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We describe a guided proceduralization framework that optimizes geometry processing on architectural 

input models to extract target grammars. We aim to provide efficient artistic workflows by creating pro- 

cedural representations from existing 3D models, where the procedural expressiveness is controlled by 

the user. Architectural reconstruction and modeling tasks have been handled as either time consuming 

manual processes or procedural generation with difficult control and artistic influence. We bridge the gap 

between creation and generation by converting existing manually modeled architecture to procedurally 

editable parametrized models, and carrying the guidance to procedural domain by letting the user define 

the target procedural representation. Additionally, we propose various applications of such procedural 

representations, including guided completion of point cloud models, controllable 3D city modeling, and 

other benefits of procedural modeling. 
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. Introduction 

The recent popularity of 3D environments and models for aug-

ented and virtual reality environments puts high expectations on

he complexity and quality of such assets, with a desire to repli-

ate the real world. Urban planning, remote sensing, and 3D recon-

truction researchers have been focusing on bringing the digitized

nd physical world together, with an emphasis on urban models. In

arallel to the demand for city-scale 3D urban models, the avail-

bility of 3D data acquisition systems and image-based solutions

ave also increased. Although using the 3D data obtained from dif-

erent sources such as images, laser scans, time-of-flight cameras,

nd manual modeling databases is an option, the results of these

pproaches usually do not expose an easily modifiable model with

tructural parts and thus obstructs architectural reconstruction and

odeling tasks. 

Aiming for automatic generation, procedural representations are

ighly parameterized, compact, and powerful, especially in urban

omain [1,2] . The pioneering work of Parish and Mueller [3] , and

ubsequent urban modeling papers (e.g., see surveys [4,5] ) fo-

used on forward and inverse procedural modeling approaches.

hile procedural modeling (PM) accomplishes providing architec-
� This article was recommended for publication by Hao (Richard) Zhang. 
∗ Corresponding author. 
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ural structures of required detail, creating complex realistic build-

ng templates needs time, extensive coding, and significant domain

xpertise. Inverse procedural modeling (IPM) addresses the short-

omings of procedural modeling by controlling and adapting the

rocedural generation to a given target model [6,7] . In this sense,

PM can be regarded as an optimization problem over the space of

erivations, to guide procedural modeling. 

We want to carry this problem one step further by (1) removing

he dependency on the space of derivations, and (2) switching the

ontrol domain. Proceduralization [8] takes care of the first moti-

ation, by converting existing geometric models into a procedural

epresentation, with no a priori knowledge about the underlying

rammar or components. 

However, as this procedural representation aims to serve as

he minimal description of the model, evaluating for the best de-

cription (e.g., the description with the best expressiveness) re-

uires determining its Kolmogorov complexity, which is uncom-

utable. Our solution is to let the user guide the system to find

he best grammar per use case. This also handles the second moti-

ation by enabling the user to control the characteristics of the ex-

racted grammar. In other words, inverse procedural modeling en-

ances procedural modeling by producing the best instance, while

uided proceduralization enhances proceduralization by producing

he best grammar. 

In this paper, we focus on guided proceduralization for 3D ur-

an modeling and reconstruction of architectural meshes, building

oint clouds, and textured urban areas. Our framework provides

https://doi.org/10.1016/j.cag.2018.05.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2018.05.013&domain=pdf
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Fig. 1. Guided proceduralization. (a) The input model of Taipei 101 , (b–e) colored 

procedural elements ordered by increasing target parameter values (e.g., number of 

components N c and number of similarity groups N l ). As the user specification on 

the target grammar changes, different grammars of the model are revealed. Insets 

indicate representative instances of rules and terminals. 
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a feedback loop which under user control seeks out the hidden

high-level hierarchical and structural information coherent with

the target specification and the application objectives ( Fig. 1 ). Al-

though guided procedural modeling approaches [9,10] , and proce-

duralization methods [11,12] have been introduced, we propose the

first approach to guide the proceduralization process using speci-

fications of a target grammar. We start with definitions and func-

tions for guided proceduralization, then introduce geometry pro-

cessing and grammar extraction steps of generalized procedural-

ization in the controlled setting. Afterwards, we demonstrate ap-

plications of the obtained grammars in completion, reconstruction,

synthesis, modeling, querying, simplification, and rendering. 

