
Computers & Graphics 37 (2013) 896–910
Contents lists available at ScienceDirect
Computers & Graphics
0097-84
http://d

☆This
n Corr
E-m
journal homepage: www.elsevier.com/locate/cag
Technical Section
Automatic urban modeling using volumetric reconstruction with
surface graph cuts$

Ignacio Garcia-Dorado n, Ilke Demir, Daniel G Aliaga
Purdue University, Computer Science, 305 N. University Street, West Lafayette, IN 47907, United States
a r t i c l e i n f o

Article history:
Received 5 November 2012
Received in revised form
9 July 2013
Accepted 10 July 2013
Available online 1 August 2013

Keywords:
Automatic
Urban
Photo-consistency
Graph cuts
Volumetric reconstruction
93/$ - see front matter & 2013 Elsevier Ltd. A
x.doi.org/10.1016/j.cag.2013.07.003

article was recommended by A. Shamir.
esponding author. Tel.: +1 765 494 6010; fax:
ail address: igarciad@purdue.edu (I. Garcia-Do
a b s t r a c t

The demand for 3D city-scale models has been significantly increased due to the proliferation of urban
planning, city navigation, and virtual reality applications. We present an approach to automatically
reconstruct buildings densely spanning a large urban area. Our method takes as input calibrated aerial
images and available GIS meta-data. Our computational pipeline computes a per-building 2.5D
volumetric reconstruction by exploiting photo-consistency where it is highly sampled amongst the
aerial images. Our building surface graph cut method overcomes errors of occlusion, geometry, and
calibration in order to stitch together aerial images and yield a visually coherent texture-mapped result.
Our comparisons show similar quality to the manually modeled buildings of Google Earth, and show
improvements over naive texture mapping and over space-carving methods. We have tested our
algorithms with a 12 sq km area of Boston, MA (USA), using 4667 images (i.e., 280 GB of raw image
data) and producing 1785 buildings.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

We present a method for automatic reconstruction of buildings
densely spanning a city or portion thereof. The demand for such
3D volumetric content has been significantly increased due to the
proliferation of urban planning, city navigation, and virtual reality
applications (Fig. 1). Nevertheless, automatic widespread recon-
struction of urban areas is still an elusive target. Services, such as
Google Earth/Maps, Apple Maps, Bing Maps, and OpenStreetMap
have fomented the capture and availability of ubiquitous urban
imagery and geographic information system (GIS) style data. Using
LIDAR data is one option for city modeling however it still has
challenges and is not always available. Ground-level imagery
provides high resolution but such images are usually scattered
and incomplete. Aerial images provide extensive and uniform
coverage of large areas, albeit at lower resolution, and are widely
available for most cities. Hence, to reconstruct large urban areas
we focus on aerial imagery.

There have been several fundamental approaches for producing
urban volumetric reconstructions. In contrast to partial (or facade-
level) reconstructions (e.g., Müller et al. [24], Xiao et al. [43]), we
seek to automatically create texture-mapped building envelopes
spanning a large-portion of a city (i.e., akin to the crowd-sourced
created models visible in Google Earth) – such complete models
are suitable 3D content for the aforementioned graphics and
ll rights reserved.

+1 765 494 0739.
rado).
visualization applications. Inverse procedural modeling approaches
pursue generating parameterized 2D and 3D models from observa-
tions (e.g., Stava et al. [35], Bokeloh et al. [3], Park et al. [27]), but have
not been demonstrated for large-scale urban areas due to the
inherent complexity and ambiguity in the inversion process. Relevant
volumetric reconstruction methodologies from image-based model-
ing and computer vision can be loosely divided into (i) space carving
and similar techniques (e.g., Kutulakos and Seitz [13], Matusik et al.
[22], Montenegro et al. [23], Lazebnik et al. [17], Shalom et al. [32])
and (ii) volumetric graph cuts (e.g., Vogiatzis et al. [41]). All of these
methodologies exploit, in some form, photo-consistency, visibility
constraints, and smoothness assumptions.

However, for our targeted large areas with high building
density and thus a high-level of occlusion, we cannot assume a
dense, complete, and un-occluded sampling of all building and
ground surfaces. These facts about the input data spawn three
important challenges. First, although in a typical aerial capture
process each building might be at least partially observed in 25–50
images, parts of each facade might only be seen by a few images
(and sometimes none at all). This relatively sparse sampling of the
building walls hinders photo-consistency measures. Further, the
limited visibility and high-level of occlusion also encumbers the
silhouette usage and robust foreground/background segmentation
for space carving and hampers the determination of the initial
geometry (e.g., visual hull) for volumetric graph cuts. Second,
since the captured images of building and ground surfaces may be
plagued with the projections of nearby buildings, obtaining
occlusion-free projective texture mapping (i.e., texture mapping
without neighboring buildings unwillingly appearing on other

www.sciencedirect.com/science/journal/00978493
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2013.07.003
http://dx.doi.org/10.1016/j.cag.2013.07.003
http://dx.doi.org/10.1016/j.cag.2013.07.003
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cag.2013.07.003&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cag.2013.07.003&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cag.2013.07.003&domain=pdf
mailto:igarciad@purdue.edu
http://dx.doi.org/10.1016/j.cag.2013.07.003


Fig. 1. Urban modeling. A complex urban area (left) is automatically obtained using volumetric reconstruction with surface graph cuts (middle) computed from aerial
imagery and GIS-style parcel/building data (right). Our methodology uses photo-consistency to robustly recreate 2.5D building structures and surface graph cuts to assemble
seamless and coherent textures despite occlusion, geometry, and calibration errors.

I. Garcia-Dorado et al. / Computers & Graphics 37 (2013) 896–910 897
buildings) would require very accurate geometry. Third, obtaining
such very accurate geometry is hindered by camera calibration
error and by the grazing angle observations of the building
facades. Naïve projective and view-dependent texture mapping
would produce strong visual discontinuities or would compensate
for the inaccuracies by using significant blending/blurring.

Our solution circumvents the aforementioned challenges by
exploiting the following inspirations:
�
 Buildings are, by and large, individual 2.5D structures; thus we
assume each successive floor up the building is equal to or
contained within the contour of the previous floor.
�
 Since aerial images mostly sample the roof structures of a
building, we exploit photo-consistency only for determining
the roof structure; for the building walls, we exploit the 2.5D
assumption and stitch together the visual observations using a
surface graph-cut based technique (a surface graph cut is a 2D
manifold in 3D space that has been stitched together using a
solution to the minimum-cost graph-cut problem); our surface
graph cut assembles a seamless and visually-coherent texture-
mapping of the buildings and ground surfaces despite an
imperfect building proxy, projected occlusions, and camera
calibration errors.
�
 To solve the chicken-and-egg dilemma of needing to know the
geometry to solve for visibility (and needing to know visibility
to solve for geometry), we exploit the assumption of having
approximate GIS data (e.g., building outlines) in order to
formulate simple building shape estimates which we enhance.

Our approach builds upon voxel occupancy and graph cuts (e.g.,
Kwatra et al. [14]) to automatically and robustly yield large-scale
3D urban reconstructions. Our largest example includes 1785
reconstructed and texture-mapped buildings spanning more than
12 sq km. Our system pipeline (Fig. 2) takes as input a set of pre-
calibrated high-resolution aerial images captured from a multi-
camera cluster flying over a city (courtesy of C3Technologies),
approximate building outlines extracted from a GIS provider (i.e.,
OpenStreetMap (OSM)) and rough initial building heights per
city zone.

A coarse initial building geometry is subdivided into voxels which
are then refined. Improved building outlines, heights, and roof
structures are obtained by using a photo-consistency and clustering
algorithm. Then, we use surface graph cuts to add the remaining
visual details to the building walls and to the ground. The roof
structure is sampled by many images. Thus, texture mapping the roof
voxels to display additional visual details can be straightforwardly
done by selecting the most head-on observations. However, the
building walls are sparsely sampled. Hence, in order to create a
complete, coherent, and occlusion-free colored appearance, we
texture-map wall voxels using the aerial images for which a
satisfactory graph cut with the roof and with the adjacent building
walls is produced. Further, we solve two other surface graph cut
problems in order to provide a smooth visual transition between the
building walls and the ground surface as well to produce a top-down
high-resolution ground surface image that is free of unwanted
projections of building geometry and shadows.

