20 shows the number of primitives rendered per frame for a path through the

power plant. We have automatically inserted images into the model using a geometry budget

of P = 250,000 primitives and an optimization budget of Popt = 200,000 primitives.

Table 3-1 (next page) summarizes the preprocessing results. For each test model, we

show the number of image placements computed and the preprocessing time for grid

adaptation and optimizations (Chapter 4 details rendering and construction of images). In

addition, we show the estimated space requirement. To determine this, we use the average

image storage size listed in Table 4-1 (Chapter 4). We then compress the images using gzip

and use a separate processor to decompress them at run time—from this information we

extrapolate space requirements (at present, we can decompress an image in under one

second). The multiprocessing component of our algorithm uses three of the four processors

(the fourth one is left to other users). The use of additional processors for the optimizations as

well as parallelizing the grid adaptation would decrease the preprocessing time.

58

Model Maximum No.
of Primitives

No. of Images Preprocessing
Time (hours)

Estimated
Space (MB)

Power Plant 250,000 5815 21.7 3802
2M triangles 300,000 3224 12.4 2108

350,000 1485 6.1 971
400,000 706 6.5 462
450,000 1169 5.9 764
500,000 239 1.2 156

Torpedo Room 150,000 2333 11.8 933
850K triangles 200,000 1160 6.0 464

250,000 462 2.8 185
300,000 243 1.6 97
350,000 212 1.3 85
400,000 181 1.1 72

Brooks House 150,000 2492 28.4 1725
1.7M triangles 200,000 994 22.0 688

250,000 714 10.6 494
300,000 662 10.5 458
350,000 629 11.2 435
400,000 593 12.5 410
450,000 561 11.4 388

Pipes 150,000 893 4.6 554
1M triangles 200,000 331 2.8 205

250,000 282 2.4 175
Table 3-1. Preprocessing Summary for Test Models.

4. Depth-Image Warping

This chapter describes how we create and warp depth images at the locations

computed by the preprocessing algorithm of the previous chapter. First, we present a

summary of the image-warping algorithms used. We include a discussion of major artifacts

introduced by warping and how we address these. Then, we outline our final image-warping

algorithm and present implementation details as well as performance data.

4.1 Overview

 Our preprocessing algorithm has determined the location of all the images to replace

geometry—we must now create and display them. At each grid viewpoint, we have the

necessary (camera) parameters to create a reference image that accurately depicts the

geometry from the image-sampling viewpoint. But each image must potentially represent the

selected geometry for any viewpoint within the associated star-shape.

In this chapter, we implement an image-warping method for dynamically correcting

depth images to viewpoints within the current star-shape. We first summarize the basic

formulation, sample reconstruction, and limitations of image warping. Subsequently, we take

advantage of how the star-shapes limit the viewpoints and view directions from which an

image is viewed to optimize a layered-depth-image approach. With this approach, we are able

to eliminate most of the artifacts prone to occur in image warping and thus to produce high-

quality visual results.

4.2 Image Warping

4.2.1 Formulation

 We implemented the McMillan and Bishop image-warping equation, best described

in [McMillan97]. This formulation takes as input a reference image with per-pixel disparity

60

values. The disparity term is related to the classical stereo disparity measure and is

proportional to the distance from the center-of-projection (COP) of the reference image to a

pixel, divided by the range to the surface represented by that pixel. Thus, the disparity is

inversely proportional to distance and measures how far a pixel will flow as the viewpoint

changes — closer objects will move farther. We obtain the disparity value of a pixel xi from

the OpenGL z-buffer. The value stored in the z-buffer is normalized to [0,1] and corresponds

to the inverse range to the near plane (with the far plane being the maximum range). We

compute the disparity values of a reference image as follows:

 ∆ (xi) = 1 - z(xi) * (f - n) / f

 where,

• z(xi) is the OpenGL z-buffer value for pixel xi,

• f is the distance from the reference viewpoint to the far clipping plane, and

• n is the distance from the reference viewpoint to the near clipping plane.

Given an image with per-pixel disparity values, the pixels are then warped to their

correct location for the current viewpoint (Figure 4-1). We represent this operation as

x2 = ∆(x1)P2
-1(c1-c2) + P2

-1 P1 x1

where,

• x1 is a set of coordinates for a reference image point,

• x2 is a set of coordinates locating the corresponding point in the desired image,

• c1 is the COP of the reference image (i.e. image-sampling viewpoint),

• c2 is the COP of the desired image (i.e. current viewpoint),

• P1 is the backprojection matrix of the reference image,

• P2
-1 is inverse of the projection matrix of the desired image, and

• ∆ (x1) is the disparity of the reference image pixel at x1.

 The amount of work for image warping is proportional to the number of pixels in the

image and independent of scene complexity. Furthermore, since the reference image is on a

61

regular grid, many of these computations are incremental and fast. The work is similar to that

required by traditional texture-mapping.

 The results of this warp are not one to one: multiple points in the reference image may

be warped to a single point in the desired image. This raises the issue of visibility resolution.

We must somehow ensure that when multiple pixels from the reference image warp to the

same pixel in the desired image, the one representing the closest of the points to the current

viewpoint is the one that “wins”. We could use a z-buffer to resolve visibility, but in our case

it's faster to use the back-to-front occlusion-compatible order described in [McMillan95a].

 This algorithm is similar to a painter's algorithm. We first determine the projection of

the COP of the desired image in the reference image. We use that point (cp) to divide the

reference image into a number of sheets (Figure 4-1). There are four, two, or one, depending

on whether both, one, or neither of the coordinates of cp lie in the image domain. We then

determine whether we must warp the pixels in the sheets towards or away from the projected

point, depending on whether the desired COP is in front of or behind the reference COP.

Subsequently, we parallelize the implementation of the warp by taking advantage of the fact

that sheets can be warped and rendered independently with correct occlusion guaranteed.

Figure 4-1. Image Warping. The set of reference image pixels x1 are warped from their
position as seen from c1 to their position x2 on the desired image as seen from c2. In this
example, the projection cp of the desired viewpoint c2 onto the reference image divides the
reference image into 4 sheets. For example, traversing the upper left sheet from right to
left and bottom to top produces a correct visibility ordering of the warped pixels.

c1

c2

x1 x2

cp

I
II

III
IV

Reference
Image Desired

Image

62

4.2.2 Reconstruction

 We’ve considered two methods for resampling of the desired image: bilinearly

interpolated surfaces and splatting [Westover91]. [McMillan97] includes a good discussion

of the reconstruction issues involved in image warping. Surface patches consume rendering

resources. For our interactive rendering goals, we wish to devote rendering resources to

displaying the remaining geometry. Thus, we use the main CPU to perform splats.

 We have experimented with computing an approximation to the projected size of each

pixel (for a more accurate splat) or using a fixed-size footprint. The former is done by

treating four adjacent pixels as corners of a quadrilateral. Then, warping the corners and

drawing a splat that corresponds to the rectangular bounding box of the quadrilateral. The

latter option, a fixed-size splat, is cheaper to compute and still provides a visually pleasing

result. In our systems, we employ a three by three footprint in preference to the more accurate

solution. This approach provides satisfactory results as long as the reference image resolution

is similar to the apparent resolution of the warped image in the frame buffer.

4.2.3 Limitation of Single-Image Warping

An image represents an environment from only a single viewpoint (namely, the

image-sampling viewpoint). Therefore, there is information about only a single surface at

Figure 4-2. Limitation of Single-Image Warping. If we move in three-dimensional space,
regions previously occluded become visible. A single reference image cannot capture the
additional visibility data. In both snapshots, the scene visible through the central
doorway is rendered as a warped image (the rest is rendered using conventional
geometry). The left snapshot is the view from the image-sampling viewpoint. In the right
snapshot, we have slightly translated our viewpoint. Notice the “tears” or sharp shadows
that have appeared because we do not have pixel samples for the previously occluded
surfaces (note: we have outlined the tear to the right of the bed).

63

each pixel, the one nearest to the COP (ignoring clipping by a hither plane). As we move in

three-dimensional space warping a single reference image, we see areas of the environment

that were not sampled in the image. We have no information about the exposed surfaces, so

we don't know what to render. The effect of these missing samples in warped images is

illustrated in Figure 4-2. If nothing is done to correct for the problem, the lack of information

appears as “tears” or sharp shadows in the images.

 We investigated three methods to reduce and eliminate tears. In the remainder of this

section, we briefly describe the first two methods. Section 4.3 will detail the third, more

comprehensive solution.

1. The simplest solution is to decrease the distance between the image-sampling viewpoints

of reference images (i.e. increase the resolution of the viewpoint grid). Thus when the

viewpoint moves, the reference image being warped is closer to the desired image and the

widths of the tears are proportionally reduced. However, it is not always a practical

solution, because it may cause a large number of reference images to be created. In our

preliminary attempts, we saw up to two orders of magnitude increase in the number of

required images.

2. A better solution is to warp multiple reference images [Mark97a] created from nearby

viewpoints, expecting that surfaces exposed in one reference image will have been

sampled in another image. We do not decide explicitly which warped pixels are best.

Rather, we warp the farthest reference image first and the nearest reference image last.

Moreover, we let pixels from previous frames persist [McMillan, personal

communications]. This last part, although a “hack”, helps to fill-in the remaining minor

tears with plausible colors. In practice, warping the two nearest reference images seems to

give very acceptable quality. We could warp more reference images in order to try to

reconstruct the environment in greater detail. However, this is not practical because of the

time involved and not particularly rewarding given the small amount of detail that is lost.

When warping the two nearest reference images, we encounter one of three visibility

cases for each pixel: when both reference images contain information about the same

geometry, when one image contains information absent from the other image, and when

information about some geometry is missing from both images. For pixels of the first case,

64

we are potentially storing the same sample multiple times thus performing redundant work

(and storage). The second case becomes a problem if the last warped image is the one that is

missing data from a certain location, and it contains information from a greater depth that

obscures correct detail by warping to the same location. This problem manifests itself as a

flashing effect, as correct detail appears and disappears under incorrectly overlaid imagery. A

solution would require a decision process to choose the best source for each pixel in the

composite image – a cost that might be too computationally expensive. Finally, the third case

can only be eliminated by warping more reference images.

We wish to achieve the same effect of warping multiple reference images but without

the redundant work and storage. Furthermore, we would like to prevent the computationally

expensive process of explicitly deciding the source reference image for each pixel. This leads

to the following approach.

4.3 Layered Depth Images

Layered Depth Images (or LDIs) [Max95][Shade98] are the best solution to date for

the visibility errors to which image warping is prone. They are a generalization of images

with depth since, like regular images, they have only one set of view parameters but, unlike

regular images, they can store more than one sample per pixel. The additional samples at a

pixel belong to surfaces, which are not visible from the original COP of the image, along the

same ray from the viewpoint. Whenever the LDI is warped to a view that reveals the

(initially) hidden surfaces, the samples from deeper layers will not be overwritten and they

Figure 4-3. Example Layered Depth-Image. The doorway of the left snapshot is rendered
as a layered depth-image. Notice the absence of the “tears” of Figure 4-2. For
comparison, the right snapshot is rendered with conventional geometry.