Altogether, our main contributions include: 

• a generalized guided proceduralization framework that extracts

procedural representations across different 3D data types, 
• an optimization process to evaluate and diversify the grammars

output by our proceduralization, 
• a feedback loop to enable guidance to control proceduraliza-

tion for obtaining the most expressive grammar and for various

aims, and 

• several applications of the guided proceduralization framework

for editing and merging various models. 
Fig. 2. Evolution of procedural modeling. Differences between controlled and inverse proce

modeling with an input grammar G and output geometric model M . T M indicates a geome

instance (grammar elements, pattern examples, etc.). ∗opt indicates that it is optimized for
Using our controlled proceduralization framework, we have ex-

racted procedural models from complex polygonal models (i.e.,

urning Torso, Taipei 101, Saint Basil’s Cathedral), from point

louds of architectural scenes (i.e., Staatsoper Hannover, Wilhelm

usch Museum), and from textured massive city models (i.e.,

80 km 

2 metropolitan area of New York with more than 40 0 0

uildings, San Francisco, Chicago). We have used these models to

reate more complete reconstructions, controlled procedural gen-

ration, and easier, efficient, and structure-aware urban modeling. 

. Related work 

.1. Procedural modeling 

Procedural modeling P generates a model M from a given gram-

ar G ( P (G ) = M). Starting with the pattern language of Alexander

t al. [13] , PM has been utilized by many approaches [14–17] in ur-

an settings. More PM approaches are surveyed by Smelik et al. [4] .

owever, coding procedural details is a cumbersome process need-

ng domain expertise and codification skills. Interactive editing sys-

ems, such as Lipp et al. [18] and CityEngine, have been added on

op of existing procedural systems to facilitate grammar editing.

hese can be considered as the first guidance solutions for proce-

ural editing systems. 

.2. Inverse procedural modeling 

In contrast, inverse procedural modeling discovers the set of pa-

ameters, probabilities, and rules from a given grammar to gener-

te a target instance [5] ( P (G, T M 

) = M opt as per the second row of

ig. 2 ). Initial works provided semi-automatic and automatic build-

ng (e.g., [19–21] ) and facade solutions (e.g., [22–26] ). Given some

xemplar derivations and labeled designs, Talton et al. [27] use

ayesian induction to capture probabilistic grammars. Similarly,

onte Carlo Markov Chain (MCMC) optimization is used to dis-

over the optimized parameters for a target instance of a proce-

ural representation of buildings (Talton et al. [28] and Nishida

t al. [29] ) and cities (Vanegas et al. [30] ). Most of those solutions

upport synthesizing similar models that best fit the given guid-

nce. However they rely on pre-segmented components, known

rammars, and known layouts to generate the derivation space.

his is an important drawback, since it constrains reconstruction

nd modeling to the limited space of the initial grammar. In con-

rast, we want to carry the guidance from the geometric space to

he procedural space, thus the desired control is defined rather than

he desired model . 
dural modeling approaches with references. P represents the process of procedural 

tric target instance (exemplar, silhouette, etc.), and T G indicates a procedural target 

 “the most representative of the target”. 
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Fig. 3. Pipeline. Our system optimizes parameter values � of the proceduraliza- 

tion function P to generate a grammar G that fulfills user-provided grammar values 

�∗ . Blue path shows traditional proceduralization pipeline and orange path shows 

guided proceduralization pipeline. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Evaluation of proceduralization. The input model is proceduralized using 

some input parameter set �. The resulting grammar is evaluated to obtain grammar 

specification values �. 
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.3. Proceduralization 