Altogether, our method exploits photo-consistency only where it
is highly sampled (thus less susceptible to outliers and noise) and
uses a graph-cut based algorithm to stitch together a visually
plausible result for the rest of the building surfaces and for the
ground surface. Our examples are from a large metropolitan area
(i.e., Boston, MA in USA) using a dataset of 4667 aerial images and
conservative initial building outlines and height estimates (e.g., often
overestimates of 50%). Our comparisons show that our results are
significantly better than texturing a space-carving/visual-hull result
and similar quality to crowd-sourced manual modeling efforts.

Our main contributions are:
�
 a robust voxel- and photo-consistency based method for
estimating building roof geometry,
�
 a surface graph cut method to not only stitch textures, but also
reduce, or eliminate, artifacts due to incorrect texture over-
lapping, missing texture fragments, incorrect camera pose, or
an inaccurate geometric proxy,
�
 a graph-cut based method for generating a top-down aerial
view of a city free of unwanted building projections appearing
on the ground, despite such projections being present in all
captured aerial images, and
�
 a complete automatic framework that generates closed, low
polygon count, textured buildings and ground that are ready-
to-use in 3D city modeling and computer graphics applications.
2. Related work

In this section, we relate our work to urban modeling
approaches in procedural modeling, image-based algorithms,



Fig. 2. System pipeline. Our system uses (a) aerial images and GIS-like input data to (b) compute a geometric proxy, (c) generate surface graph cuts, and (d) assemble
textured 3D building models of large urban areas.

I. Garcia-Dorado et al. / Computers & Graphics 37 (2013) 896–910898
LIDAR-based methods, and volumetric reconstructions including
graph cuts. Image-based algorithms, from computer graphics,
computer vision, and photogrammetry, have generated very com-
pelling urban reconstruction results. A recent survey by Musiaski
et al. [25] provides an overview of numerous urban reconstruction
techniques. Some representative works have created individual
facades from images (e.g., Müller et al. [24], Xiao et al. [43], Teboul
et al. [37]), individual buildings and statues (e.g., Lafarge et al. [15],
Vanegas et al. [40]) and point cloud reconstructions (e.g., Liao et al.
[20]). However, these methods have not produced volumetric
building models (e.g., complete texture-mapped building envel-
opes) of large city areas. Approaches have also been proposed that
use large online photo communities to perform reconstructions of
popular areas (e.g., Goesele et al. [10], Agarwal et al. [1], Frahm
et al. [6]). But, these results are fragmented and cannot necessarily
produce all buildings in a given target area.

Numerous methods exploit LIDAR data sources. For example,
Nan et al. [26] and Zheng et al. [44] provide interactive tools to
improve partial scans of individual building models. Zhou and
Neumann [45] provide striking results by extending dual contour-
ing to 2.5D building structures. Poulis et al. [30] present an
automatic method to reconstruct 2.5D buildings from aerial
images and LIDAR data. They propose a framework using (i) 2.5D
graph-cuts, (ii) automatic and interactive segmentation, and (iii)
automatic identification and reconstruction of linear roof types.
Lafarge and Mallet [16] segment data into ground, buildings,
vegetation, and clutter. Then, buildings are formed by fitting
points to a collection of template primitives. In general, these
methods, and similar ones, rely on the availability of high-
resolution point cloud data, sometimes make assumptions of the
roof/building geometry, and some do not produce colored/tex-
tured models – a naïve projective texture-mapping using the
available aerial images will not necessarily produce good results,
as shown in our results section. Shen et al. [33] presents an
adaptive partitioning of unorganized LIDAR data to find high-level
facade structure repetitions. This method can be used to consoli-
date facades but it is not designed to recover geometry. Toshev
et al. [38] detect building structures from city-scale 3D point
clouds and construct a hierarchical representation for high-level
tasks. Also Golovinskiy et al. [11] present another approach to
recognize objects in 3D urban LIDAR data using specialized
clustering and graph-cut segmentation. However, reconstruction
is not the focus of these last three methods.

Some methods focus on the registration of aerial images with
LIDAR data or with 3D models. For example, Ding et al. [5] describe
a new feature called 2DOC based on 2D corners that corresponds
to orthogonal structure corners in 3D. Wang et al. [42] improve the
registration by using a novel feature called 3CS which uses sets of
connected lines. To create a robust registration, they first over-
estimate the number of line segments and then perform a
RANSAC-based refinement. Frueh et al. [7] automatically texture
detailed 3D models. They improve the texture discontinuities of
each triangle using a classification approach and reduce the
graphic card memory footprint using an atlas approach. They
present nice results but with clearly visible seams between
ground-base and airborne textures.

Volumetric reconstruction via space carving, graph cuts, and
related methods have also received significant attention. Methods,
such as space carving [13] and image-based visual hulls [22]
assume the presence of many images observing the silhouette of
the object. Such observations are in general not possible using
aerial images of dense urban environments. Another option is
using a set of ground-level images to reconstruct the facades of
buildings (e.g. Gallup et al. [8] uses a high resolution video with a
priori calibrated street level video and per-pixel depth map as
input; Frahm et al. [6] uses a scattered set of images; Grzeszczuk
et al. [12] reconstructs building facades from street level images
without significant occlusions) but it is impossible to fully sample
all facades and all roofs of all buildings in a large urban area.
Pollard et al. [29] present a voxel-based volumetric method to
detect changes in a 3D scene. Despite presenting some similar
inspiration, this approach is designed to detect changes instead of
find similarities.

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.cag.2013.07.003.

Graph cuts have been extensively used in computer graphics (e.
g., texture synthesis Kwatra et al. [14], Lefebvre et al. [18]). For
volumetric reconstructions, graph cuts are applied to 3D subdivi-
sions of space and combined with stereo processing (e.g., Vogiatzis
et al. [41], Sinha and Pollefeys [34], Tran and Davis [39]). Never-
theless, these methods rely on high photo-consistency over the
entire building surface and require an initial building geometry,
such as the visual hull. Using aerial images to obtain the visual hull
as well as sufficient samples for robust photo-consistency metrics
over the entire building surface is challenging for dense urban
environments. In our work, we also use graph cuts, but we define a
surface graph cut that lies on building roofs and walls and on the
ground surface. Further, each graph node is positioned and
oriented in 3D space but is only connected to its neighboring
surface elements.

Lempitsky and Ivanov [19] also use graph-cut optimizations, as
well as gradient-domain techniques, to address the problem of
texture fragmentation on a 3D surface. They assume (i) all textures
completely see the object, (ii) there are no occlusions, (iii) all
images have the same quality (¼ importance), and (iv) the cameras
are perfectly calibrated. These assumptions allow them to simplify
their cost function to only use the direction of the corresponding
view and the surface normal and to discard any duplicated or
overlapping texture segments. Allene et al. [2] alleviate the
aforementioned equal image-quality assumption by including
optimization terms to measure the effective texture resolution
and the color continuity at edges between faces assigned to
different (textured) images. Moreover, they use per-pixel blending
to minimize the difference due to lighting conditions. In contrast,
our approach tackles the problem when occlusions are frequent,
camera poses are not contiguous nor have similar angles, cameras

http://dx.doi.org/10.1016/j.cag.2013.07.003


I. Garcia-Dorado et al. / Computers & Graphics 37 (2013) 896–910 899
are not perfectly calibrated, and the proxy model is not guaranteed
to be accurate.