65

will naturally fill in the gaps that would otherwise appear (Figure 4-3). As will become clear

in the rest of this section, most of the work is done during preprocessing, when the LDIs are

constructed.

LDIs store each visible surface sample exactly once, thus eliminating redundant work

(and storage) as opposed to multiple reference images. An additional benefit is that LDIs can

be warped in McMillan's occlusion-compatible order [McMillan95a]. This ordering performs

a raster scan of the reference image and guarantees correct visibility ordering in the warped

image.

4.3.1 Constructing and Warping LDIs

 Figure 4-4 shows construction of an LDI using two methods. The first, using

raycasting, stores multiple samples hit by the rays of each pixel of the LDI. The second

method consists of warping secondary images to the viewpoint of the primary image, then

selecting samples that have not already been stored in the LDI (this is an approximate

determination). During LDI construction, the main concern is to collect samples from all

surfaces potentially visible from viewpoints (and view directions) within the associated star-

1 2

(a) (b)

Figure 4-4. Construction of a Layered Depth-Image. The LDI is constructed from
viewpoint 1. Each sample of the LDI stores not only color, but also disparity (depth). (a)
shows a LDI built by raycasting. The rays sample surfaces beyond those that would be
seen from viewpoint 1. (b) shows a LDI constructed by warping a second image from
viewpoint 2 to viewpoint 1. Redundant samples are discarded, others are stored at
deeper layers. Note that the undersampling of the green surface from viewpoint 1 is not a
problem because it's never seen from that direction.

66

shape. Thus, we use the second method. There is no guarantee that all potentially visible

surfaces are captured. However, by sampling images from the restricted space for which a

particular LDI will be used, we lower the probability of missing a sample and obtain very

acceptable image quality.

Briefly, to construct an LDI we first define a central image. Then, we manually select

nearby construction images and warp them to the view of the central image. If multiple

samples fall within the same pixel, we store them sorted by depth. If their depth values are

within a small tolerance value of each other, we resolve the conflict by either tossing one

sample out or by storing both samples provided they have dissimilar color values (Figure 4-

5). The resulting image has multiple color plus depth pairs at each pixel. We summarize the

construction algorithm in Figure 4-6.

Figure 4-5. Layers of a LDI. The images
show, from top to bottom, the samples at
depth 0, 1 and 2 of a LDI. The side walls
are present in more than one layer not
because of visibility, but rather because
they are not adequately sampled by the
central view; when the LDI is warped to a
view where better sampling is necessary,
the successive layers will unfold, ensuring
better reconstruction.

67

Create empty LDI with view parameters of the central LDI image
For each construction image

For each pixel (sample)
Warp to the central LDI image
Inspect all samples of the LDI location
If there is a sample at similar depth,

Resolve conflict
Else

Install sample in a per-pixel list at the correct location
depth order

Endif
Endfor

Endfor

Figure 4-6. Summary of General LDI Construction Algorithm

The warping of the LDI proceeds in a similar fashion to single-image warping. The

pixels are traversed in occlusion-compatible order thus eliminating the need for a z-buffer. At

each pixel, the multiple samples are warped in back-to-front order. Some areas might be

oversampled, causing us to warp more samples than strictly necessary. However, better

sampling ensures that there will be enough samples for every visible surface from all views.

Moreover, it enables us to use a small, constant-sized stamp (similar to Section 4.2.2). A

more detailed discussion of issues involved with the construction and warping of LDIs (for

architectural models) can be found in [Popescu98].

4.3.2 Optimizing LDIs for the Viewpoint Grid

We create the reference images for constructing an LDI from viewpoints within the

star-shape surrounding each grid viewpoint. Thus, we can do a good job of sampling all

potentially visible surfaces. In order to determine a good set of image-sampling viewpoints

for a particular grid viewpoint, we first place an image A just outside an even-level star

shape. Then, all view positions from which a view frustum can contain the image

quadrilateral is represented by an approximate hemi-ellipsoid centered in front of the grid

viewpoint. Figure 4-7 depicts a 2D slice of this configuration. For a more distant image B, the

region will look more elongated (e.g. the dotted triangle of the same figure). A similar

situation occurs with an odd-level star shape. To construct the LDI, we select reference image

COPs that populate this space.

68

We choose a total of eight construction images and one central image to create an LDI

and to eliminate most visibility artifacts. The central LDI image is created using the grid

viewpoint itself as the COP (a0 and b0 in Figure 4-7). Four construction images are created

from COPs at the middle of the vectors joining the grid viewpoint and the midpoints of each

of the four edges of the image quadrilateral (a1-4 and b1-4 in Figure 4-7). An additional set of

four construction images is defined in a similar way but extending behind the grid viewpoint

(a5-8 and b5-8 in Figure 4-7). It would not to be advantageous to create construction images

from COPs on the boundary of the hemi-ellipsoid, since surfaces visible from within the

hemi-ellipsoid would be sparsely sampled. We warp the pixels of the nearest construction

image first to the central LDI. This prioritizes the higher quality samples of the nearer

images.

Figure 4-7. Selecting Construction Images for a LDI. Image A is placed immediately
outside an even-level star-shape. Given a fixed FOV, the hemi-ellipsoid of viewpoints
within the star-shape from where there exists a view direction that contains the image
quadrilateral is depicted by the shaded semi-ellipsoid. We define the central COP to be at
the grid viewpoint (a0). Four construction images a1-4 are placed at the middle of the
vectors joining the grid viewpoint and the midpoints of each of the four edges of the image
quadrilateral (a34 is actually the projection of two construction COPs onto the semicircle).
Four more construction images are similarly defined but extending behind the central
COP (a5-8). b0 and b1-8 are the central COP and construction COPs for a farther away
image B.

a1

Central COP
(a0 and b0)

a2

b1
b2

Image A

Image B

a34

b34

a78

a5

a6

b78

b6b5

69

Most of the visibility information is obtained from the central image and the first four

construction images. They evenly populate the locus of eye positions from where the LDI can

be viewed. Thus, they sample most of the potentially visible surfaces. The images behind the

grid viewpoint help to sample visibility of objects in the periphery of the FOV. The images

nearer to the LDI image plane do not sample the periphery well. An alternative is to translate

laterally from the central COP, but by moving back slightly we achieve some desired

oversampling. In practice, this heuristic method does a good job.

4.4 Implementation

We have implemented the image-warping algorithms in C++, on a SGI Onyx2 with 4

R10000 @ 195 MHz processors. The following sections summarize our image cache, image

creation time and run-time performance.

4.4.1 Image Cache

We create a host memory cache to store image data and allow us to precompute or

dynamically-compute images for an interactive session. Since single-image warping has little

preprocessing, we usually render the (one) reference image on the fly. On the other hand, we

typically render and construct LDIs as a preprocess and dynamically load them. If the total

number of precomputed LDIs exceeds our online memory, we employ a simple prefetching

algorithm. All images within a pre-specified radius of the current viewpoint are loaded from

disk in near to far order. We either load the additional image data during idle time or use a

separate processor to load image data.

We observe that the applications outlined in Section 1.2 have viewing styles that

typically fall into one of two categories: flying through a model or inspecting, in detail, one

area of the model then moving on to another portion (e.g. design review of CAD models).

The first style benefits more from precomputing all required images because otherwise

rendering-time glitches might occur if flying speed exceeds the rate at which images can be

created. If images are loaded from disk, prefetching would need to keep up with the flying

speed unless we limit the maximum flying speed to the maximum rate at which we can page

from disk. The latter style exhibits viewer-locality that we can exploit with demand-based

70

computing. Creating images on demand greatly reduces storage requirements. If we employ a

least-recently-used replacement policy then by simply visiting the same area twice, we

essentially revert to precomputed images. With regards to prefetching, we only need to load

the relatively small working set.

Model Image Size

(pixels)

Image Storage

(MB)

Per-Pixel

Storage (bytes)

Power Plant 256x256 0.8 12.2

512x384 1.7 8.6

512x512 2.7 10.3

Torpedo Room 512x384 1.6 8.1

Brooks House 512x384 1.8 9.1

Pipes 512x384 3.6 18.3

Table 4-1. LDI Storage Requirements.

4.4.2 Preprocessing

The preprocessing time of a LDI is dependent on the number of construction images

and the model complexity per construction image. First, we render eight construction images

and one central image using only view-frustum culling. Second, we create a LDI from the

rendered eight construction images in time proportional to the number of construction

images. For our test models, our (unoptimized) LDI creation process takes 7 to 23 seconds.

The total rendering and construction time of 3100 512x384-pixel power plant LDIs is

approximately ten hours. To determine the average size of the power plant LDIs, we divide

the total storage used by the number of images. Table 4-1 shows the average storage size of

256x256, 512x384, and 512x512 pixel LDIs. The second resolution has the same aspect ratio

as a NTSC frame buffer and is the one we typically use for interactive demonstrations. For

the remaining models, we create LDIs from several locations in the model and compute the

average storage size. The average per-pixel storage requirement varies because of different

depth complexities of our models. The procedurally generated pipes model contains many

layers of pipes. Consequently, more surface samples must be stored per pixel. A single pixel

71

sample requires three bytes for color and one byte for disparity. Thus, our LDIs typically have

2 to 4 samples per pixel.

We have experimented with simple gzip compression of LDIs. The power plant and

Brooks House LDIs are reduced by an average factor of 2.6, while the torpedo room

compresses to approximately of factor of 4. The procedurally generated pipes model, of

higher average depth complexity, compresses by 5.8. We expect that more sophisticated

compression methods can further reduce overall LDI storage requirements.

 Method Image Size (pixels) Updates Per Second

 Power Plant 256x256 24

 512x384 10

 512x512 9

 Torpedo Room 512x384 11

 Brooks House 512x384 11

 Pipes 512x384 7

Table 4-2. Run-Time Image-Warping Performance (3 processors).

4.4.3 Run Time

 The image-warping overhead is proportional to the number of pixels per image and to

the number of images needed per frame. Our automatic image-placement algorithm will

require at most one image per frame–thus image size is the determining factor for

performance.

 Our run-time system uses additional processors to warp images while culling and

rendering a model. We simultaneously cull frame n+1, image-warp frame n+1, and render

frame n. Then, at the beginning of frame n+1, we copy image data to the frame buffer and

start rendering geometry on top of it. This scheme adds a frame of latency to the overall

rendering but achieves a better CPU utilization.

 To reduce traffic between the host and graphics engine, we warp all images to a

common host-memory buffer (warp buffer). Then, at the beginning of the next frame, we

72

scale and copy the warp buffer to the frame buffer. On our SGI Onyx2, it takes only 2.7ms to

copy a 32-bit 512x384 image from host memory to the frame buffer.

 The average warp times of our layered-depth-image warper are shown in Table 4-2.