Proceduralization starts with only geometry and no knowledge

n the grammar ( P −1 (M) = G as per the third row of Fig. 2 ). Some

mage based techniques use deep learning for extracting simple

nd-or template grammars [31] , or generative schemes [32] . In ur-

an scenes, Bokeloh et al. [33] use partially symmetric structures

o search for transformations that map one partition to another

ased on r -similar surfaces. It enables building model synthesis

hough not formally yielding a procedural model. For point clouds,

oshev et al. [21] segment a building into planar parts and join

hem using a hierarchical representation that separates roof, rest

f the building, and non-building structures. Demir et al. [11] fo-

us on point clouds, and user control is explicit in the geomet-

ic domain at the semi-automatic segmentation step. Martinovic

t al. [6] use Bayesian induction to obtain facade grammars, and

alojanov et al. [34] divide the input structure into microtiles to

etect partial similarities. Demir et al. [12] introduces procedural-

zation, automatically creating a set of terminals, non-terminals,

nd rules (blue path in Fig. 3 ). Although evaluating the expressive-

ess of this automatic encoding is uncomputable (see Section 6.1 ),

he expressiveness of a fixed grammar per model is still limited

ith regard to the modeler’s use case. Thus, their approach has

maller tolerance for noise, directed by the one-pass segmentation

nd labeling, is not flexible for different use-cases, works only on

riangular models, and does not allow user control (for the gram-

ar generation). 

.4. Guided proceduralization 

In contrast, the key motivation behind our research is that, if

e have some insights about the desired grammar, we can evalu-

te the proceduralization outputs to suggest candidate grammars.

his creates a pioneering framework that is the first to provide

uided proceduralization for synthesis of arbitrary 3D architec-

ural structures ( P −1 (M, T G ) = G opt as per the last row of Fig. 2 ).

s guidance in procedural modeling enables finding the best in-

tance , guidance in proceduralization enables finding the best gram-

ar . This guidance enables the procedural representation to be op-

imized by user specification (orange path in Fig. 3 ), so that the

esulting grammars are robust to model noise, flexible for different

se cases, independent of segmentation and labeling, and supports

ore creative processes. In summary, we would like the artists to

efine the desired control, instead of the desired structure, while
till being able to derive procedural representations from existing

odels based on their use cases. 

. Definitions and functions for guidance 

Our control loop optimizes the internal parameters of the pro-

eduralization process to generate a procedural description (e.g.,

 grammar) that meets a user-provided set of grammar specifi-

ation values. More precisely, proceduralization function P oper-

tes on a set � = { θ1 , θ2 , . . . , θm 

} of m input parameter values

nd an input model M to produce a grammar G . The grammar is

hen assessed by an evaluation function E which produces a set

= { γ1 , γ2 , . . . , γn } of n grammar specification values (or simply

rammar values). Each parameter value and grammar value should

e within a range of [ θm min 
, θm max ] and [ γn min 

, γn max ] , respectively.

ymbolically, we can define the relationship of input parameters

o the target grammar values as follows in Eq. (1) , which is also

epicted in Fig. 4 . 

= E(G ) = E(P (�, M)) = (E ◦ P )(�, M) (1)

Intuitively, guided proceduralization frees grammar discovery 

rom any dependency to the underlying segmentation and gram-

ar discovery. There is no concept of “good segmentation”, “dif-

erent tessellations”, “noisy point clouds”, “vertex displacements”,

ecause the whole idea of this paper is to let the optimization find

he best internal parameters towards the target grammar specifica-

ion. Previous proceduralization approaches failed to achieve that,

ecause evaluating grammars for expressiveness is uncomputable.

owever, because we are provided with an estimate of “the best

rammar” by the user, we keep optimizing the whole procedural-

zation process (including segmentation, labeling, pattern analysis,

tc.) to converge for the specification. 

.1. Target grammar specification 

Our optimization objective is to let the user specify the de-

ired grammar values and then to automatically generate a gram-

ar whose actual grammar values are close to the specified ones.

ence, we define the set �∗ = { γ ∗
1 
, γ ∗

2 
, . . . , γ ∗

n } to be the user-

pecified target grammar values. Then, our method computes a set

f parameter values �′ that leads the proceduralization function P

o produce a grammar G 

′ exhibiting grammar values closest to the

arget values �∗. In other words, we seek a set of parameter values
′ such that ( E ◦P )( �′ , M ) → �∗. The equality is replaced by an ar-

ow to indicate that we want the convergence, as absolute equality

ay not be satisfied for every case. The overall error is encapsu-

ated in the function �( �′ , �∗) and the computational goal is to

nd values of �′ that minimizes �. Fig. 5 gives three examples

or a toy facade model, where the user defines different grammar

alues to expose different grammars. 