Alternative approaches have been proposed. Gao et al. [9]
directly operates on the points and splats/combines results to an
output image without obtaining a geometric model. Mathias et al.
[21] use structure-from-motion, image-based analysis, and shape
grammars. The reconstruction results are promising however a
grammar is required, which thus lacks automation for large-scale
deployment. A related semi-automatic approach is that of Taillan-
dier et al. [36]. However, their method has several requirements
which make it not adequate for many urban areas: they only
handle square buildings with slanted roofs; they require having an
accurate outline of the building and not just the parcel contour or
a rough approximation.

In contrast to previous methods, our work focuses on auto-
matically obtaining complete (e.g., closed) building models of
urban tall building areas (e.g., downtown, office buildings, finan-
cial districts) spanning multiple square kilometers and rely only on
aerial imagery and commonly available GIS data for cities around
the world. In addition to estimating a building proxy, our method
enables the creation of plausible texture-mapped building models
using stitched together imagery, even in the presence of imperfect
geometric proxy estimates and imperfect camera calibration. Some
commercial ventures, such as C3 Technologies (purchased by
Apple), pursue similar 3D reconstruction objectives but to our
knowledge use manual-intervention and wide-baseline stereo to
obtain building models, thus making widespread deployment
challenging.
3. Overview

We identify two main tasks to reconstruct a city: (i) find the
building geometry (Fig. 2b), and (ii) texture the models (Fig. 2c).
For the first task, we could discretize the space of the whole city
and try to find the geometry at the same time, but this approach
would not scale since the number of voxels is linear with the size
of the city (e.g., in our case it would be O(108) voxels). Given the
individual nature of each building (i.e. a building can be seen as an
independent model surrounded by streets), we simplify the
problem by processing each building individually. For each
Fig. 3. Building volumes. We show the steps of our volumetric building reconstruction. (
photo-consistency measure is computed, (c) The most consistent voxel per column is c
(e) placed in a height-map, and filtered and (f) The final proxy model is obtained.
building, we first initialize the building with a set of voxels using
the GIS data (Section 4.1) and find the photo consistency between
aerial images (Section 4.2). Then, we find 2.5D building geometry
(Section 4.3).

For the second task, we could use a standard view-dependent
texture mapping, but this would assemble imagery by blending
together fragments from many different images. Such a method does
not exploit the internal consistency of each capture image and might
create seams along image transitions. In contrast, we use graph cuts to
stitch together imagery from as few images as possible so as to exploit
internal consistency as well as produce seamless texture mapping.
Given that the complexity of graph cuts (solved using the min-cut
algorithm) is O(VE2), it would not scale to city level (in our case it
would be O(1019)). Therefore, we also process each building indivi-
dually. However, this does not completely solve the problem since the
ground should be also textured, which in turn necessitates a smooth
transition between building and ground surfaces. To overcome the
problems of this task, we use graph cut for three different purposes: (i)
texturing building surface (Section 5.2), (ii) improving the transition
building-ground surfaces (Section 5.3), and (iii) finding an optimized
ground surface (Section 5.4).
4. Volumetric building proxy

We first describe our algorithm for computing a per-building
volumetric proxy. Our method initializes each building model as a
grid of voxels, calculates a weighted photo-consistency measure
per voxel, and clusters the voxels of minimum variance. The
output is a 3D un-textured proxy model.

4.1. Appearance editing

Each individual building is initialized as a 3D array of voxels
(Fig. 3a). The voxels are obtained by subdividing a vertical extru-
sion of a coarse estimate of the 2D building footprint. Given a
building of size ½bx; by;bz� and a voxel size r, we label each voxel vi
for iA ½1;N� and N¼ ðbx=rÞnðby=rÞnðbz=rÞ. For notational brevity, we
assume vi also refers to the 3D position of the middle of voxel i.
The upper bound for N is when a voxel of size r0 corresponds
roughly to one projected pixel. In practice, we choose values of
a) An initial model is divided into voxels, (b) The per-voxel variance of our weighted
hosen, potentially reducing building height, (d) The voxels are clustered by height,



Fig. 4. Variance calculation. Using the initial voxel normals ni for a voxel vi , we
determine the variance of our weighted photo-consistency measure of the subset
of cameras, such as cik , that best see the voxel.

I. Garcia-Dorado et al. / Computers & Graphics 37 (2013) 896–910900
r4r0 in order to reduce the per-building computation time which
is important when processing city-scale environments.

Building footprints and building heights, or estimates thereof,
are frequently present in a city GIS's and in some navigation
service databases. With regards to building footprints, one option
is to use the shape of the enclosing parcel which is roughly of the
same shape for dense urban areas. In our case, we make use of
the increasingly popular open data repository OpenStreetMap.org.
It contains top-down street, parcel, and approximate building
outlines for a very large number of cities worldwide (as seen
in Fig. 2a and in our video). We extract building outline
estimates from images such as this using image processing; in
particular, we detect a loop of edges per parcel and form a
closed polyline. For building heights, if not available in the GIS,
we make zonal estimates (e.g., residential zone apartments are
given a constant height, high-rise zones are given a higher
constant height, etc.); however, the building height should be
conservative (e.g., we frequently overestimate height by 50%).
Photo-consistency will enable finding the actual roof heights
and building outlines.

We must also establish an initial surface normal per voxel. After
inspecting many buildings, we found that a good prior is to
represent a building as a half ellipsoid (Fig. 4, bottom). At this
stage in the pipeline, the voxel normal is solely used to determine
the subset of the aerial images that potentially “see” the voxel. This
approximation does not directly affect the resulting building
geometry but rather helps select which images are used in later
stages. Because it is not known yet which voxels will be on
the building surface, normals are computed for all voxels of the
initial model (i.e., interior and exterior voxels). Given a building,
we first fit the upper-half of an ellipsoid to the building by
computing values for the ellipsoid radius and ellipsoid coefficients
a; b and c. Then, given voxel vi, we compute the voxel's initial
normal as

ni ¼
2vix
a2

;
2viy
b2

;
2viz
c2

� �
ð1Þ

Given voxel positions and normals, we obtain the color cik for
voxel i observed by camera k: To support different voxels sizes
(both when voxel-to-camera distance varies amongst the aerial
images and when purposefully working with larger voxels to
increase reconstruction performance), we project the voxel onto
camera image k, estimate the size sik of voxel i on camera image
k and grab a Gaussian weighted footprint of pixels as

cik ¼ ∑
tA ½ð�sik ;�sikÞ;ðsik ;sikÞ�

ðprojkðviÞ þ tÞe�:t�projkðviÞ:2=2sc ð2Þ

where projkðUÞ returns the projection of its argument onto camera
image k and sc is the standard deviation of the Gaussian. Given sik,
sc is obtained by the known estimate 0:3ð=sik2�1Þ þ 0:8.

4.2. Variance calculation

Starting with the initial model of a building, we search for a
subset of voxels that are photo-consistent amongst the aerial images
observing the building. We assume strong photo-consistency for a
voxel implies it is on the actual building surface. As the measure of
photo-consistency, we use the weighted variance of the color of a
voxel's projection on different aerial images (Fig. 3b).

In preliminary experiments, we investigated several measures
for evaluating whether a voxel is on the building surface. We
attempted using color-based segmentation of aerial images and/or
the weighted sum of the measures of photo-consistency, local
surface planarity, and local supportability (i.e., probability that a
voxel is needed because another higher-up voxel will be selected).
However, we observed that the various variants of this combined
metric were not robust to noise/errors and in practice over-
constrained voxel selection. This is primarily due to the relatively
sparse (and often at grazing angles) sampling of building walls.
As mentioned in the introduction, we did however observe many
visual samples and significant photo-consistency amongst voxels
on the building roof surface which led us to mostly rely on them.

Our method transforms all aerial images to HSL color space and
uses the H and S channels. We use only the H and S channels in
order to ignore the effect of changing daylight illumination and, to
a lesser degree, the effect of shadows. Further, we explicitly weigh
variance by the inverted building height of a voxel. Hence, given an
approximately tied variance, the vertically higher voxel is chosen.
Numerically, our voxel variance measure is computed as

mi ¼
viz þ bz=2

bz
∑
si

k ¼ 1
c2ik� ∑

si

k ¼ 1
c2ik

 !2

=si

0
@

1
A ð3Þ

where it is assumed the building is centered at the origin, the first
term computes the ratio of the voxel's vertical height (assumed to
be along the z-axis) to the building's z size, and si is the number of
camera images that have a line of sight to voxel i.