We show timings for a three-processor implementation using 256x256, 512x384, and

512x512 pixel images. The LDI algorithm can use any number of processors to evenly

distribute the work, but our workstation only has four processors and we must leave one for

the remaining run-time operations (e.g. culling, rendering, etc.). We have found that warping

is often bound by memory bandwidth; thus, image warping does not scale exactly with image

size. Moreover, when fetching geometry from main memory to render in immediate mode,

the reduction in memory bandwidth can affect warping performance by as much as 10 to

20%. The warp time of LDIs for the pipes model is larger because of the greater average

number of layers to warp (Section 4.4.2).

 We look to additional processors and dedicated hardware as means to further

accelerate image warping. In addition, we lack the per-pixel information to perform view-

dependent shading (e.g. specularities), thus we are currently limited to precomputed diffuse

illumination. Mark et al. [Mark97b] present a memory architecture compatible with image-

warping requirements. The UNC-Chapel Hill ImageFlow project is investigating new

graphics architectures that will permit faster, more sophisticated image-warping algorithms.

5. Geometry Warping

This chapter presents our second approach to displaying images surrounded by

geometry. We describe a geometry-warping algorithm to prevent geometric discontinuities

and provide smooth transitions. First, we explain the overall algorithm. Then, we summarize

how the algorithm is used with multiple images. Finally, we show the algorithm in a stand-

alone system.

5.1 Algorithm

The image we use to replace a subset of a model will only be aligned with the

remaining geometry when the eye is at the image-sampling viewpoint. For all other eye

locations, we warp the vertices of surrounding geometry to match the geometry displayed by

the image – the image itself does not change. The final rendering, although perspectively

incorrect, is surprisingly pleasing. Moreover, we guarantee that the geometry near the

viewpoint is unaffected. The error in the image is proportional to the distance between the

current viewpoint and the image-sampling viewpoint. Figure 5-1 shows a sequence of frames

with an image surrounded by warped geometry. For comparison, Figure 5-2 shows the same

sequence but without warping the surrounding geometry.
Figure 5-1. Geometry-Warping Example. We show a sequence of frames with an image
(outlined in red) surrounded by warped geometry. In the left snapshot, we are near the
image-sampling viewpoint. In the middle snapshot, we have translated farther to the left
yet no geometric discontinuities are visible. In the right snapshot, we render geometry in
wireframe.

74

In addition to continuous borders between geometry and images, the algorithm can

provide smooth transitions from image to geometry (and vice versa). For a smooth transition,

we first replace an image with its corresponding geometry projected onto the image plane.

Then, we morph the geometry, over several frames, back to its correct position (Figure 5-3).

The geometry-warping approach is attractive for four reasons: (a) texturing hardware

is efficiently used, (b) images do not change every frame, (c) geometry warping is efficiently

performed using the graphics hardware’s transformation engine, (d) as the viewpoint

changes, exposure artifacts are not introduced, as they may be with image warping. Although

geometry warping could be considered less “realistic” than warping the image, it takes

advantage of the fact that geometry is re-rendered every frame anyway, so by slightly

modifying the geometry we are able to use static textures and achieve higher frame rates.

Figure 5-2. No Geometry-Warping Example. We show the same sequence of viewpoints as
before but geometry surrounding the image is rendered normally. In the middle and right
snapshots, geometric discontinuities are easily seen at the geometry-image border.

Figure 5-3. Smooth-Transition Example. We show a sequence of frames that illustrates
smoothly changing an image to geometry. In the left snapshot, the altar is an image
(outlined in red). In the middle and right snapshots, we warp geometry, over several
frames, from its projected positioned on the image to its correct position. The right
snapshot is rendered as geometry.

75

5.1.1 Partitioning the Geometry

The image quadrilateral partitions the model into 3 subsets of geometry: near

geometry (unaffected by the warping operation), image geometry (geometry behind the

image, which will be culled), and surrounding geometry (geometry surrounding all four

edges of the quadrilateral). Figures 5-4 illustrates the model partitioning. The warp operation

changes the surrounding geometry to maintain positional continuity (i.e. C0) with the

geometry displayed by the image. The geometry between the image-sampling viewpoint and

the image plane is rendered normally; thus, near geometry at the depth of the image will also

maintain positional continuity with the image.

to

|vd| = d

Image Geometry

Surrounding
Geometry

Near Geometry

Image-Sampling
Viewpoint

Image

Figure 5-4. Model Partitioning for Geometry Warping. Each box corresponds to a space-
partitioning box. The boxes are classified: near, image, and surrounding. Intersected boxes can
be optionally partitioned.

5.1.2 Geometric Continuity

The geometry-warping algorithm applies a double-projection scheme to the vertices

of the geometry surrounding an image to produce a continuous geometry-image border. First,

we define a view frustum with the four vertices of the image quadrilateral and the image-

sampling viewpoint. We denote this view frustum by [v0-v3, pa] (Figure 5-5). Then, in a

similar fashion, we represent the current view frustum with [v0-v3, pb], where pb is the current

viewpoint (Figure 5-5). Next, despite having our eye at point pb, our algorithm projects the

surrounding geometry onto the image plane as if we were at pa.

We accomplish this by using an inferred perspective transformation. Wolberg

[Wolberg90] describes such a transformation. We adapt it to warp the projection plane,

76

defined by the frustum [v0-v3, pa], where pa is the center-of-projection and v0-v3 are the four

corner points of the image plane, to appear as if it were seen from the current viewpoint pb.

The image’s view frustum can also be defined by a model-space transformation Ma and a

projection Pa. Similarly, the current view frustum, [v0-v3, pb], can also be expressed using a

model-space transformation Mb and a projection Pb. We define the matrices of the final

warped frustum to be Mw = PaMa and Pw = Wab, where Wab is an inferred perspective warp

from pa to pb.

pa
pb

pi

di

pa
pb

pi

db

v0

v1

v2
v3

v0
v1

v2

v3

PiMi

Wib

PbMb

Figure 5-5. Sequence of Transformations for Smooth Transitions. To create the
intermediate projection from pi, we project along di onto the image using PiMi. Then, we re-
project from pi to pb using Wib, where pb is our current viewpoint.

To construct the warp matrix Wab, we multiply the vertices v0-v3 by PaMa and also by

PbMb. The resulting eight projected xy-positions are used to construct a four corner mapping.

This mapping creates a correspondence between the four corner points of the current view

frustum and the four corner points of the image’s view frustum. The warp matrix will

interpolate intermediate points. In order to resolve occlusion properly, we must set up the

matrix Wab so that the final transformation matrix will produce z-values that correspond to

the projection onto the original image plane [v0-v3, pa]. In essence, we let the projected z-

value pass through the warp unaffected. Placing the coefficients of the warp matrix into a 4x4

matrix as follows accomplishes this:

77

�

�
�
�
�

�

�

ihg

fed
cba

0
0100

0
0

5.1.3 Smooth Transitions

If we wish to change an image to geometry (or vice versa), we smoothly interpolate,

over time, the image geometry from its projected position on the image plane to its correct

position. We accomplish this by augmenting the warp operation to use intermediate view

frustums. More precisely, we re-project the image geometry using the interpolated view

frustum [v0-v3, pi] where pi is a point along the line segment pa-pb. Then, we apply an inferred

perspective transformation to warp the projection plane, defined by frustum [v0-v3, pi], to

appear as if it were seen from the current viewpoint pb. This sequence of transformations is

illustrated in Figure 5-5.

5.1.4 Artifacts

Geometry warping distorts the geometry surrounding an image to match the rendering

displayed by the image. The scene captured by the image is only correct from the image-

sampling viewpoint. Consequently, the image and surrounding geometry have incorrect

occlusion and perspective for all other viewpoints. Furthermore, near geometry that intersects

the image or the surrounding geometry will only show positional continuity (i.e. C0). The

amount of distortion introduced is proportional to the distance of the current eye position

from the image-sampling viewpoint. In practice, we have observed that as long as this

distance is kept relatively small the distortion is not particularly noticeable. Nevertheless,

there are applications where even a small distortion might be undesirable–in this case,

geometry warping is not appropriate.

5.2 Multiple Images

So far we have described the geometry-warping algorithm in the context of a single

image. Using multiple images can simultaneously represent several subsets of a model. The

following sections discuss the issues involved with having multiple images present and how

78

it affects geometric continuity and smooth transitions. We divide the images into those with a

common image-sampling viewpoint and those with different ones. Each of these categories is

explored below.

Image
Geometry

Viewpoint

T0
T1

T2

Image
Geometry

Viewpoint

T0 T1

T2

Image
Geometry

Viewpoint

T0 T1

T2

Surrounding
Geometry

Figure 5-6. Common Viewpoint, Adjacent Images. (Left) Images at equal view depth thus will
maintain geometric continuity. (Middle) Varying view depth but same at the seams, geometric
continuity maintained. (Right) Discontinuous view depth, geometric continuity not maintained.
This case should be avoided.

5.2.1 Common Viewpoint

Images with a common image-sampling viewpoint can still have different view

directions and view depths (view depth is the distance between the eye and the image plane).

Furthermore, since we have defined our images to be opaque (Section 2.1.3), we assume

images do not overlap. With these criteria is mind, we can further subdivide this category into

adjacent images and images with gaps between them.

Image
Geometry

Viewpoint

T0 T1

T2

Surrounding
Geometry

Image
Geometry

Viewpoint

T0

T2

Figure 5-7. Smooth Transitions. (Left) Removing an image at the edge of a string of adjacent
images, interpolation required. (Right) Removing an image in the middle of a string of adjacent
images, no interpolation.

79

First, we address adjacent images (Figure 5-6). Adjacent images form a single large

image with piecewise planar components. They can be used to replace a complex region of

the model or even completely surround the viewpoint. Geometric continuity can easily be

maintained (except for the third case in Figure 5-6, which should be avoided).

Maintaining smooth transitions, on the other hand, is slightly different than with a

single image. If an image, at the edge of a string of adjacent images, is returned to geometry,

the vertices must be interpolated (Figure 5-7, left) between the previous-edge image plane T0

and the new-edge image plane T1. If an image in the middle of a string of adjacent images is

returned to geometry, the vertices need to be warped to match the projection of the image

being removed--no interpolation occurs (Figure 5-7, right).

For images with a gap between them, a virtual image needs to be added to span the

gap. The virtual image is actually geometry rendered using the double-projection scheme

(Section 5.1.3) so that it appears as if an image were present. Now we can treat the original

images as adjacent ones. It is worth noting that for two images (a “left” image and a “right”

image) with a gap between them and very different view depth values, the geometry can be

warped to match both images, but the distortion introduced might be very apparent from

certain view directions. For example, assume the left image was defined at a significantly

closer distance to the image-sampling viewpoint than the right image. Thus, viewing the left

image from the left side might occlude some of the right image and all of the geometry in

between both images.