.2. Error function approximation 

Our control loop requires calculating ( E ◦P )( �, M ) for a large

umber of different values for �. Prior inverse procedural mod-

ling and early proceduralization systems use predefined numbers

or � and typically are not set up to generate such a large number

f productions at reasonable rates. Hence, we simplify the ( E ◦P ) by
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Fig. 6. Shape processing. The effect of reparameterization of �′ based on user- 

specified grammar values �∗ is illustrated on the segmentation on a set of compo- 

nents with six similar but irregular shapes. The colors indicate the similarity groups 

l j . As an example, the target grammar values for row 4 are “3 component types and 

12 components”, ending up segmenting the set to 5 orange, 4 blue, and 3 light or- 

ange components. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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a function f ( �) that does not output the grammar but generates

the set ˆ � = { ˆ γ1 , . . . , ˆ γn } that approximate the grammar values. The

function f is a good approximation of ( E ◦P ) if | � − ˆ �| < ε where

ε is a small positive constant, meaning that each grammar value
ˆ �n generated by the approximator should be close enough to the

corresponding actual grammar value �n generated by forward pro-

ceduralization. Thus, given a good approximation f of the procedu-

ralization system and grammar evaluation ( E ◦P ), our optimization

goal is to find sets of parameter values �′ such that f ( �′ ) → �∗. 

4. Guided proceduralization framework 

In the proceduralization framework G = P (M) ( Fig. 3 , blue

path), the aim is to obtain the underlying grammar G that is rep-

resentative of the input model M . The input to this pipeline can

be images, meshes, point clouds, and almost any content that can

be categorized. The granularity of the content for urban procedu-

ralization can vary from facades, to buildings, and to entire cities.

Also, the input can be some specific elements of an urban area

such as parcels, roads, buildings, or a full city. The proceduraliza-

tion pipeline is divided into two main steps: geometry processing

and grammar discovery. 

For guided proceduralization ( Fig. 3 , orange loop), the procedu-

ralization function is parametrized such that different grammars

can be extracted based on different parameters (i.e., G = P (�, M) ).

Those grammars do not only differ by the composition of the rules

and rule parameters, but the terminals and non-terminals also vary

between different grammars, as the decomposition changes. The

parametrization is carried over to the two main stages of procedu-

ralization. Shape processing S(�S , M) = C in turn is subdivided into

segmentation and labeling, while grammar discovery D (�D , C) = G

is further separated into hierarchy construction and pattern extrac-

tion. We can re-write the proceduralization framework in detail

as: 

G = P (�, M) = D (�D , C) 

= D (�D , S(�S , M)) 

= (D ◦ S)(�, M) (2)

4.1. Geometry processing 

Our geometry processing step S ( �S , M ) detects the repetitive

nature in the underlying buildings, and uses that to compute a

segmentation and perform a similarity labeling. The input model

M will be segmented into components c i , which are the smallest
Fig. 5. Optimizing for target grammars. Minimization of the error function �, finds 

the optimum set of input parameters �′ that generates �′ which is the closest 

grammar specification to the user defined set �∗ . As depicted, each �∗ ends up gen- 

erating a different grammar G ′ , unlike traditional proceduralization. The first row 

has window panes as the terminals, windows as rules. The second row has a win- 

dow as a terminal, and the last row has a double window with varying orientation, 

as a terminal. Example rules per grammar are also given per input �∗ . 
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eometric units of decomposition, also candidates to become ter-

inals of the grammar. Each component will have a correspond-

ng label l j , where the label is the indicator of the similarity group

hat the component belongs to. Thus, the full set of components is

 = { (c 1 , l 1 ) , . . . , (c N c , l N l ) } (where N l ≤ N c ). Using the control loop,

ifferent C s are produced depending on the �∗ values (notice the

ifferent set of components and patterns found for the middle sec-

ion of the tower in the top right corner of Fig. 11 ). 