In order to improve the variance calculation, we use the initial
footprints to account for the potential occlusion of neighboring
buildings. Specifically we create a mask mk by rendering the
building from the point of view of a camera k pointing towards
the building; the building is rendered in white and the background
in black. When computing color cik, we check in the corresponding
mask whether the image pixel is white (unoccluded) and should
be used, or black (occluded) and should be discarded.

4.3. Height clustering

In aerial images, roofs are expected to be viewed by more cameras
than facades (i.e., more photo-consistent). Thus, we find the height of
each column by searching for the column's voxel with the lowest
variance mi: We use this information to assemble the final building
proxy (Fig. 3c). If we observe the building from a side, the voxels
should collectively exhibit a compact distribution around the different
heights of the buildings. Hence, we can use 1D k-means clustering to
find those different building roof heights (e.g., k¼ f1;2;3;…g). Since
the optimum value for k is not known a priori, we estimate it using a
heuristic that works well in practice. Starting at k¼ 1, we increase k
until we find that at kþ 1 the clustering error reduces by no more



I. Garcia-Dorado et al. / Computers & Graphics 37 (2013) 896–910 901
than ce percent. In preliminary experiments, such a clustering
algorithm worked well, yielding buildings with 1–5 different roof
heights. For our results, we set ce ¼ 0:3. After clustering, our method
selects the voxel per column whose height is closest to the corre-
sponding cluster's mean height (Fig. 3d).

After clustering, we place all voxel heights into a height map
image. Starting with the uppermost cluster, our algorithm performs a
per-cluster morphological close operation [28] (i.e., dilate and then
erode) in order to remove small islands of the current cluster type
and to fill-in small gaps. We also perform an in-filling refinement
step to remove any remaining single-voxel holes with no height/
cluster assignment (i.e., we find the most popular cluster assignment
of the neighboring voxels and assign that value to the missing voxel).

Voxels physically below the filtered minimum variance voxels
are marked. Then, all exterior surface voxels are selected as being
part of the building envelope (Fig. 3f). Although voxels are small,
we reduce jaggedness by adding quadrilaterals to connect corners
of adjacent voxels on an off-axis (i.e., diagonal) building surface.
It is worth noting that the final proxy's outline will not necessarily
match that of the initial conservative building estimate.

Finally, the voxel normal is recomputed for each exterior
surface voxel by summing up the vectors from the voxel center
to each existing neighboring voxel, reversing the normal direction,
and normalizing the vector. Afterwards, the normals of all voxels
are averaged using a Gaussian weighting of the nearby voxel
normals. Succinctly, this is computed as:

ni ¼∑
j
γijnorm �∑

k
δjkðpj�pkÞ

 !
e�:pi�pj:

2
=2sn ð4Þ

where sn is the standard deviation of the desired smoothing
neighborhood, δjk ¼ 1 if vj and vk are adjacent, normðUÞ returns
the vector normalized version of its argument, and γij ¼ 1 if vi and
vj are within 2sn voxels of each other (e.g., 95% of the neighbors
that affect normal averaging are considered).
5. Surface graph cuts

In this section, we define surface graph cuts as well as describe
our multiple uses of them. Graph cuts can be used to solve
problems such as image stitching and image segmentation. To
solve the stitching problem, a 2D graph is created where each
vertex represents a pixel and edges connect adjacent pixels with a
Fig. 5. Surface graph cuts. (a) Voxels, (b) voxels showing graph vertices, (c) vertices, (d)
(g) vertices that see image 1 and image 2 are in green and are where graph cut will be a
figure legend, the reader is referred to the web version of this article.)
calculated weight (e.g., the color difference). The best stitching
possible will be the one that minimizes the visible transitions (i.e.,
the minimum cut through overlapping areas—Fig. 5h). We extend
this idea to not just define a flat image but instead pixels on the 3D
surface formed by the visible faces of the building, the interface
between building and ground surfaces, and the ground surface.
Conceptually, this can be viewed as covering the building with
pieces of cloth. Each image is a piece of a cloth that partially covers
the building. We try to cover the whole building with the least
noticeable transitions. The challenge is in choosing cloths and in
how to cut them.
5.1. Definition

A surface graph contains the visible faces of a volumetric
building proxy (Fig. 5a) and/or of the surrounding ground. Since,
for reconstruction performance reasons, we typically chose a voxel
size that projects to larger than one pixel, each exterior (i.e., visible
from the outside) voxel face is subdivided into SxS subfaces (in
Fig. 5b, S¼ 2) to ensure the final model is textured at near the
original image resolution despite using lower-resolution voxels. In
each visible face of each voxel, we place a SxS array of vertices
(Fig. 5c). Each vertex va is then connected to its neighbor vb by an
edge eab (Fig. 5d) to form the 3D graph where a graph-cut will be
applied. Thus, the surface graph G¼ fV ; Eg is composed of vertices
V ¼ fvag for aAS2NS (where NS are the faces of the voxels that are
in the surface) and edges feab : va and vb are djacentg.

Within each graph vertex va, our system stores
�

vert
ppl
qa: 3D position of the graph vertex,

�
 na: surface normal in the vicinity of the subface,

�
 ka : camera image id to use for this voxel,

�
 ca: current color of the graph vertex, and

�
 pa: potential color of the graph vertex.
A graph cut defines a smooth visual transition between two
adjacent surface patches. Each of the two patches is a subset of the
surface graph that has the same camera image id (Fig. 5e and
Fig. 5f). These two patches overlap in a region (Fig. 5g). The graph
cut process will find the trajectory, in this overlapping area, along
which the sum of the color differences between the corresponding
pixels of the two source camera images is minimal (Fig. 5h).
Origen Sink

Min Cut

ices with edges, (e) vertices seen by an image 1, (f) vertices seen by an image 2,
ied, and (h) a 2D graph cut. (For interpretation of the references to color in this



I. Garcia-Dorado et al. / Computers & Graphics 37 (2013) 896–910902
To avoid re-creating the graph for each texture, we create the
graph just once and update the weights, origin, and sink before
calling the min-cut procedure. To efficiently compute our large
min-cuts (e.g., O(106 vertices)), we use the augmenting path
algorithm of Boykov and Kolmogorov [4] which in practice is
significantly faster than other methods. To calculate the cost, we
perform color differences in perceptually linear LAB color space in
order to improve the perceived transition from one texture to
another and not just reduce the numerical color difference (i.e.,
reducing the Euclidian distance in this color space maps to a
perceptual improvement). We define the matching quality cost C
between two adjacent vertices s and t that belong to two different
patches P1 and P2 as

Cðs; t; P1; P2Þ ¼ jjP1ðsÞ�P2ðsÞjj þ jjP1ðtÞ�P2ðtÞjj ð5Þ
where PiðnÞ evaluates to a LAB color.

5.2. Building surface

We solve the graph cut problem for the building surfaces
resulting in the best seamlessly stitched texture-map over the
building surface (Fig. 6a). First, we compute which cameras are
visible from each graph vertex and choose the visible camera that
best samples the vertex's surface fragment. Since we have a very
large number of vertices (e.g., over 100,000 per building), we use
the graphics card to quickly determine which are visible from each
of a nearby set of camera viewpoints. For efficiency, we render
each voxel as a color-coded quadrilateral. From all the cameras k,
at position gk, that see a particular voxel and all its subfaces/
vertices, the camera ka for which ðgk�qaÞUna is maximal is chosen;
e.g., ka ¼ k.

Second, spatially-adjacent vertices with the same camera image
id are grouped into patches and sorted by size. To assist with
reducing the effect of image-to-image illumination changes and
calibration errors, we wish to have as few textures and graph cuts as
possible. Thus, we group same-image-id vertices. We also sort them
by area from largest to smallest because the largest group is mostly
likely to reference the best aerial image. Empirically, buildings are
stitched together from 3 to 10 different aerial images.