5.2.2 Different Viewpoints

If multiple images are created from different image-sampling viewpoints with

different view directions and view depths, the geometry surrounding each image must be

warped before continuing on to create the next image. The first image is created just as in the

previous section. But subsequent images, created from viewpoints and view directions that

contain geometry in the plane of an existing image, will re-warp previously distorted

geometry (Figure 5-8). Images created by using geometry that does not surround previous

images will contain conventionally rendered geometry and cause no difficulty. Thus, it might

be the case that the distortion introduced by warping operations will be magnified after

80

several images are created from different viewpoints. At present, we have no metric to

control this distortion. Fortunately, this is not the typical case since the number of images

needed to surround the local view area is small. If the view area migrates to another portion

of the model (by a series of transitions), a new set of images is used.

Image
Geometry

Viewpoints

T0

T1

Surrounding
Geometry

Figure 5-8. Multiple Images. We illustrate the model partitioning that occurs when using
two images. Each image is created from its own viewpoint and view depth. In this case,
neither image contains previously warped geometry.

The case where a subset of the model geometry, warped for a particular image,

intersects with another subset of warped geometry is similar to the case of two images using a

common viewpoint but different view depth values. Both subsets of geometry will have to be

warped to match the images simultaneously. This results in a nonlinear warp operation that is

difficult to (efficiently) implement. We avoid this problem by only using images rendered

from a common image-sampling viewpoint.

5.3 Implementation

In this section, we describe a stand-alone system that implements the geometry-

warping algorithm. The automatic image-placement issue is not addressed. Instead, the user

selects distant (and visible) subsets of the model to replace with images. The image geometry

is culled from the model and, consequently, significant increases in rendering performance

are obtained. We use the geometry-warp operation to maintain geometric continuity at all

times. Geometry near the viewpoint is rendered normally. The algorithm is written in C/C++,

on a SGI Onyx with R4400 @ 250MHz processors and Reality Engine II graphics.

81

When we create an image, we assign it a unique ID and store the image data and

image-sampling viewpoint in a host memory cache (similar to Section 4.4.1). The cache has a

fixed size and uses a least-recently-used replacement policy to maintain images in memory.

During the rendering of a frame, we use the ID to access all required images from the host

memory cache. In order to perform texture mapping, image data must be in the graphics

hardware’s texture store.

Texture memory is typically much smaller than host memory. Our SGI Onyx has

16MB of texture store. Thus, for example, we can fit up to 256 images of 256x256 32-bit

pixels. We have experimented with fewer bits per pixel but have found them to yield

insufficient visual quality. Additionally, we have timed the host-to-texture-memory transfer

rate and found it to be sufficient to copy over 30 images a second (~1 ms to copy a 32-bit

256x256 image from host to texture memory).

Images are used to represent complex subsets of the model from the current viewing

area. After replacing a subset of the model with an image (geometry-to-image transition), the

user cannot walk forward beyond the image plane without returning the subset to geometry.

In order to return the image to geometry, a smooth transition from image back to geometry

(image-to-geometry transition) is performed over the next few frames (Figure 5-9). The

following two sections describe transitions in more detail.

Image

Image-sampling
viewpoint

Near
Geometry

Warped
Geometry

Surrounding
Geometry

Figure 5-9. Geometry-To-Image Transitions. A geometry-to-image transition goes from left to
right. At the end of the transition, the image is introduced. An image-to-geometry transition
goes from right to left. From the image-sampling viewpoint, the objects look the same at all
times.

5.3.1 Geometry-To-Image Transition

First, the user selects a subset of the model to be replaced with an image. This can be

done in various ways. We adopt the following simple strategy: select all geometry inside the

82

view frustum and beyond a distance d from the viewpoint. The image plane is defined as the

plane whose normal is the current view direction vd and which contains the point to, at a

distance d from the viewpoint along the view direction (Figure 5-4). The subset of the model

behind the image will be the image geometry.

Then, we push the near clipping plane back to coincide with the image plane and

render the image geometry. We copy the rendered image from the frame buffer to texture

memory. A texture-mapped quadrilateral covering the subset of the model being replaced is

added to the model. The image geometry is removed from the set of rendered geometry.

The images can be precomputed or dynamically computed. If they are computed on

demand and the eye location and image-sampling viewpoint coincide, there is no need to

perform the first geometry-to-image transition. On the other hand, if images have been

precomputed, the eye will most likely not be at the image-sampling viewpoint, thus

geometry-to-image transitions are needed. In this case, we employ the geometry warp

operation over several frames (e.g. five) to change the geometry behind the image plane (that

has not been culled) and the surrounding geometry to match the image. The intermediate

view frustums are created using viewpoints along the line between the current viewpoint and

the image-sampling viewpoint. At the end of the transition, the image is displayed instead of

the warped geometry.

In all cases, the geometry in front of the image is rendered normally.

5.3.2 Image-to-Geometry Transition

Initially, the image geometry is reintroduced into the model but the vertices are set to

their projected position on the image plane. The image geometry and surrounding geometry

are warped from their projected position on the image plane to their correct position over

several frames. If the image plane is currently not in the view frustum, an instantaneous

transition can be performed.

Once an image has been computed, it might undergo various geometry-to-image and

image-to-geometry transitions. As mentioned before, all subsequent transitions (after the first

geometry-to-image transition) will generally be from viewpoints other than the image-

sampling viewpoint. Thus, the surrounding geometry is gradually warped from its correct

83

position to its projected position on the image plane. In any case, since view frustum culling

is used, only the visible geometry is actually warped.

5.3.3 Results

We use three models to show this system: a procedurally generated pipes model

(205,000 triangles, similar to the one used in Chapter 3, courtesy of Lee Westover), a

radiosity-illuminated model of Frank Lloyd Wright’s famous Unity Church in Oak Park,

Illinois (158,000 triangles, courtesy of Lightscape Technologies Inc.) and the submarine

auxiliary machine room model (525,000 triangles, courtesy of Electric Boat Division of

General Dynamics).

For each model, the user predetermined the location of several images. We recorded

various paths through the models (spline-interpolated paths and captured user-motion paths).

Figure 5-10 shows a frame from a path through the church model. Two images have replaced

selected geometry. No discontinuities are perceivable at the geometry-image border.

A typical (single-pipe) graphics system can be fed by at most one process at a time.

Since our system is usually render-bound and we use the graphics system to warp geometry,

there is little to gain from multiprocessing.

Figure 5-10. Images and Warped Geometry in the Church Model. We show two images
(outlined in red) surrounded by warped geometry. This frame is rendered from an eye
location far behind the image-sampling viewpoint. The geometric distortion, particularly
in the ceiling, is very noticeable. Nevertheless, there are no discontinuities at the
geometry-image border.

84

Table 5-1 summarizes the speedups we obtained. At any time, the images can be

smoothly changed back to geometry (with the corresponding decreases in performance). We

computed speedups based on average frame rates in different parts of the model.

Model Average Speedup Comments

Pipes 9.2 3 images in path

Church 3.3 3 images in path

AMR 6.5 2 images in path
Table 5-1. Performance Summary of Stand-Alone Geometry-Warping System.

6. Architectural Models

We have described a preprocessing algorithm and two approaches to displaying

images applicable to arbitrary 3D models. In this chapter, we detail a specialized solution for

architectural models. The system uses either geometry or image warping and we discuss the

advantages and disadvantages of each.

6.1 Image Placement in Architectural Models

The image-placement problem for arbitrary 3D models is difficult. However, for

architectural models, we take advantage of their inherent structure to define a set of image

locations. Walls that occlude everything on the other side naturally partition architectural

spaces. Adjacent areas are only visible through certain openings (doors, windows, etc.). Past

research has focused on dividing a model into cells (rooms or predetermined subsections of

the model) and portals (doors, windows, and other openings). Visibility culling algorithms

are used to determine which cells are visible from a particular viewpoint, and view direction.

Rendering is limited to the geometry of the visible cells. Exact pre-processing algorithms

[Airey90, Teller91, Teller92] as well as conservative run-time algorithms [Luebke95] have

been developed.
Figure 6-1. Portal Images. Both of these snapshots are from within the Brooks House
model. The rooms visible through the three doorways are images. In the right snapshot,
we have rendered geometry in wireframe and outlined the images in white.

86

We reduce the image-placement problem to one of conditionally replacing the cells

visible through a portal with an image (Figure 6-1). Consequently, the system must only

render the geometry of the cell containing the viewpoint, and a few image quadrilaterals. We

cannot guarantee a specific number of primitives per frame but in practice are able to

significantly reduce the rendering requirements for architectural models. Furthermore, this

approach alleviates the sudden decreases in performance when a complex cluster of cells

becomes visible. If the viewpoint approaches a portal, the portal image will return to

geometry, allowing the viewpoint to move into the adjacent cell.

6.2 Portal Images

This section first reviews conventional portal culling, and then details how portal

images more aggressively cull an architectural model. Then, we describe general strategies

for creating portal images, and detail our approach.

6.2.1 Portal Culling vs. Portal-Image Culling

We can partition a model into cells by identifying the location of walls, and other

opaque surfaces [Airey90, Teller91, Teller92]. Each cell contains a list of portals, each of

which defines an opening through which an adjacent cell may be seen. The left floor plan in

Figure 6-2 shows a cell-partitioned model. The viewpoint is inside the view cell. The view

frustum only intersects a subset of the portals of the view cell, thus cells attached to each

visible portal are recursively traversed to compute all of the visible cells.

Figure 6-2. Portal-Image Culling. By conditionally replacing the cells visible
through a portal with an image, we only need to render the geometry of the room
containing the eye. The pair of lines represent a view frustum positioned inside the
view cell (dark gray). The left floor plan depicts the cells that are marked visible
(light gray) by conventional portal culling. The right floor plan shows the reduced
set of cells to render when a portal image (thick, vertical line at the opening of the
view cell) is present.

87

Since the model contains the location of all portals, we can compute images to be

placed at the location of the otherwise transparent portal openings. At run time, we render the

view cell normally. All visible portals of the view cell are rendered as images, and no

adjacent cells are actually rendered, despite being visible. The right floor plan in Figure 6-2

illustrates the reduced set of cells to render. As the viewpoint approaches a portal, we switch

to rendering the geometry of the cell behind the portal. Once the viewpoint enters the

adjacent cell, it becomes the view cell, and the previous cell will now be rendered as a portal

image.

6.2.2 Creating Portal Images

A portal can be viewed from multiple view directions as well as from multiple

viewpoints. Since a single image only produces a perspectively correct image from its image-

sampling viewpoint, we need to do some additional work to control temporal continuity. We

divide the overall strategies for choosing image-sampling viewpoints to create portal images

into three categories:

• Model-independent viewpoints: these define a regularly spaced set of viewpoints

spanning the space on the front side of a portal without regard to particular model

characteristics.

• Model-dependent viewpoints: these define a subset of viewpoints that do not

necessarily span the entire front side of a portal. This approach requires some

knowledge about model characteristics, such as the typical portal viewing

directions. For example, consider a hallway with a portal on the side. The portal

will typically only be viewed from acute angles. By the time the viewpoint is in

front of the portal, the portal will be rendered using geometry.