.1.1. Parametrized shape segmentation 

Our formulation for S depends on the type of input data

 = { t 1 , . . . , t N m } . Prior segmentation/labeling work focuses on sin-

le data types and exploiting geometric similarities [35] , analo-

ies with the exact-cover problem [36] , image contours [20] ,

re-defined semantics [21,23] , or geometric primitives [1,37] . The

forementioned approaches do not organize the repetitions into

atterns, use the patterns for modeling, or provide a way to con-

rol pattern granularity selection. 

In contrast, our shape processing method extends prior work

y adapting it to our guided proceduralization framework, by in-

roducing weights as parameters to balance collective component

roperties such as number of components and number of similar-

ty groups. As shown in Fig. 6 , various (simplified) grammar values

nd up generating several versions of segmentation and labeling of

he same set. Here, �∗ only consists of the alphabet size and the

omponent size, and components are color-coded by their labels. 

.1.2. Segmentation formulation 

Our approach combines segmentation and labeling in a coupled

lgorithm, where the model is regarded as the combination of all

lements of all labels ( Eq. (3) ), and shape processing outputs the

omponents and their labels ( Eq. (4) ). 

 = �| M| 
i 

t i = �N l 
j 
�N c 

k 
(t i , l j ) | t i ∈ c k (3)

(M, �S ) = { (�| c 1 | 
k 

t k , l 1 ) , . . . , (�
| c N c | 
k 

t k , l N l ) } (4)

ur parameter value vector contains similarity-metrics for the

omponents, namely �S = { θgeo , θtop , θden , θdir , θnum 

} for geometric

imilarity, topological similarity, density, orientation, and number

f elements, respectively. 

.1.3. Input dependent implementation 

Although the metric is unified into one representation, the seg-

entation method and the elements in the parameter value vec-

or varies based on the data type of t i . Our framework collec-

ively optimizes over these methods, where traditionally hand-

uned parameters are replaced by optimization space parameters
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Fig. 7. Split tree and grammar. (a) Components of the example facade: p as a windowpane and W as a window. q 1 is the split point to create the invisible blue node, and q 2 
is the second split to obtain w from the blue node. (b) initial and final split tree and corresponding rules: p recognized as a terminal and W recognized as a non-terminal, 

meanwhile rule parameters are discovered, and (c) the final grammar with a facade rule and a window rule. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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pecific to the input type. In all cases, we will use our overall op-

imization framework to compute the parameter values �′ 
S 

that

est yields a grammar with the desired values �∗, expressed as

(E ◦ (D ◦ S))(�′ 
S 
, �′ 

D 
, M) → �∗. 

4.1.3.1. Triangular models 

For example, for t i as triangles, the similarity parameter θ geo is

efined as a weighted sum of similarity of convex-hulls and av-

raged similarity of triangles between two components. θnum 

be-

omes number of initial component seeds for triangles. θdir be-

omes the similarity of orientations by a deviation of normal vec-

ors. The segmentation methodology also changes based on the

ata type. For triangular meshes, we use synchronous volume

rowing [36] to establish a segmentation and similarity detection

imultaneously, where the algorithm parameters are explored by

he optimization implicitly. 

4.1.3.2. Point clouds 

For t i as points, geometric similarity metric θ geo is defined as

he mean of correspondence distances normalized by point den-

ity, after an iterative closest point (ICP) [38] alignment between

omponents, because correspondence distances without aligning

he two components result in incorrect measurements for θ geo . For

he segmentation of point clouds, we use a loop of plane fitting

nd Euclidian clustering [39] , where θnum 

represents the iteration

ount for the expected number of segments. θden defines the min-

mum density of components, which is also instrumental in clean-

ng the point clouds during segmentation phase. 

4.1.3.3. Textured meshes 

Lastly, for t i as textured polygons, θ geo is defined as a simi-

arity vector of components with multiple geometric and visual

eatures (dimensions, albedo, color patterns, etc.). The segmenta-

ion incorporates rendering components in different main direc-

ions and measuring the rate of change for finding the cut planes

t significant jumps. The components between the cut planes are

e-rendered for extracting and clustering their feature vectors [40] .

n this process, θnum 

controls the camera displacement step size. 