Third, our method assembles the surface graph cut starting
with the largest patch. Given the current processed vertices, the
system iteratively searches for the largest adjacent patch. An
overlapping frontier is defined within the two patches. Although
we could use the entire overlapping area to find the graph cut, we
limit the overlapping area so as to keep most of the current
processed vertices intact. Before calling min-cut, we update the
Fig. 6. Applications of surface graph cuts. (a) We show several patches over a building s
same camera while taking visibility into account (e.g., patch k is best observed by came
Another surface graph cut is defined and computed at the boundary of the building with
obtain a seamless and free-of-projected-buildings ground texture.
weight of each edge: the vertices that have been processed are
connected to the origin of the min-cut and their weights are set to
infinity (i.e., to not be cut), the edges of the vertices within the
transition region are updated with the cost C (between the current
color and the new potential one), and vertices that belong to the
potential texture but do not overlap, are connected to the sink and
their weights set to infinity (i.e., also to not be cut)—as in Fig. 5h.
Our system uses min-cut to search for the cut that minimizes the
visual image transition from one patch to another one. This step is
repeated iteratively until all vertices have an assigned camera
image id.

We choose this greedy approach over other global optimiza-
tions because (i) we do not try to minimize the transition between
vertices but between patches, (ii) a global (patch) optimization
would require an exhaustive/stochastic exploration, (iii) it is
guaranteed to converge, and (iv) it fits the requirement to keep
the number of patches as small as possible to minimize the
change-of-illumination issue.

5.3. Building-ground surface

Next, we solve the graph cut problem for connecting the building
surfaces to the ground surface (Fig. 6b). We extend the building
surface by generating a ring of voxels around the ground-level height
of the building such that the top most face of each extended voxel
coincides with the existing ground surface (i.e., the voxel center is
essentially slightly “below ground”). Even though the width of the ring
can be altered, we use a constant value for all our examples. For each
of the newly created voxels, we assign a camera image id to it. This is
done by finding the closest voxel on the building surface and copying
the camera image id to each of the S2 graph vertices of the new voxel.
To build the local ground surface, we use the same extended building
surface vertices but calculate their color using the improved ground
surface image (see next section).

We define a single building-ground graph (per building) with a
source node inside the footprint and the exterior ring of voxels
connected to a sink node. The graph cut computes the smoothest
transition from building wall textures to ground surface images.
The cut is constrained to lie on the ground surface so as to prevent
the building textures from changing.

5.4. Ground surface

To produce an improved top-down view ground surface image,
we stitch together the most downward facing aerial images
(Fig. 6c). In a manner similar to 2D texture and image synthesis,
urface. Each patch is obtained by grouping adjacent subfaces best observed by the
ra pk because pj is occluded). In this step, patch 3 and k are joined as in Fig. 5h. (b)
the ground surface. (c) Finally, a ground surface graph cut is also performed so as to



I. Garcia-Dorado et al. / Computers & Graphics 37 (2013) 896–910 903
the aerial images are pieced together sequentially in random order
—the order does not matter as long as the ground surface is fully
sampled. Since the graph of one ground image is very large (e.g.,
over a million graph vertices), only a subset of the overlap
region between the currently stitched image and a new image is
used.
A graph cut is calculated within the overlap region and stored.

To avoid the appearance of building surfaces projected onto the
ground outside of the building footprint, we make use of the building
proxies. We render each building proxy “in black” from each image's
center of projection and onto the aerial image. Then, we explicitly
prevent the graph cut from using, or “going through”, the building by
placing very large cost penalties when choosing to transition to a
Fig. 7. Volumetric reconstruction pipeline. We show example images from a volumetric
the extruded building footprint. (c) Per-voxel weighted photo-consistency variance (w
Vertical support added beneath each per-column selected voxel. (f) Final proxy after clu

Fig. 8. Building graph cuts & space carving. (a–d) Aerial picture, initial voxels, our textu
show Hausdorff distance (color map: green¼0 m, blue¼5 m, red¼10 m or more) betwe
space carving (see text).
building pixel. Although it is not guaranteed that all ground surface
points are observed, unobstructed, from an aerial viewpoint, in
practice it is possible. The final result is one single coherent,
occlusion-free top-down image of the city.
6. Implementation

Our system implementation includes several optimizations to
improve computation time, memory usage, and rendering perfor-
mance. In our dataset, one aerial image pixel projects to roughly
0.5 m. To reduce the proxy computation time, we typically choose
a voxel size of r¼2–4 m To compensate for this subsampling
building reconstruction. (a) OpenStreetMap input image. (b) Voxelized-version of
hite¼ low variance). (d) Selection of per-column voxel with lowest variance. (e)
stering and filtering.

red result, and our calculated model with no textures. (e) Ground truth and (f–h)
en ground truth and our proxy, graph-cut space carving, and manual-segmentation



I. Garcia-Dorado et al. / Computers & Graphics 37 (2013) 896–910904
during graph-cut based texturing, we subdivide voxel faces with
S¼ 4 to 8, thus returning to approximately one pixel resolution.
The graph cut computation time is increased but only in the
overlap regions.

Rather than having each building require access to multiple
textures, we create one custom texture atlas per building. This
design choice is also motivated by the fact that we cannot load all
the aerial images needed for a zone of the city into texture
memory, and even less all aerial images (e.g., all aerial images
amount to about 280 GB of raw image data which even with
texture compression cannot be loaded into texture memory).
A typical building's texture atlas requires 1 MB of space and
contains the entire pixel data needed for the building surface
graph cuts and the building-floor surface graph cuts. The ground
Fig. 10. Building reconstruction for various building sizes/complexities. For (a) small bu
aerial images, (middle) initial voxels, and (right) reconstruction error using Hausdorff
references to color in this figure legend, the reader is referred to the web version of th

Fig. 9. Texture mapping comparison. (a) Initial model. (b) Calculated proxy model.
Mismatch/discontinuities occur due to geometry/calibration errors that are in
general unavoidable in a dense city. Yet, (c) our surface graph cuts compensate
for inaccuracies and produce a continuous/coherent texturing, better than (d)
standard projective texture mapping
surface is composed of a grid of texture-mapped quadrilaterals.
All texture atlases and ground textures are loaded/unloaded on
demand by the system.

The system parameters are tuned once and are used the same
values for the reconstruction of all buildings. To use a completely
different set of images, it would take 10–30 min to manually find
the optimal values. The list of these parameters are: ce which is the
percentage height clustering error (Section 5.3): a low value makes
the buildings have too many levels, and a high value may cause
building details to be missed – as long as noise is not high, our
system is not sensitive to this value; r is the voxels size (Section
6.1) – it is a tradeoff between quality and speed (limited by the size
of a pixel in the image set); S is the voxel size subdivision for the
graph cut (Section 6.1) – the value can be calculated to ensure
maximum resolution; graph cut overlapping area (Section 6.2) and
building-ground ring width (Section 6.3), defines the region where
the graph cut will be performed. As long as these values are
reasonable our system is able to find a seamless transition.
7. Results and analysis

We have used our method and system for several large urban
examples. Figs. 7–18, supplementary figure page, and our video
visually show our results and analysis. Our system is implemented
in C/C++ and uses Qt/Boost/OpenCV. It runs on a Windows PC with
Intel Xeon 2.53GHz and NVIDIA GTX 580 graphics card. Our example
dataset consists of a grid of about 58 by 19 aerial viewpoints over
central Boston, MA (USA). At each viewpoint, a camera cluster takes
5616�3744 resolution images in five directions: one direction
straight-down, and 4 diagonally downward facing directions at about
90-degrees from each other when projected on the ground plane
(note: our methodmakes no assumption about the spatial and angular
distribution of the camera views). This totals 4667 images from pre-
calibrated viewpoints. The area has 1785 buildings assumed to lie on a
flat ground plane. We set the default initial building height to 35 m
(assumed residential zone height). Medium-height high-rise zones are
set to an initial building height of 125 m and tall high-rise zones are
set to initial overestimated building height of 250 m.
ilding (20 m), (b) medium size building (90 m) and (c) large building (180 m), (left)
distance (green¼0 m, blue¼3.5 m, red¼7 m or more). (For interpretation of the
is article.)