• Single viewpoint: a single viewpoint, usually facing the portal. This method is

economical, and works well when the possible or likely view directions to the

portal are restricted (e.g. a narrow hall with a portal at the end).

88

In general, model-dependent viewpoints produce better results than model-

independent viewpoints because they take advantage of the user's domain knowledge of the

model to reduce the number of images. Moreover, when visualizing architectural models, we

typically walk at about the same height (although we perhaps change floors).

Our systems take advantage of this fact, and uses constrained model-dependent

viewpoints to reduce the number of necessary images. We assume that our head movement is

typically left-right, and forward-backward. We may also gaze up or down at any time. For

each portal, the modeler can define a set of image-sampling viewpoints constrained to lie on

a semicircle of some radius on the front-side of the portal. We also assume that portals are

perpendicular to the “floor” of the model, and thus fix the semicircle to lie at some typical

eye height for each portal (Figure 6-3). At run time, we select the image that most closely

represents the view of the geometry behind the portal from the current eye location.

For each portal of the model, we need to define (or assume reasonable default) values

for the following parameters:

(a) Viewing Height: the typical viewing height of the portal.

(b) Sampling Distance: the radius of the constraining semicircle from the portal.

Figure 6-3. Constrained Model-Dependent Viewpoints. We evenly space the image-
sampling viewpoints for a portal image along a semicircle placed in front of the portal
at a typical eye height.

89

(c) Transition Distance: the distance from the portal at which to perform a portal-

image to geometry transition (or vice versa).

(d) Viewing Angles: the set of points on the semicircle to use as image-sampling

viewpoints. We have found that regularly spacing the viewpoints along a semicircle yields

good results.

We create the portal images either as a preprocess or at run time (Section 4.4.1).

Creating portal images on demand works quite well for the common application of

architectural walkthroughs. In practice, users do not fly quickly through the model. They

usually go to a room, and examine an area in detail before proceeding to another portion of

the model. Demand rendering of images will result in slower performance when the user first

enters a cell. However, as the user works in an area, that area will "sweeten", and

performance will increase. An alternative is anticipate the viewer’s movements, and create

additional portal images using idle time or separate processors.

6.3 Geometry-Warping System

The first of our two architectural walkthrough systems uses geometry warping to

display images at run time. We present an overview of the system, followed by

implementation details. Then, we present performance results, and observations.

6.3.1 Overview

Our geometry-warping system replaces geometry behind portals with portal images

created from a constrained set of model-dependent viewpoints. Warping the geometry from

its projected position (on the portal image) to the projection for the current viewpoint

provides smooth transitions. Geometric continuity is not a problem because the (opaque) wall

surrounding a portal prevents us from seeing the geometry-image border. On the other hand,

temporal discontinuities (i.e. popping) may occur as we switch to the best image for each

portal. One way to partially address the temporal continuity issue is to increase the number of

images per portal, thus reducing the extent of the popping. We have experimented with

blending portal images but have not found the results to be visually pleasing.

90

Geometry warping is also useful when on a tight memory budget. The single portal-

image case, when only one image is used to represent the portal from all directions, has very

low memory cost but may result in very noticeable transitions from image to geometry (or

vice versa). This is one of the worst examples of popping. We eliminate this abrupt transition

completely by smoothly warping the geometry represented by the single portal-image.

6.3.2 Implementation

We implemented this system on a SGI Onyx2, R10000 @ 195MHz processors with

Infinite Reality graphics. The system is coded in C++, uses the OpenGL graphics library, and

employs a user-configurable amount of host memory and texture memory. For simplicity, all

images are 256x256 pixels in size and 8 bits per color component.

The contents of each cell are maintained as a collection of geometric primitives

organized in an octree. When a cell is flagged as visible, its contents are culled to the current

frustum, and rendered. Portals are culled to the current frustum using their screen-space

bounding rectangle. The overall visibility algorithm is summarized in Figure 6-4.

Visibility(cell, frustum) {
Mark cell visible
Cull cell to frustum
Foreach portal {

Cull portal to frustum
if (portal is visible) {

if (portal in transition)
Initialize transition

else if (portal is an image)
Choose best image

else if (portal is geometry)
Visibility(portal’s adjacent cell,

culled frustum)
}

if (portal in transition) {
Next transition step
if (portal-to-image finished)

Choose best image
if (image-to-portal finished)

Visibility(portal’s adjacent cell,
culled frustum)

}
}

}

Figure 6-4. Portal-Image Visibility Culling using Geometry Warping.

91

6.3.3 Results and Observations

6.3.3.1 Performance

We tested our system using two architectural models. The first model, Brooks House

(Section 1.2), has 1.7 million triangles, 19 cells, and 52 portals. The second model, the

Haunted House (courtesy David Luebke and Michael Goslin), is of a two-story house and

consists of 214,000 polygons with 7 cells and 12 portals.

We present the rendering times for a path through the Brooks House model. Figure 6-

5 shows the performance along the path as compared to view-frustum culling. To obtain high

visual fidelity, we create portal images for every degree, over viewing directions ranging

from 30 to 120 degrees in front of the portals, and precompute the images (the next section

has some observations about the cost of portal image rendering).

Notice how the large variations in rendering performance have been significantly

reduced. This is due primarily to the fact that an image can be rendered in time independent

of the complexity of the geometry it represents.

Figure 6-5. Portal Images Rendering Times. Rendering times of a path through Brooks
House showing portal culling (upper line), LDI warping (middle line), described in
Section 6.4, and portal images (lower line). The spikes are caused by increases in the
amount of rendered geometry when a neighboring cell becomes visible and is
sufficiently close to be rendered as geometry. In the case of LDI warping, multiple
portals are sometimes visible and increase the overall warp time.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 100 200 300 400 500

Frame

R
en

de
rin

g
Ti

m
e

(s
ec

.)

92

6.3.3.2 Portal Images on Demand

What if we decide to compute portal images on demand? Figure 6-6 shows frame

times (on a SGI Onyx with R4400 @ 250MHz processors and Reality Engine II graphics)

with images always computed on demand (equivalent to starting with an empty cache) and

sampling ranges of one and ten degrees per portal image. We use the Brooks House model

and a similar path to before. Although the performance is still quite good, we have lost the

steadier frame rate achieved with precomputed portal-images. An alternative might be to

predict the viewer’s position and distributed portal-image rendering over several frames.

We can sometimes peak above traditional portal culling because some scenes in the

model force us to render images for several rooms in one frame (a room visible in a doorway

that was visible in another doorway, etc.). However, on average our performance does not

exceed that of traditional portal culling, plus some extra overhead.

6.3.3.3 Single Portal-Image Case

The use of a single portal-image per portal gives us the best and steadiest

performance, albeit with lowest image fidelity. However, we have observed that with

warping at transitions, the user feels very comfortable interacting with the model. Since it is

trivial to precompute all of the portal images when loading a model, variations in frame rate

are small. Thus, this is the best choice for a tight memory budget.

Figure 6-6. Cold-Cache Rendering Times. Cold-cache rendering times for the Brooks
House model using one portal texture sample for every 10 degrees vs. one per degree.

0

0 . 0 5

0 . 1

0 . 1 5

0 . 2

0 . 2 5

0 . 3

0 . 3 5

0 . 4

0 . 4 5

0 . 5

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

F r a m e

Re
nd

er
in

g
Ti

m
e

(s
ec

.)

1 D e g r e e s

1 0 D e g r e e

93

Visibility(cell, frustum) {
Mark cell visible
Cull cell to frustum
Foreach portal {

Cull portal to frustum
if (portal is visible) {

if (portal is image) {
Choose best reference image(s)
Warp reference image(s)

} else
Visibility(portal’s adjacent cell,

culled frustum)
}

}
}

Figure 6-7. Portal-Image Visibility Culling using Image Warping.

6.3.3.4 Image Quality

Increased performance is achieved at the expense of some image quality. In general, a

greater number of images, together with properly configured portal parameters and the use of

geometry warping will improve the image quality. One image per degree gives excellent

quality but may be too expensive for some applications.

The amount of texture memory on the graphics accelerator has not proven to be a

problem since we only need one to three images per frame. Moreover, the cost of copying

images to texture memory is quite low (Section 5.3).

6.4 Image-Warping System

Our second architectural walkthrough system uses image warping. First, we describe

how the system differs from the previous one. Next, we detail our multiprocessor

implementation and present performance results and observations.

6.4.1 Overview

Our image-warping system also replaces portals with images, but we warp the images

to the current viewpoint every frame. Thus, we are able to greatly reduce the number of

images required per portal, at the cost of an approximately constant overhead. In addition,

portal-image warping provides temporal continuity and smooth transitions (as in the previous

system, geometric continuity is not an issue). Unfortunately, portal-image warping introduces

94

exposure artifacts. We address the artifacts by warping two or more reference images per

portal (Section 4.2.3) or by warping layered depth images (Section 4.3).

6.4.2 Implementation

We implemented our system on a SGI Onyx2, 4 R10000’s @ 195Mhz processors

with Infinite Reality graphics. The system is coded in C++ and uses the OpenGL graphics

library.

As in the geometry-warping system, our reference portal-images are sampled along a

semicircle in front of each portal located at the typical viewing height. The semicircle does

not need to cover the full halfspace in front of a portal, but only the span from which the

portal will be seen. In our examples, we typically generate reference images every 10 degrees

in front of the portal over an angular range of 60 or 120 degrees (for a total of 7 or 13 images

per portal). At run time, our visibility algorithm determines which portals are visible. Then,

we make sure the reference images are created and warp them (Figure 6-7). We chose a

nominal image size of 256x256 pixels.

6.4.3 Results and Observations

We tested our system with the same two architectural models: Brooks House and

Haunted House. For this application, we typically look at the portal when approaching it and

keep it in the center of the FOV. Consequently, the COP of the desired image almost always

projects onto the reference image, producing four roughly equal-sized sheets (Chapter 4). We

Figure 6-8. Rendering times (of a similar path through Brooks House) warping
one and two reference images. Note that warping a single image takes roughly the
same amount of time as LDI warping.

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

F r a m e

R
en

de
rin

g
Ti

m
e

(s
ec

.)

95

take advantage of this to parallelize single-image warping. As discussed in Section 4.3, our

LDI implementation already takes advantage of the available processors.

Figure 6-5 shows the rendering time using layered depth images for the portals.

Figure 6-8 shows the performance warping one and two reference images. Recall that an

advantage to the use of image warping is that warping time is independent of the amount of

geometry beyond the portal. The rendering load is reduced to that of the current cell; that and

the size of the images to be warped determine the total rendering time. Thus, we should see

higher speedups for more complex models.

Since we require few reference images per portal, we precompute the images and

store them in host memory. Thus, the total number of reference images stored per portal does

not affect performance. The results in Figures 6-5 and 6-8 use precomputed images. We have

experimented with dynamically computing images. We obtain the same speedups except for

spikes whenever an image is created. We feel that the amount of storage needed to store the

portal images is not unreasonable (for example, in the Brooks House model there are 52

portals for up to a total of 676 images or 127 MB).