.2. Grammar discovery 

The second step of the pipeline organizes the segments c i and

heir labels l j into a hierarchy, which we will call an instance tree

 = { (v 0 , ∅ ) , (v 1 , e 1 ) , . . . , (v N v , e N v ) } , where v i denotes a tree node

with v 0 being the root), and e i denotes the incoming edge to node

 i . This hierarchy is needed to encode the relations of c i and to

iscover the underlying rules. It also encodes an actual derivation
nstance thus can be treated as an early procedural representation

f the model. After the hierarchical structure is constructed, it is

nalyzed for patterns and for the distribution of the components

o finally extract the grammar G . 

.2.1. Grammar definition 

While G can be a shape grammar or an L-system, we define a

plit grammar of the following form: 

G = { N, �, R, ω} , where (5) 

N = { v i | (v i , _ ) ∈ T ∧ fanout (v i ) 	 = 0 ∧ (v i , _ ) ∈ C} 
= { v i | (v i , _ ) ∈ T ∧ fanout (v i ) = 0 ∧ (v i , _ ) ∈ C} 

R = { (v i , e j , v j ) | (v j , e j ) ∈ T ∧ v i ∈ anc (v j ) ∧ { (v i , _ ) , (v j , _ ) } ⊂ C}
ω = { v 0 | (v 0 , ∅ ) ∈ T ∧ (v 0 , _ ) ∈ C} 

here N is the set of non-terminals (root nodes of subtrees in T

ach representing a rule), � is the set of terminals (leaves), R is the

ollection of rules containing triplets of the application node v i ,
he actual rule on the edges e j and the produced node v j (e.g., all

plit operations encoded in the edges e j from a subtree root node

 i ), ω is the starting axiom (root node), fanout (v i ) is the number

f edges from node v i to its children, v x ∈ anc (v i ) means node v x 
s an ancestor of node v i , and _ denotes a “don’t care” edge, node,

r label. 

Fig. 7 depicts the grammar elements and some relations be-

ween the tree, the instance, and the grammar. The example fa-

ade in (a) contains six windows and four windowpanes per win-

ow. During the initial tree construction, the windows are pro-

uced from the wall (root) by two split operations. For the first

indow, R is split from q 1 to obtain the blue intermediate node,

nd the blue node is split from q 2 to obtain the window node W 1 .

aving no offset from the window, each window pane is produced

rom the window with one split operation. Leaf nodes become can-

idates for �, and subtree roots become candidates for N , because

hey mostly contain geometry. Intermediate nodes are embedded

s individual split operations as a part of a rule. After we process

he instance tree, we converge on the pattern structure to be dis-

overed as the second subtree in (b), with window pattern param-

ters of “2 horizontal repetition with x spacing and 3 vertical repe-

ition with y spacing” and windowpane parameters of “2 horizon-

al and 2 vertical repetitions with 0 spacing”. Then those pattern

arameters are generalized and exported as the grammar follow-

ng the syntax introduced above. 
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Fig. 8. Grammar discovery. Granularity of recognized rules R changes based on spec- 

ified grammar values �∗ . Extracted rules generate different derivations. The rule 

format is R = [ repet it ion ][ spacing][ rotat ion ][ represent ati v einst ance ] . 

c  

i  

m  

p

4

 

r  

{  

a  

e  

f  

s  

m  

s  

w  

m  

i  

s

4

 

t  

�  

t  

i  

g  

t  

u

5

 

O  

G  

(  

e  

p  

b  

i  

u  

o  

s

We define the grammar specification values as � =
{ γalp , γnon , γ fan , γrep } which are alphabet size | �|, number of

non-terminals | N |, average repetitions per pattern 

¯| R i | , and average

number of components | C |, respectively. 

4.2.2. Tree Definition 

The components in the set C of the previous section are rep-

resented by their bounding boxes BB ( c i ) and all elements t k ∈ c i 
(e.g., triangles, points, textured polygons, etc.) are placed relative

to the coordinate space defined by BB ( c i ). We start with putting

all c i into an instance tree T based on volumetric containment ( Eq.