2m 4m 8m 16m

Fig. 11. Result comparison of different voxel sizes. From left to right, we increase the voxel size. When the size is too large, reconstruction fails. When the size is small, the
reconstruction presents similar results but excessive processing might occur. Hausdorff distance error: green¼0 m, blue¼3.5 m, red¼7 m or more. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Graph-cut space carving. To perform space carving, as in Fig. 8g, we use (a) an initial image, (b) perform automatic labeling (using the initial voxels as masks), and (c)
calculate a graph-cut segmentation.

I. Garcia-Dorado et al. / Computers & Graphics 37 (2013) 896–910 905
There are two user parameters, voxel size r and texture size per
voxel S. As described before r defines the voxels size and we found
empirically r¼ 2 or r¼ 4 is a good balance in time and reconstruc-
tion accuracy. The parameter S can be calculated from r to use the
maximum resolution of the images (user can decide to decrease it
to speed up the process).

There are two building height clustering parameters: the
threshold to discard the column variability and ce which defines
when to stop the clustering process. In our examples, the first
parameter is set to two times the standard deviation and the latter
to 0.3.

Finally, there are two more parameters regarding the surface
graph cuts that depend on how much the images overlap. In
our case, the amount of overlap between patches and the over-
lap region between building and ground textures are both set to
4 m.

Reconstruction time depends mostly on the voxel size r and
subdivision factor S. For our dataset, a “half resolution”
reconstruction (e.g., r¼ 4 and S¼ 4) takes 22 s per building on
average (10 h total time). A “full resolution” reconstruction (e.g.,
r¼ 2 and S¼ 4) consumes 109 s per building (51 h total time). The
timing includes local file I/O. A typical building has from 15 to 130
contiguous patches (of the same image id) before graph cut
application and 74 patches on average. A representative building
graph has about 150k vertices, 300k edges, 80k triangles before
grouping voxels for rendering and 5k triangles after grouping
voxels. The ground graph is at pixel resolution and the integrated
ground graph cut solution is stored in a grid of 4�4 12MP images
(so that the 16 tiles can fit in texture memory and leave space for
building texture atlases).

Memory requirements depend on the stage in the pipeline.
Building geometric reconstruction requires about 100 MB and can
be reduced to less than 1 MB per building after processing. Per
building graph cut processing requires less than 200 MB and the
atlas creation requires less than 850 MB (the requirement is higher
since the images are loaded at maximum resolution).



I. Garcia-Dorado et al. / Computers & Graphics 37 (2013) 896–910906
7.1. Building reconstruction

We show in Figs. 7–10 several examples and comparisons for
individual building modeling. Fig. 7 contains intermediate results
from the volumetric reconstruction process of an example build-
ing. Fig. 7a has a close-up of the OSM street map used as input.
Using an image processing algorithm, we find the building outline
and choose a default medium high-rise height in this zone. In
Fig. 7b, we show the initial volumetric approximation subdivided
into voxels. Fig. 7c shows the calculated per-voxel variance – it is
computed for all voxels but only the exterior voxels are visible.
Nevertheless, the photo-consistency of the upper roof structure is
evident. Fig. 7d shows the voxels with minimum variance per
voxel column, which begins to reveal the building structure. In
Fig. 7e, we also draw all the voxels beneath each selected
minimum variance voxel. Finally, Fig. 7f shows the proxy model
0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

H
ei

gh
t D

iff
er

en
ce

 (m
)

Building

Initial

Our Approach

Fig. 13. Reconstructed building height vs. ground truth. For 15 buildings, red bars
represent the difference between the initial model height and ground truth. The
blue bars indicate the difference between our refined model and ground truth. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 14. Graph-cut vs. projective texture mapping. Comparison of our graph cut algorithm
building expanded +10% in all directions with a random noise in the height map of 75 m
of 75 m (right). Our approach creates a seamless texture transition from facade to roof. I
all cases as can be seen by our results in the top row.
after clustering and filtering. This same process is repeated for all
buildings.

In Figs. 8a–d and 9a–c, we show the initial volumetric
approximation, the computed proxy model, and the textured
result after surface graph cut processing. Our approach is able to
produce reasonable proxies for this variety of building shapes.
For comparison, we show in Fig. 8e the ground truth (obtained by
manual modeling) and in Fig. 8f–h the accuracy of several
reconstructions is compared to ground truth using Hausdorff
distance: we show the reconstruction error of our proxy (Fig. 8f)
and two versions of space carving (Fig. 8g–h). As one can
observe, the reconstruction error for our proxy is small. To create
the first version of space carving, we use Graph Cut Segmenta-
tion [31] (as explained Fig. 12) to automatically segment the
foreground (i.e., the building in view) from the background
(i.e., everything else). For the second version, we manually
perform the segmentation using a painting tool – a task that it
is impractical for large-scale urban reconstruction (e.g., it took
between 1 h and 2 h to create the 25–50 masks of each building).
Nevertheless, despite perfect segmentation we found that in
general the obtained building reconstruction was inferior to
ours. This is due primarily to the relatively sparse image sam-
pling of each building and to the camera viewpoints being
“above” the city (e.g., a distant camera would theoretically see
the building more from the side but the view is most likely be
occluded by another building).

In Fig. 10, we present the reconstruction for buildings of
different sizes and complexities. Fig. 10a is a small building of
20 m height, 10b is a medium size building of 90 m height, and 10c
is a large building of 180 m height. For each building, we show its
picture, the initial proxy, and the Hausdorff distance between
refined proxy and ground truth. The absolute reconstruction error
is approximately constant regardless of the size of the building
although the defects are more visible in the small buildings. The
error would, of course, be larger if there are not enough images
that capture the building.

Fig. 11 shows the impact of voxel size r in the reconstruction
process. When the voxel size is too big our method is not able to
reconstruct the building. When the voxel size is small, the vertical
with projective texture mapping for the original building and two altered proxies:
(left) and collapsed �10% in all directions with a random noise in the height map

n fact, as compared to projective texture mapping, it reduces the ill visual artifacts in



Fig. 15. Building-ground surface graph cuts. (a) We show two close-ups of this building. (b–c) With projective texture mapping, there are discontinuities, missing content,
and building projections at the boundary between the building and the street. (d–e) Our building-ground surface graph cuts are able to find a smooth transition between the
two structures and produce a coherent and visually plausible appearance.

Fig. 16. Ground surface graph cuts. (a) A downward looking original aerial image in our dataset (note occluded roads). (b) Visual artifacts of using a naïve graph cut due to
ignored inter-building occlusions. (c) The result when using our ground surface graph cut method—our graph cut strategy found content from other images to fill-in road
pixels with building projections. (d) An image of the ground surface from Google Earth with no building proxies. (e) Our method using building proxies and the ground from
‘c'. (f) Using Google Earth imagery in projective texture mapping with buildings yields similar bad artifacts as in ‘b'.

I. Garcia-Dorado et al. / Computers & Graphics 37 (2013) 896–910 907
sampling is dense enough to find low variance points and the
reconstruction can be performed. However, if the value is too
small, excessive processing might occur.

Fig. 13 summarizes the error in reconstructed building height
as compared to ground truth (gathered from Wikipedia) for 15
well-known buildings. The average initial height error is 72%. Our
system reduced the building height error to an average error of 1–
3% with a 95% confidence interval.
7.2. Surface graph cuts

The impact of our surface graph cuts is observed in Figs. 9c–d,
14, 15 and 16. Fig. 9d contains the result of a naïve projective
texture mapping. The imprecision in the proxy model, camera
calibration, and the high-level of occlusion with neighboring
buildings makes it challenging to obtain a perfect texture-
mapping. Our additional use of (multiple) building surface graph



Fig. 17. Full dataset view. We show a bird's eye view of the textured 3D model produced by our system.