7. Efficient Hierarchical Culling

This chapter describes a hierarchical culling algorithm to provide tighter culling of

geometry by images. First, we provide an overview of conventional hierarchical culling.

Second, we detail our improved culling algorithm. At the end of the chapter, we compare

culling results on a test model.

7.1 Hierarchical Culling

In order to perform geometry warping or even simple image culling, we must perform

more culling operations as compared to view-frustum culling alone. The geometry in the

view frustum is divided into a set of sub view frusta. Geometry in each sub frustum is either

warped or removed from rendering (Figure 7-1). If we use conventional hierarchical culling

for this configuration, primitives that span more than one sub view frustum are rendered

multiple times. In particular, some of these primitives are actually not visible but we lack the

Bottom

Top

RightLeft

Eye

Image
Figure 7-1. Example Tiling of Screen Geometry. This figure illustrates how an image
inserted into the scene can tile the surrounding geometry. Particularly, in the case of
geometry warping (Chapter 5), the left and right regions are culled to subview frusta that
are warped to match the image. A different pair of subview frusta and warp operations is
used for the top and bottom regions. The geometry behind the image is always culled.

97

additional visibility information to know this. We have found the extra overhead to become

significant when several sub view frusta are used. Therefore, we present a culling algorithm

to eliminate this overhead. We implemented this algorithm using an octree -- but the same

idea can be used in other hierarchical spatial partitioning algorithms (e.g. k-D tree, BSP-tree,

etc).

7.1.1 Conventional Hierarchical Culling

Since the cost of culling individual primitives is prohibitive, we store sets of

primitives in an octree. This tree structure is constructed by recursively dividing the model

space into axis-aligned boxes and sets of geometry. The recursion continues until a minimum

box size or primitive count is reached. The root node contains the bounding box of the entire

model. We can store the primitives either in the intermediate cells or only in the leaf cells.

The former requires multiple references to a single primitive but the latter requires us to

always traverse the tree down to the leaf cells. To get the maximum performance, we assume

primitives are stored in the intermediate cells. We classify the primitives stored in the tree

into two categories:

• Contained-primitives are those totally contained inside an octree cell, and

• Cross-primitives are those that intersect two or more cells at the same level.

Cross-primitives must be handled slightly differently than contained primitives. We

can either split them or explicitly store them in the parent of the cells they intersect. Splitting

cross-primitives increases the overall number of primitives (in the worst-case, doubling the

primitive count). In practice, we have observed that a 30% increase in primitives is not

unusual. On the other hand, storing cross-primitives in intermediate cells does not increase

the model complexity but makes the tree traversal slightly more complicated. At run time, we

must mark for rendering all cross-primitives sets encountered during tree traversal, in

addition to visible contained-primitives sets.

 If we cull the model to one viewing frustum, the conventional tree structure works

well. The tree is only traversed once from top to bottom. Thus, all contained- and cross-

primitives sets will be visited (and rendered) once.

98

If we cull to multiple viewing frusta, the tree does not perform as well. We will

unnecessarily render some cross-primitives multiple times. Contained-primitives are, by

definition, disjoint. We can simply use a visited flag to prevent rendering them twice. For

example, assume we cull to two sub view frusta. During the traversal for the first view

frustum, we encounter a cross-primitives set. We mark it for rendering. But, one of the

primitives it contains is not actually visible. It had intersected two octree cells at an

intermediate level of the tree and thus was stored as a cross-primitive. One of those octree

cells is now partially visible—the other is not, but because we do not know exactly where the

primitive is, we must render it. During the traversal for the second view frustum, a similar

situation arises and we mark the same cross-primitives set for rendering. Thus, some

primitives that are not actually visible are rendered multiple times.

We show the number of primitives rendered for a path through the auxiliary machine

room model (Figure 7-2). The top line represents the number of primitives rendered after

Figure 7-2. Culling Comparison. This graph shows the number of triangles rendered for a
path through the auxiliary machine room model. The top (light gray) line is the triangle
count using only view-frustum culling. The middle (medium gray) line is the count with one
image present that divides the visible geometry into four tiles and culls another tile of
geometry using conventional hierarchical culling. The bottom (black) line is the count
using the same image but the efficient hierarchical culling algorithm described in this
section.

0

50000

100000

150000

200000

250000

300000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
Frame

T
ri

an
gl

es
View-Frustum Culling
Conventional Image-Culling
Efficient Image-Culling

99

applying view-frustum culling. The middle line shows the primitive count when we replace

complex visible geometry with one or two images and use conventional culling. In the case of

geometry warping, the geometry surrounding the images is divided into at least five tiles

(Figure 7-1), which we cull, warp and render separately. For image warping, the geometry

behind the image is culled. In both cases, cross-primitives not contained in the view frustum

are unnecessarily rendered, perhaps multiple times.

7.1.2 Efficient Hierarchical Culling

In order to reduce the unnecessary rendering of cross-primitives, we construct the tree

slightly differently. We store, as the cross-primitives set, geometry that is partially contained

in a cell’s bounding box and at least one of a cell’s adjacent siblings (as opposed to storing

primitives that intersect any two or more children cells). Furthermore, when constructing the

tree, we treat cross-primitives as additional contained-primitives. Consequently, a single

cross-primitive might propagate down the tree and be referenced by cells at successive levels.

During a culling traversal, we mark for rendering contained-primitives sets and their

corresponding cross-primitives sets. As opposed to conventional hierarchical culling, we do

not need mark for rendering all cross-primitives sets encountered during tree traversal.

Moreover, since we only render cross-primitives associated with visible cells, we greatly

reduce the number of non-visible primitives rendered.

We can improve the culling even further by marking exactly which cross-primitives

have been rendered. Consider selecting two adjacent sibling cells for rendering. Their cross-

primitives sets will share some geometry (i.e. the primitives intersecting the common

boundary of the two cells). At the beginning of each frame, we increment a frame count.

During rendering, we check a frame count array with an entry for each cross-primitive

selected for rendering. If the frame count is already that of the current frame, we do not

render the primitive again. Otherwise, we set the entry to the current frame count and render

the primitive. Since we have a relatively small number of unique cross-primitives per frame,

the overhead is minimal.

100

Our new culling algorithm increases storage by a constant factor. If there are c cross-

primitives in the spatial partitioning, a conventional octree uses O(c) to store them. Our

modified octree uses up to O(cd), where d is the maximum depth of the octree.

We can reduce the additional overhead by limiting how far a cross-primitive is

propagated down the tree. When the limit is reached, we store the primitives in a stopped-

primitives set at the current cell. The additional storage now becomes O(cs) where s is the

number of tree levels allowed before stopping propagation. During a culling traversal, all

stopped-primitives sets must be selected for rendering. Hence, more non-visible primitives

will be rendered. Since, in our systems, the additional storage for full cross-primitive

propagation is relatively small, we do not use stopped-primitives sets.

We compare the improved culling results to conventional culling in Figure 7-2. We

employ our modified cross-primitives algorithm and mark rendered cross-primitives to

prevent drawing them twice. For this path, we now render only 60% of the primitives as

compared to conventional culling. The run time cost of the extra culling is insignificant (even

more so when we pipeline culling and rendering using two processors). The improvement is

dependent on the number of extra culling traversals and on the model itself, but we found it

to be well worth the extra work for the scenarios presented in Section 1.2.

8. Conclusions and Future Work

8.1 Summary

We introduced a preprocessing and run-time algorithm for reducing and bounding the

geometric complexity of 3D models by dynamically replacing subsets of the geometry with

(depth) images. Therefore, if we can afford the approximately constant cost of displaying

images and the number of primitives to render dominates our application’s rendering

performance, we can achieve a predetermined frame rate. We identified four major issues that

must be addressed by any similar system: automatic image-placement, temporal continuity,

geometric continuity, and smooth transitions. First, we detailed our preprocessing component

to automatically compute which subsets of an arbitrary 3D model to replace with images in

order to meet a geometry budget. Subsequently, we presented two approaches to displaying

images: (a) an optimized implementation of layered-depth-image warping, and (b) a

geometry-warping scheme to provide geometric continuity and smooth transitions by slightly

changing the geometry surrounding an image. We then applied our algorithms to several

complex 3D models.

Our preprocessing algorithm trades off storage for rendering performance and reduces

the number of primitives to render. Our results, both empirical and theoretical, indicate we

can reduce geometric complexity by approximately an order of magnitude using a practical

amount of storage (by today’s standards). At present, we only guarantee a rendering

performance for translation and yaw rotation. Furthermore, we have seen preprocessing times

of up to 28 hours. We have empirically determined the set of constants and weights required

by our algorithm. They have worked well for our test models, but further automation or

elimination of these constants would facilitate the processing of new models.

We demonstrated an optimized layered-depth-image approach that provides nearly

artifact-free image warping. We can reduce the (large) storage requirement by more

102

sophisticated image representations and by image compression methods. Currently, we

cannot perform view-dependent shading with the images at reasonable frame rates; thus, we

use precomputed diffuse illumination. Our software warper runs at interactive rates on a 4-

node multiprocessor system but introduces one frame of latency. We used near NTSC

resolution images (512x384). Higher resolution images (for multisample antialiasing) are

feasible but require proportionally more compute power or processors. Hence, because of our

limited warping speed today, we cannot reduce geometric complexity to an arbitrary amount

and achieve a high quality rendering.

We described a heuristical method for selecting the reference images to construct our

LDIs. Some surfaces are still not sampled and can cause exposure artifacts. Furthermore, for

performance reasons we choose fixed-size splats. This simple reconstruction kernel can work

well if the reference-image resolution is at least that of the warped image in the frame buffer.

In general, we need more sophisticated reconstruction methods to further improve the warp

quality.

We introduced a geometry-warping algorithm for displaying images that does not

generate significant overhead on today’s graphics hardware. The algorithm provides smooth

transitions and removes geometric discontinuities at the geometry-image border but

introduces a distortion proportional to the distance of the eye from the original image-

sampling viewpoint. This scheme is particularly useful for systems on a tight image-storage

budget or for systems that do not require temporal continuity. We demonstrated the algorithm

in a stand-alone system and in a system designed for architectural walkthroughs. This

architectural walkthrough system takes advantage of the inherent structure of buildings to

specialize our algorithms to architectural models by building upon cells-and-portals methods.

We obtained significant speedup over conventional portal culling. We have also employed

single-image warping and layered-depth-image warping to display portal images.

Finally, we presented an effective image-caching paradigm and an efficient

hierarchical culling algorithm. We still need to do further investigation of prefetching

algorithms for the image data and for the model geometry. In our current system, we assume

the entire model fits in main memory. Moreover, our walking speed is limited by the rate at

which we can page data from disk.

103

Thus, if we can afford the cost of storing and displaying images, we have successfully

proven our thesis statement:

“We can accelerate the interactive rendering of complex 3D

models by replacing subsets of the geometry with images.