(6) ), based on point splits. The components are processed by de-

creasing size, and the tightest containing node is selected as the

parent at each step. Thus, a component can only be completely

inside one component, preventing T from becoming a DAG. Each

c i corresponds to a node v i and each edge e i corresponds to the

spatial transformation matrix (translation and rotation) of node v i 
relative to its parent α(v i ) ( Eq. (7) ): in this notation e i is a matrix

and BB (v i ) is represented by two vectors containing the minimum

and maximum points of the bounding box, thus the multiplication

operator gives the transformed bounding box for the new node.

Labels are also preserved ( Eq. (8) ) at the initiation of T . L (v i ) oper-

ation retrieves label of the component c i corresponding to v i . 

v j = α(v i ) ⇐⇒ BB (v i ) ⊂ BB (v j ) (6)

(v i , e i ) ∈ T ⇒ BB (v i ) = e i ∗ BB (α(v i )) (7)

L (v i ) = l j ⇐⇒ (v i , l j ) ∈ C (8)

4.2.3. Subtree similarity 

Afterwards we process T to detect similar subtrees. Starting

with initial labels, we compare all v i , v j pairs where L (v i ) = L (v j ) .
The comparison is based on pairwise topological ( θ sub = subtree

matching by BFS ordering) and geometrical ( θ sym 

= label match-

ing) similarity, with the additional comparisons of number of ele-

ments ( θ ele ) and size of bounding boxes ( θbox ). According to these

metrics, if v i and v j are not similar, we update their labels to re-

flect that L (v i ) 	 = L (v j ) . We define the concept of representative in-

stance v ∗x , which indicates the common representation for a re-

peating subtree, for all similar nodes ( v ∗x = { v i | ∀ i, L (v i ) = x } ).
Note that representative instances are not decided based on ini-

tial labels, so Eq. (8) is only used during hierarchy construction

phase. We also perform a special join operation to canonicalize the

subtree. The derivation of nodes v i ∈ v ∗x ∧ v j ∈ v ∗x ∧ ∃ k | v k ∈
anc (v i ) ∧ v k ∈ anc (v j ) are unified to follow the same subtree struc-

ture, so that they have the same ancestor v k as the application sub-

tree root. In this case, v k can be the parent or grandparent of joint

nodes in v ∗x , but we will refer to it as α(v ∗x ) for a simpler notation.

4.2.4. Pattern parameters 

After all v ∗x are discovered, we reveal the distribution of the

representative instances and the spatial parameters of the distribu-

tions – namely the patterns. R corresponds to an encoding of the

patterns, however instead of representing each derivation with one

rule on one selected edge (i.e., R x = (α(v ∗x ) , e i , v i ) | ∃ i, v i ∈ v ∗x ∧
L (v i ) = x ), the derivation of representative instances are combined

under an averaged rule (i.e., R x = { α(v ∗x ) , ē i , v̄ i ) | ∀ v i ∈ v ∗x , v̄ i =
mean (v i ) ∧ ē i = mean (e i ) } . In other words, similar derivations in

the parse tree are averaged or combined to obtain a representative

rule that creates the example derivation. As mentioned in the pre-

vious section, this merging process is controlled by the feedback

loop, thus we introduce two more parameter values as θpat for the

pattern granularity and θ for instance similarity. The first one
ins 
ontrols pattern granularity by adjusting the repetition count per

nstance and the second one controls similarity of transformation

atrices to be averaged. Together, they allow the same geometrical

attern to be recognized into different rules ( Fig. 8 ). 

.2.5. Grammar discovery formulation 

The full parameter value vector contains similarity metric pa-

ameters for the tree nodes and for the patterns, namely �D =
 θsub , θsym 

, θele , θbox , θpat , θinst } . The control loop executes the evalu-

tion function E to determine the approximated values �′ and the

rror function � decides whether �′ ≈�∗. Thus, the loop explores

or the best representative instance in the optimization stage, again

olving for the closest parameter values �′ 
D 

for the desired gram-

ar values �∗, expressed as (E ◦ (D ◦ S))(�′ 
S , �

′ 
D ) → �∗. Also, in-

tead of running the whole framework for each optimization step,

e simplified ( E ◦P ) with f , which performs a reduced set of seg-

entation and hierarchy building operations (i.e., instead of creat-

ng a tree, numerically deciding the relationships), still yielding the

ame grammar values without processing the entire geometry. 