Fig. 18. Google Earth comparisons. We show several comparisons between Google Earth snapshots (a,c,e) and our result (b,d,f). Our method yields similar quality results in
most cases and thus opens up the door for the rapid creation of city-scale 3D models.

I. Garcia-Dorado et al. / Computers & Graphics 37 (2013) 896–910908
cuts is able to compensate for these imprecisions and produce a
visually-plausible approximation to the building's appearance
(Fig. 9c).

Fig. 14 contains a comparison of our graph cut algorithm with
projective texture mapping over the proxy. We compare the original
building (middle) with two altered proxies to see how the proxy error
affects the texture step. To create the altered proxies we expanded the
original building in all directions of the building +10% (left) and we
collapsed in all directions of the building �10% (right); in both cases
we added a random noise of 75m in the height map. As observed in
the top row, our approach manages to make less visible the error in
the transition in the top images. Moreover, our approach compensates
for the incorrect proxy and is able to eliminate the unwanted
appearance of content (e.g., sidewalk, bushes, and side walls). In this
example, it is accomplished by automatically extending the wall
texture to meet the roof texture, thus producing a transition with



I. Garcia-Dorado et al. / Computers & Graphics 37 (2013) 896–910 909
reduced visual artifacts – however, the solution while smooth might
not be physically correct. Our technique cannot always produce an
improvement (i.e., compare bottom right picture of Fig. 14c with the
bottom right picture of Fig. 14f). However, the smoothness of the
image transition is never worse than the original.

Fig. 15 contains a comparison of building-ground surface graph cuts.
For the building in Fig. 15a, b and c shows the result using our proxies
and standard projective texture mapping. By enabling the computation
of building-ground surface graph cuts, we are able to improve the
coherence at the interface of the building and ground surfaces, as is
seen in Fig. 15d and e. In particular, notice the discontinuity of the roads
and cars in Fig. 15b and the projection of the extra roof surface in
Fig. 15c – both of which are eliminated in our result.

Fig. 16 contains an example of the benefit of our ground surface
graph cuts. Fig. 16a contains the initial top-down view of an
example area (we choose a camera with a view direction that is
closest to the vertical axis). Observe how the building in the
middle occludes some of the nearby roads and buildings. Fig. 16b
contains the result of a naïve graph cut without taking into
account the buildings proxies – notice the disturbing visual
artifacts despite the attempt of minimizing neighboring pixel
differences with the graph cut. Fig. 16c shows the result of our
ground surface graph cut: buildings are not rendered on purpose
and the occluded road pixels are automatically filled-in using
content from other images. Fig. 16d contains an image of the
ground surface from Google Earth. Fig. 16e shows the visual
quality of our method using proxies and the ground surface from
‘c'. In contrast, using Google's ground images (Fig. 16f) yields
similar disturbing artifacts as in ‘b'.
7.3. Urban-scale reconstruction

We show in Figs. 1, 17 and 18, and supplemental figure page
several bird's eye views of urban-scale examples (i.e., a fragment
or portion of a city). Figs. 1 and 17 show views of Boston
reconstructed using our method. Fig. 18 shows some close-ups of
several city areas and the views using Google Earth, including its
crowd-sourced buildings. It is important to note that Google Earth
is using a different image set than ours though qualitatively similar
and its models are all manually created. Our method is able to
automatically produce good geometric proxies and to use surface
graph cuts to stitch together the aerial imagery yielding visually
effective texture mapping.
7.4. Limitations

Our approach is not, however, without limitations. First, our
2.5D assumption is applicable to most urban structures but not all
(e.g., bridges or very modern building structures). Our 2.5D
reconstruction currently only produces flat roofs – thus our
method can process a building with a slanted roof but it would
be simplified to a flat roof. Second, our method cannot robustly
resolve uncertainties introduced by shadows and/or by dark
building albedos. Our reconstruction method functions well only
if the chroma channel of the area is sufficiently strong. Third, the
sparse image sampling may prohibit certain geometric structures
from being accurately reconstructed using a volumetric approach.
While Google Earth renderings may be superior in some cases, our
results are automatic and thus can be viewed as the final product
or could be a first step for later refinement. Fourth, we have
assumed for our results a flat ground plane (that mostly holds
for Boston downtown). Fifth, our method focuses on the recon-
struction of “tall building areas” (e.g., financial districts) with high
density.
8. Conclusions and future work

We have presented an automatic urban-scale modeling
approach using volumetric reconstruction from aerial calibrated
images with surface graph-cut based texture generation. Our
method generates building proxies using voxel and color con-
sistency, exploits surface graph-cuts for recovering occluded
facades and ground imagery and for assembling a seamless
plausible texture mapping, and outputs 3D urban models
comparable to other public systems.

We list several future work items. First, an improvement is
to close the loop between graph cut calculation and proxy
computation; e.g., an iterative process going between refine-
ment of the proxy and re-computing graph-cuts. Second, to
handle slanted roof buildings we plan to refine the clustering
step to differentiate the case where the k-means clustering
presents a high error value. In that case we plan to find the
planes that best fit the distribution of points instead of applying
our current heuristic. Third, we have observed additional
information is present in the luminance channel of the images;
in particular, sharp building edges may appear distinctly. We
plan to exploit those edges to improve the proxy model. Fourth,
our clustering method finds the macro-structure of a building.
However, our reconstruction process captures additional struc-
tural detail (e.g., roof in Fig. 7e), as could a secondary wide-
baseline stereo method using our proxies. Fifth, additional
street-level imagery could be used to improve the facade
reconstruction. We intend to incorporate these tools to further
refine building shapes.
Acknowledgments

This work was funded in part by US National Science Founda-
tion (NSF) CBET-1250232 and NSF IIS-0964302.
Appendix A. Supporting information

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.cag.2013.07.003.
References

[1] Agarwal S, Snavely S, Simon I, Seitz S, Szeliski R, Building Rome in a day. In:
Proceedings of IEEE ICCV; 2009. p. 72–9.

[2] Allene C, Pons JP, Keriven R, 2008. Seamless image-based texture atlases using
multi-band blending. In: Proceedings of ICPR; 2009. p. 1–4.

[3] Bokeloh M, Wand M, Seidel H-P. A connection between partial symmetry and
inverse procedural modeling. ACM Transactions on Graphics 2010;29:4.

[4] Boykov Y, Kolmogorov V, Computing geodesics and minimal surfaces via graph
cuts. In: Proceedings of IEEE ICCV; 2003. p. 26–33.

[5] Ding M, Lyngbaek K, Zakhor A, Automatic registration of aerial imagery with
untextured 3D LiDAR models. In: Proceedings of IEEE CVPR; 2008. p. 1–8.

[6] Frahm JM, Georgel P, Gallup D, Johnson T, Raguram R, Wu C, et al., Building
Rome on a cloudless day. In: Proceedings of ECCV; 2010. p. 368–81.

[7] Frueh C, Sammon R, Zakhor A, Automated texture mapping of 3D city models
with oblique aerial imagery. In: Proceedings of 3DPVT; 2004. p. 396–403.

[8] Gallup D, Pollefeys M, Frahm JM, 3D reconstruction using an n-layer height-
map. In: Proceedings of DAGM; 2010. p. 1–10.

[9] Gao Z, Nocera L, Neumann U, Fusing oblique imagery with augmented aerial
LiDAR. In: Proceedings of ACM SIGSPATIAL; 2012. p. 426–9.

[10] Goesele M, Snavely N, Curless B, Hoppe H, Seitz S, Multi-view stereo for
community photo collections. In: Proceedings of IEEE ICCV; 2007. p. 1–8.

[11] Golovinski A, Kim VG, Funkhouser T, Shape-based recognition of 3D point
clouds in urban environments. In: Proceedings of IEEE ICCV; 2009. p. 2154–61.