Furthermore, we can guarantee a specified level of performance

by bounding the amount of geometry that must be rendered each

frame.”

8.2 Extensions to Automatic Image-Placement

Our algorithm creates and warps at most one image at a time. Thus, if a complex part

of the model is visible from a particular grid viewpoint, the preprocessing algorithm might

need to generate separate images for several nearly adjacent view directions. These images

will contain overlapping subsets of the model. We could exploit the overlap to perform image

compression or to warp multiple non-overlapping images per frame. To maintain a constant

warping cost, we would have to distribute the pixel budget among the images of a single

frame. With either of these modifications, it might be possible to reduce the overall storage

requirement. Moreover, a tighter fit of images over the far geometry, accomplished by the

several smaller images per frame, might help to increase the average distance between images

and image-sampling viewpoints – thus reducing potential warping artifacts.

In our current implementation, we only guarantee a maximum number of primitives to

render for a horizontal gaze. We could extend the preprocessing algorithm to take pitch into

account. It is unclear whether the extra complexity (in both implementation and storage) this

adds is worth the effort. We observe that with interactive walkthroughs, the gaze is often kept

nearly horizontal. Viewers do glance up and down at times, so the simplification we have

already performed might be sufficient.

In addition, we plan to refine our run-time system to make sure that we actually

maintain a constant frame rate (as opposed to a minimum frame rate). This includes dividing

the culling and warping tasks across different processors in order to eliminate the cost of

culling.

104

8.3 Extensions to Image Warping

For either single-image warping or layered-depth-image warping, we need to create

reference images. An avenue of future work is to find the optimal set of reference images.

The meaning of optimal is not well defined. For example, we could try to produce the

smallest set of images for some approximate quality; or, we could try to produce reference

images that sample all potentially visible surfaces. Furthermore, we can hopefully improve

our reconstruction techniques by using more sophisticated splats.

A known problem in image warping (and image processing in general) is defining a

visual quality metric. In geometric levels of detail, the screen-space deviation of the

simplified surface from the original surface is generally regarded as an acceptable metric.

There is no equivalent for image warping or for systems that render geometry and images

simultaneously. If we had such a metric, we could measure the visual results of our system in

a quantitative fashion. Moreover, we could drive our preprocessing algorithm or the selection

of reference images to guarantee a specified visual quality.

A limitation of displaying images on current hardware is that we must assume

precomputed diffuse illumination. There is not enough per-pixel information to perform

view-dependent shading on the image. This is not a problem for many walkthrough

environments (e.g. functionally colored CAD models, architectural spaces, etc.), but we hope

that in the future per-pixel normals and deferred shading [Whitted81][Deering88]

[Schneider88][Molnar92] might be viable solutions.

Another area of future work is to reduce the storage requirement of images and to

reduce the cost of warping. Our current images have a large amount of redundant

information. We expect image compression methods to work well on the color component.

As we mentioned at the end of Chapter 4, we look to dedicated image-warping hardware as a

way to reduce the constant warping cost (during preprocessing and run time). A more

immediate technique is to dedicate a larger number of processors to warping (e.g. a 16 or 32

processor machine).

105

8.4 Extensions to Portal Images

The extensions of most immediate benefit to the architectural system are those that

might automatically compute the best portal viewpoints and view directions to use for

creating the images. Possibly through the use of exact cell and portal visibility calculations

[Airey90, Teller91], we could locate areas of the model from which each portal is visible and

sample only from those areas. Once we gather more experience with portal images, we may

decide to reduce the constraint that image-sampling viewpoints must lie on a single

semicircle. The modelers may wish to have more freedom to place image-sampling

viewpoints. An interactive portal-image placement program would be useful.

At the moment, we are not taking advantage of idle time to render portal images (or

the LDIs for general models) that may be needed in the future. We could enhance the system

to perform incremental rendering. For example, if our system is equipped with an additional

graphics pipe, then we can use a simple prediction algorithm to create images expected in the

near future without affecting the main pipe. Alternately, we can devote a fraction of the frame

time to incrementally create predicted images.

References

[Airey90] Airey J., “Towards Image Realism with Interactive Update Rates in Complex
Virtual Building Environments”, Symposium on Interactive 3D Graphics, 41-50 (1990).

[Aliaga96] Aliaga D., “Visualization of Complex Models Using Dynamic Texture-Based
Simplification”, IEEE Visualization, 101-106 (1996).

[Aliaga97] Aliaga D. and Lastra A., “Architectural Walkthroughs Using Portal Textures”,
IEEE Visualization, 355-362 (1997).

[Aliaga98a] Aliaga D., Cohen J., Wilson A., Zhang H., Erikson C., Hoff K., Hudson T.,
Stuerzlinger W., Baker E., Bastos R., Whitton M., Brooks F., Manocha D., "A Framework
for the Real-time Walkthrough of Massive Models", Computer Science Technical Report
TR98-013, University of North Carolina at Chapel Hill (1998).

[Aliaga98b] Aliaga D., Lastra A., "Smooth Transitions in Texture-based Simplification",
Computer & Graphics, Elsevier Science, Vol 22:1, 71-81 (1998).

[Certain96] Certain A., Popovic J., DeRose T., Duchamp T., Salesin D., Stuetzle W.,
“Interactice Multiresolution Surface Viewing”, Computer Graphics (SIGGRAPH ‘96), 91-98
(1996).

[Chen93] Chen S. E. and Williams L., “View Interpolation for Image Synthesis”, Computer
Graphics (SIGGRAPH ‘93), 279-288 (1993).

[Chen95] Chen S. E, “QuickTime VR - An Image-Based Approach to Virtual Environment
Navigation”, Computer Graphics (SIGGRAPH ‘95), 29-38 (1995).

[Clark76] Clark J., “Hierarchical Geometric Models for Visible Surface Algorithms”, CACM,
Vol. 19(10), 547-554 (1976).

[Clark87] Clark C., Brown T., "Photographic Texture and CIG: Modeling Strategies for
Production Databases", Interservice/Industry Training Systems Conference, 274-283 (1987).

[Clark90] Clark C., Cosman M., "Terrain Independent Feature Modeling",
Interservice/Industry Training Systems Conference, 7-17 (1990).

[Cohen91] Cohen F., Patel M., “Modeling and Synthesis of Images of 3D Textured
Surfaces”, Graphical Modeling and Image Processing, Vol. 53, Iss. 6, 501-510 (1991).

[Cohen93] Cohen M., Wallace, J. Radiosity and Realistic Image Synthesis. Academic Press
(1993).

107

[Cohen96] Cohen J., Varshney A., Manocha D., Turk G., Weber H., Agarwal P., Brooks F.
and Wright W., “Simplification Envelopes”, Computer Graphics (SIGGRAPH ‘96), 119-128
(1996).

[Cohen98] Cohen J., Olano M. Manocha D., “Appearance-Preserving Simplification”,
Computer Graphics (SIGGRAPH ’98), 115-122 (1998).

[Coorg97] Coorg S. and Teller S., “Real-Time Occlusion Culling for Models with Large
Occluders”, Symposium on Interactive 3D Graphics, 83-90 (1997).

[Cosman94] Cosman M., "Global Terrain Texture: Lowering the Cost", Image Society, VII
Conference, 52-64 (1994).

[Crawford77] Crawford B., Topmiller D., "Effects of Variation in Computer Generated
Display Features on the Perception of Distance", Image Society, I Conference, 271-288
(1977).

[Darsa97] Darsa L., Costa Silva B., and Varshney A., “Navigating Static Environments Using
Image-Space Simplification and Morphing”, Symposium on Interactive 3D Graphics, 25-34
(1997).

[Deering88] Deering M., Winner S., Schediwy B., Duffy C. and Hunt N., “The Triangle
Processor and Normal Vector Shader: A VLSI System for High Performance Graphics”,
Computer Graphics (SIGGRAPH ’88), 21-30 (1988).

[DeHaemer91] DeHaemer M. and Zyda M., “Simplification of Objects Rendered by
Polygonal Approximations”, Computer Graphics, Vol. 15(2), 175-184 (1991).

[Ebbesmeyer98] Ebbesmeyer P., “Textured Virtual Walls - Achieving Interactive Frame
Rates During Walkthroughs of Complex Indoor Environments”, VRAIS ‘98, 220-227 (1998).

[Eck95] Eck M., DeRose T., Duchamp T., Hoppe H., Lounsbery M., Stuetzle W.,
"Multiresolution Analysis of Arbitrary Meshes", Computer Graphics (SIGGRAPH ‘95), 173-
182 (1995).

[Ferguson90] Ferguson R. L., "Continuous Terrain Level of Detail For Visual Simulation",
Image Society, V Conference, 144-151 (1990).

[Foley90] Foley J., van Dam A., Feiner S. and Hughes J., Computer Graphics: Principles and
Practices, Addison Wesley (1990).

[Funkhouser93] Funkhouser T. and Sequin C., “Adaptive Display Algorithm for Interactive
Frame Rates During Visualization of Complex Virtual Environments”, Computer Graphics
(SIGGRAPH ‘93), 247-254 (1993).

[Gardner81] Gardner G. et al. "A Real-Time Computer Image Generation System Using
Textured Curved Surfaces", Image Society, II Conference, 60-76 (1981).

[Garland97] Garland M., Heckbert P., “Surface Simplification using Quadric Error Bounds”,
Computer Graphics (SIGGRAPH ‘97), 209-216 (1997).

108

[Gortler96] Gortler S., Grzeszczuk R., Szeliski R. and Cohen M., “The Lumigraph”,
Computer Graphics (SIGGRAPH ‘96), 43-54 (1996).

[Hooks90] Hooks J., et al. "On 3-D Perspective Generation From a Multi-Resolution Photo
Mosaic Database", Image Society, V Conference, 133-142 (1990).

[Haeberli93] Haeberli P., Segal M., et al., “Texture Mapping as a Fundamental Drawing
Primitive”, Fourth Eurographics Workshop on Rendering, Paris, France (1993).

[Hoppe93] Hoppe H., DeRose T., Duchamp T., McDonald J., Stuetzle W., “Mesh
Optimization”, Computer Graphics (SIGGRAPH ‘93), 19-26 (1993).

[Hoppe96] Hoppe H., “Progressive Meshes”, Computer Graphics (SIGGRAPH ‘96), 99-108
(1996).

[Hoppe97] Hoppe H., “View-Dependent Refinement of Progressive Meshes”, Computer
Graphics (SIGGRAPH ‘97), 189-198 (1997).

[Hudson97] Hudson T., Manocha D., Cohen J., Lin M., Hoff K., Zhang H., “Accelerated
Occlusion Culling using Shadow Frusta”, ACM Symposium on Computational Geometry,
(1997).

[Klein96] Klein R., Liebich G., Strasser W., “Mesh Reduction with Error Control”, IEEE
Visualization, (1996).