[12] Grzeszczuk R, Kosecka J, Vedantham R, Hile H, Creating compact architectural
models by georegistering image collections. In: Proceedings of 3DIM; 2009. p.
1718-1725.

[13] Kutulakos KN, Seitz SM. A theory of shape by space carving. International
Journal of Computer Vision 2000;38(3):199–218.

http://dx.doi.org/10.1016/j.cag.2013.07.003
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0005
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0005
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0010
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0010
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref1
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref1
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0015
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0015
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0020
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0020
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0025
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0025
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0030
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0030
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0035
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0035
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0040
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0040
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0045
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0045
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0050
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0050
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0055
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0055
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0055
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref2
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref2


I. Garcia-Dorado et al. / Computers & Graphics 37 (2013) 896–910910
[14] Kwatra V, Schodl A, Essa I, Turk G, Bobick A. Graph-cut textures: image and
video synthesis using graph cuts. ACM Transactions on Graphics 2003;22
(3):277–86.

[15] Lafarge F, Keriven R, Bredif M, Vu HH, Hybrid multi-view reconstruction by
jump-diffusion. In: Proceedings of IEEE CVPR; 2010. p. 350–57.

[16] Lafarge F, Mallet C, Building large urban environments from unstructured
point data. In: Proceedings of IEEE ICCV; 2011. p. 1068–75.

[17] Lazebnik S, Furukawa Y, Ponce J. Projective visual hulls. International Journal
of Computer Vision 2007;74(2):137–65.

[18] Lefebvre S, Hornus S, Lasram A. By-example synthesis of architectural textures.
ACM Transactions on Graphics 2010;29:4.

[19] Lempitsky V, Ivanov D, Seamless mosaicing of image-based texture maps. In:
Proceedings of IEEE CVPR; 2007. p. 1–6.

[20] Liao HH, Lin Y, Medioni G, Aerial 3D reconstruction with line-constrained
dynamic programming. In: Proceedings of IEEE ICCV; 2011. p. 1855–62.

[21] Mathias M, Martinovic A, Weissenberg J, Gool LV, Procedural 3D building
reconstruction using shape grammars and detectors. In: Proceedings of
3DIMPVT; 2011. p. 304–11.

[22] Matusik W, Buehler C, Raskar R, Gortler S, McMillan L, Image-based visual
hulls. In: Proceedings of ACM SIGGRAPH; 2000. p. 369–74.

[23] Montenegro A, Carvalho P, Gattass M, Velho L, Adaptive space carving. In:
Proceedings of 3DPVT; 2004. p. 199–206.

[24] Müller P, Zeng G, Wonka P, Van Gool L. Image-based procedural modeling of
facades. ACM Transactions on Graphics 2007;26(3):85.

[25] Musiaski P, Wonka P, Aliaga D, Wimmer M, Gool L, Purgathofer W, A survey of
urban reconstruction. In: Proceedings of Eurographics STARs; 2012. p. 28.

[26] Nan L, Sharf A, Zhang H, Cohen-Or D, Chen B. Smartboxes for interactive urban
reconstruction. ACM Transactions on Graphics 2010;29(4):93.

[27] Park JP, Lee KH, Lee J. Finding syntactic structures from human motion data.
Computer Graphics Forum 2011;30(8):2183–93.

[28] Pierre S, Martino P, Georgios O, Mathematical morpholog and its applications
to image and signal Processing. In: Proceedings of ISMM; 1994. p. 484.

[29] Pollard T, Mundy JL, Change detection in a 3D world. In: Proceedings of IEEE
CVPR; 2007. p. 1–6.

[30] Poullis C, You S, Photorealistic large-scale urban city model reconstruction. In:
Proceedings of IEEE TVCG; 2009. p. 654–69.
[31] Schmidt FR, Toppe E, Cremers D, Efficient planar graph cuts with applications
in computer vision. In: Proceedings of IEEE CVPR; 2009. p. 351–56.

[32] Shalom S, Shamir A, Zhang H, Cohen-Or D. Cone carving for surface
reconstruction. ACM Transactions on Graphics 2010;29(6):150.

[33] Shen C, Huang S, Fu H, Hu S, Zhou Q, Adaptive partitioning of urban facades.
In: Proceedings of ACM SIGGRAPH; 2011. p. 184–94.

[34] Sinha SN, Pollefeys M, Multi-view reconstruction using photo-consistency and
exact silhouette constraints: a maximum-flow formulation. In: Proceedings of
IEEE ICCV; 2005. p. 349–56.

[35] Stava O, Benes B, Mech R, Aliaga D, Kristof P. Inverse procedural modeling by
automatic generation of L-systems. Computer Graphics Forum 2010;29
(2):665–74.

[36] Taillander F, Automatic building reconstruction from cadastral maps and aerial
images. In: Proceedings of CMRT; 2005. p. 105–10.

[37] Teboul O, Kokkinos I, Simon L, Koutsourakis P, Paragios N, Shape grammar
parsing via reinforcement learning. In: Proceedings of IEEE CVPR; 2011. p.
2273–80.

[38] Toshev A, Mordohai P, Taskar B, Detecting and parsing architecture at city
scale from range data. In: Proceedings of IEEE CVPR; 2010. p. 398–405.

[39] Tran S, Davis L, 3D surface reconstruction using graph cuts with surface
constraints. In: Proceedings of ECCV; 2006. p. 219–31.

[40] Vanegas C, Aliaga D, Benes B, Building reconstruction using Manhattan-world
grammars. In: Proceedings of IEEE CVPR; 2010. p. 358–65.

[41] Vogiatzis G, Torr P, Cipolla R, Multi-view stereo via volumetric graph-cuts. In:
Proceedings of IEEE CVPR; 2005. p. 391–98.

[42] Wang L, Neumann U, A robust approach for automatic registration of aerial
images with untextured aerial LiDAR data. In: Proceedings of IEEE CVPR; 2009.
p. 2623–30.

[43] Xiao J, Fang T, Zhao P, Lhuillier M, Quan L. Image-based street-side city
modeling. ACM Transactions on Graphics 2009;28(5):114–26.

[44] Zheng Q, Sharf A, Wan G, Li Y, Mitra N, Cohen-Or D, et al. Non-local scan
consolidation for 3D urban scenes. ACM Transactions on Graphics 2010;29
(4):94–103.

[45] Zhou Q, Neumann U, 2010. 2.5D dual contouring: a robust approach to
creating building models from aerial LiDAR point clouds. In: Proceedings of
ECCV; 2010. p. 115–28.

http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref3
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref3
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref3
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0060
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0060
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0065
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0065
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref4
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref4
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref5
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref5
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0070
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0070
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0075
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0075
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0080
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0080
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0080
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0085
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0085
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0090
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0090
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref6
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref6
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0095
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0095
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref7
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref7
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref8
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref8
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0100
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0100
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0105
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0105
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0110
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0110
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0115
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0115
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref9
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref9
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0120
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0120
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0125
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0125
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0125
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref10
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref10
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref10
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0130
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0130
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0135
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0135
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0135
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0140
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0140
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0145
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0145
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0150
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0150
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0155
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0155
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0160
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0160
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0160
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref11
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref11
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref12
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref12
http://refhub.elsevier.com/S0097-8493(13)00113-1/sbref12
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0165
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0165
http://refhub.elsevier.com/S0097-8493(13)00113-1/othref0165

	Automatic urban modeling using volumetric reconstruction with surface graph cuts
	Introduction
	Related work
	Overview
	Volumetric building proxy
	Appearance editing
	Variance calculation
	Height clustering

	Surface graph cuts
	Definition
	Building surface
	Building-ground surface
	Ground surface

	Implementation
	Results and analysis
	Building reconstruction
	Surface graph cuts
	Urban-scale reconstruction
	Limitations

	Conclusions and future work
	Acknowledgments
	Supporting information
	References