[Kumar95] Kumar S., Manocha D., Lastra A., “Interactive Display of Large Sacle NURBS
Models”, Symposium on Interactive 3D Graphics, 51-58 (1995).

[Kumar97] Kumar S., Manocha D., Zhang H. and Hoff K., “Accelerated Walkthrough of
Large Spline Models”, Symposium on Interactive 3D Graphics, 91-101 (1997).

[Lastra95] Lastra A., Molnar S., Olano M. and Wang Y., “Real-Time Programmable
Shading”, Symposium on Interactive 3D Graphics, 59-66 (1995).

[Levoy96] Levoy M. and Hanrahan P., “Light Field Rendering”, Computer Graphics
(SIGGRAPH ’96), 31-42 (1996).

[Low97] Low K., Tan T., “Model Simplification using Vertex-Clustering”, Symposium on
Interactive 3D Graphics, 75-82 (1997).

[Luebke95] Luebke D. and Georges C., “Portals and Mirrors: Simple, Fast Evaluation of
Potentially Visible Sets”, Symposium on Interactive 3D Graphics, 105-106 (1995).

[Luebke97] Luebke D. and Erikson C., “View-Dependent Simplification of Arbitrary
Polygonal Environments”, Computer Graphics (SIGGRAPH ‘97), 199-208 (1997).

[Maciel95] Maciel P. and Shirley P., “Visual Navigation of Large Environments Using
Textured Clusters”, Symposium on Interactive 3D Graphics, 95-102 (1995).

[Maillot93] Maillot J., Yahia H., Veroust A., “Interactive Texture Mapping”, Computer
Graphics (SIGGRAPH ‘93), 27-34 (1993).

109

[Mark97a] Mark W., McMillan L. and Bishop G., “Post-Rendering 3D Warping”,
Symposium on Interactive 3D Graphics, 7-16 (1997).

[Mark97b] Mark W., Bishop G., "Memory Access Patterns of Occlusion-Compatible 3D
Image Warping", SIGGRAPH/Eurographics Workshop on Graphics Hardware, 35-44
(1997).

[Max95] Max N., Ohsaki K., “Rendering Trees from Precomputed Z-Buffer Views”,
Rendering Techniques '95: Proceedings of the 6th Eurographics Workshop on Rendering, 45-
54 (1995).

[McMillan95a] McMillan L. and Bishop G., “Head-Tracked Stereo Display Using Image
Warping”, Stereoscopic Displays and Virtual Reality Systems II, Scott S. Fisher, John O.
Merritt, Mark T. Bolas, ed., SPIE Proceedings 2409, 21-30 (1995).

[McMillan95b] McMillan L. and Bishop G., “Plenoptic Modeling: An Image-Based
Rendering System”, Computer Graphics (SIGGRAPH '95), 39-46 (1995).

[McMillan97] McMillan L., “An Image-Based Approach to Three-Dimensional Computer
Graphics”, Ph.D. Dissertation, University of North Carolina at Chapel Hill (1997).

[Molnar92] Molnar S., Eyles J., Poulton J., PixelFlow: High-Speed Rendering Using Image
Composition, Computer Graphics (SIGGRAPH ’92), 231-240 (1992).

[Moshell92] Moshell J. M., et al. "Dynamic Terrain Databases for Networked Visual
Simulators", Image Society, VI Conference, 98-112 (1992).

[Mueller95] Mueller C., “Architectures of Image Generators for Flight Simulators”,
Computer Science Technical Report TR95-015, University of North Carolina at Chapel Hill
(1995).

[Popescu98] Popescu V., Lastra A., Aliaga D., and Oliveira Neto M., “Efficient Warping for
Architectural Walkthroughs using Layered Depth Images”, IEEE Visualization, 211-215
(1998).

[Pratt92] Pratt D., Zyda M., et al., "NPSNET: A Networked Vehicle Simulation with
Hierarchical Data Structures", Image Society, VI Conference, 216-226 (1992).

[Rafferty98a] Rafferty M., Aliaga D. and Lastra A., “3D Image Warping in Architectural
Walkthroughs”, VRAIS ‘98, 228-233 (1998).

[Rafferty98b] Rafferty M., Aliaga D., Popescu V. and Lastra A., “Images to Accelerate
Architectural Walkthroughs”, Computer Graphics & Applications, Vol. 18, No. 6,
November-December, 38-45 (1998).

[Regan94] Regan M., Pose R., “Priority Rendering with a Virtual Reality Address
Recalculation Pipeline”, Computer Graphics (SIGGRAPH ‘94), 155-162 (1994).

[Rife77] Rife R., "Level-of-Detail Control Considerations for Computer Image Generation
Systems", Image Society, I Conference, 142-159 (1977).

110

[Robinson85] Robinson J., "Exploiting Texture in an Integrated Training Environment",
Interservice/Industry Training Systems Conference, 113-121 (1985).

[Rossignac92] Rossignac J. and Borrel P., “Multi-resolution 3D Approximations for
Rendering Complex Scenes”, Technical Report, IBM T.J. Watson Research Center,
Yorktown Heights, NY (1992).

[Scarlatos90] Scarlatos L., "A Refined Triangulation Hierarchy for Multiple Levels of
Terrain Detail", Image Society, V Conference, 115-122 (1990).

[Schachter83] Bruce Schachter (ed.), Computer Image Generation, John Wiley and Sons
(1983).

[Schaufler96] Schaufler G. and Stuerzlinger W., “Three Dimensional Image Cache for
Virtual Reality”, Computer Graphics Forum (Eurographics ‘96), Vol. 15(3), 227-235 (1996).

[Schneider88] Schneider B.O., Claussen U., “PROOF: An Architecture for Rendering in
Object-Space”, Advances in Computer Graphics Hardware III, Eurographics Seminars, 121-
140 (1988).

[Schroeder92] Schroeder W. J., Zarge A., Lorensen W. E., “Decimation of Triangle Meshes”,
Computer Graphics (SIGGRAPH ‘92), 65-70 (1992).

[Shade96] Shade J., Lischinski D., Salesin D., DeRose T., Snyder J., “Hierarchical Image
Caching for Accelerated Walkthroughs of Complex Environments”, Computer Graphics
(SIGGRAPH ‘96), 75-82 (1996).

[Shade98] Shade J., Gortler S., He L., and Szeliski R., Layered Depth Images, Computer
Graphics (SIGGRAPH ’98), 231-242 (1998).

[Sillion97] Sillion F., Drettakis G. and Bodelet B., “Efficient Impostor Manipulation for
Real-Time Visualization of Urban Scenery”, Computer Graphics Forum Vol. 16 No. 3
(Eurographics), 207-218 (1997).

[Stevens81] Stevens K., "Computational Analysis: A Technique for Improving the Visual
Simulation of Terrain", Image Society, II Conference, 5-24 (1981).

[Teller91] Teller S., Séquin C., “Visibility Preprocessing For Interactive Walkthroughs”,
Computer Graphics (SIGGRAPH ’91), 61-69 (1991).

[Teller92] Teller S., Visibility Computation in Densely Occluded Polyhedral Environments,
Ph.D. Dissertation (also Computer Science Department TR92-708), University of California
at Berkeley (1992).

[Torborg96] Torborg J., Kajiya J., “Talisman: Commodity Real-time 3D Graphics for the
PC”, Computer Graphics (SIGGRAPH ‘96), 353-364 (1996).

[Turk92] Turk G., “Re-Tiling Polygonal Surfaces”, Computer Graphics (SIGGRAPH ‘92),
55-64, (1992).

[Westover91] Westover L., Splatting: A Feed-Forward Volume Rendering Algorithm, Ph.D.
Dissertation, University of North Carolina at Chapel Hill (1991).

111

[Whitted81] Whitted T., Weimer D. M., “A Software Test-bed for the Development of 3-D
Raster Graphics Systems”, Computer Graphics (SIGGRAPH ‘81), 271-277 (1981).

[Wolberg90] Wolberg G., Digital Image Warping, IEEE Computer Society Press (1990).

[Xia96] Xia J., Varshney A., “Dynamic View-Dependent Simplification for Polygonal
Models”, IEEE Visualization (1996).

[Zhang97] Zhang H., Manocha D., Hudson T. and Hoff K., “Visibility Culling Using
Hierarchical Occlusion Maps”, Computer Graphics (SIGGRAPH ‘97), 77-88 (1997).

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	1. INTRODUCTION	1
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Thesis Statement
	Models and Applications
	Rendering Acceleration Methods
	Replacing Geometry with Images
	Overall System Design
	Automatic Image-Placement
	Image Warping
	Geometry Warping
	Architectural Models

	Contributions
	Automatic Image-Placement Algorithm
	Geometry-Warping Algorithm
	Portal Images
	Efficient Hierarchical-Culling Algorithm

	A Guide to Chapters

	R
	Related Work
	Textures and Image Caching
	Individual Objects
	Nodes of a Hierarchical Partitioning Tree
	Arbitrary Model Subsets

	Additional Rendering Acceleration Methods
	Geometric Simplification
	Static Simplification
	Dynamic Simplification

	Visibility Culling

	Flight Simulators
	Image-Based Rendering

	A
	Automatic Image Placement
	Overview
	Viewpoint Grid
	Image Placement at a Grid Viewpoint
	View-Directions Set
	Image Placement: A Discrete Optimization
	Cost-Benefit Function
	Representing Octree-Cell Subsets
	Inner Optimization Loop

	Adapting the Viewpoint Grid to the Model Complexity
	Star-shapes
	Recursive Procedure
	Star-Shape Minimal Viewpoint Sets

	Complexity Analysis
	How many images?
	Best-Case Scenario
	Worst-Case Scenario
	Example Average-Case Scenario

	How much time does it take?

	Results
	Implementation
	Performance

	D
	Depth-Image Warping
	Overview
	Image Warping
	Formulation
	Reconstruction
	Limitation of Single-Image Warping

	Layered Depth Images
	Constructing and Warping LDIs
	Optimizing LDIs for the Viewpoint Grid

	Implementation
	Image Cache
	Preprocessing
	Run Time

	G
	Geometry Warping
	Algorithm
	Partitioning the Geometry
	Geometric Continuity
	Smooth Transitions
	Artifacts

	Multiple Images
	Common Viewpoint
	Different Viewpoints

	Implementation
	Geometry-To-Image Transition
	Image-to-Geometry Transition
	Results

	A
	Architectural Models
	Image Placement in Architectural Models
	Portal Images
	Portal Culling vs. Portal-Image Culling
	Creating Portal Images

	Geometry-Warping System
	Overview
	Implementation
	Results and Observations
	Performance
	Portal Images on Demand
	Single Portal-Image Case
	Image Quality

	Image-Warping System
	Overview
	Implementation
	Results and Observations

	E
	Efficient Hierarchical Culling
	Hierarchical Culling
	Conventional Hierarchical Culling
	Efficient Hierarchical Culling

	C
	Conclusions and Future Work
	Summary
	Extensions to Automatic Image-Placement
	Extensions to Image Warping
	Extensions to Portal Images