.2.6. Grammar output 

Finally, G is exported using a common split grammar syn-

ax where leaf representative instances are converted to terminals

, and non-leaf representative instances are converted to non-

erminals N . The root of the instance tree is output as the start-

ng axiom ω, followed by other grammar elements concluding the

rammar export. To save time, grammar exportation is delayed un-

il the control loop finds the most descriptive grammar based on

ser specifications. 

. Results and applications 

Our framework is implemented in C++ using Qt, OpenGL,

penCV, PCL, and dlib on an Intel i7 Desktop PC with a NVIDIA

TX 680 graphics card. We used publicly available 3D databases

e.g., Trimble Sketchup, [41,42] ) and some manually created mod-

ls. We applied our guided proceduralization system to polygonal,

oint-based, and textured models of varying scales, from simple

uildings (e.g., 20 0 0 polygons) to large cities (e.g., 40 0 0 build-

ngs) and laser scans (e.g., 2M points), including over 70 individ-

al buildings and 3 large cities. We demonstrate the applications

f our controlled grammars in three areas: completion and recon-

truction, architectural modeling, and procedural generation. 
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Fig. 9. Varying grammar values �∗ . Grammar specification varies from small (left) to larger values (right) producing different com ponents, labels, rules, and grammars. As 

can be observed in the inset of the top row, even the slight changes in specification can converge to a significantly different set of parameter values �′ . Bottom row shows 

a similar analysis on Turning Torso , each instance (left) paired with its node distribution (right). 
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Fig. 10. Robustness comparison between [36] (a-c) and our approach (d-f) against 

full model vertex displacements (a, d have 0%, b,e have 0.1%, and c,f have 1%). (a,b,c 

is courtesy of [36] ). 
.1. Analysis 

We show an example analysis of varying grammar values in

ig. 9 on a complex model of 23K polygons. We sample and

emonstrate a subset of the domain [�∗
min 

, �∗
max ] yielding visually

ecognizable patterns increasing from left to right. Notice that even

light changes in the grammar specification can yield new pat-

erns, not only with different rules, but also with different geo-

etric components and similarity labels. The change in the granu-

arity of the rule elements to define the column rule is shown in

he insets. The right-most example shows an extreme case where
∗ > �∗

max which is not desirable and over-segments some non-

erminals near the inner walls, visualized as colored triangles. The

ottom row also shows a similar sampling of models for �∗ for

he rotating building pattern of Turning Torso landmark with 11K

olygons, each instance (right) is paired with its node distribu-

ion (left). We observed that the grammar can capture more details

ased on the user specification, as seen in the white nodes on the

ightmost model. 

.2. Robustness 

We also evaluated the robustness of our approach in case of

oisy models. Previous approaches tend to capture perfect repe-

itions and then convert them to grammars, but they fail to do

o when the repetitions slightly differ in geometry and/or in dis-

ribution. We observed that guided proceduralization is more ro-

ust against such imperfections. We compare our work against

ork of Demir et al. [36] , to evaluate the robustness of two ap-

roaches on models with different noise levels generated by vertex

isplacements. Compared to their segmented and labeled model

 Fig. 10 a), ρ = 0 . 1% full model vertex displacement (meaning that

ach vertex arbitrarily moves x ∈ (0, ρD ], where D is the model

iagonal) breaks their labeling ( Fig. 10 b), and ρ = 1% vertex dis-
lacement breaks the overall algorithm ( Fig. 10 c) (The images

re taken from the paper with permission). We input the undis-

urbed model ( Fig. 10 d) to the forward proceduralization algorithm

 and obtained the grammar values �. Then we used the output

as target grammar values �∗ to control the proceduralization

f the disturbed models ( ρ = 0 . 1% in (e) and ρ = 1% in (f)). As

hown, our approach was able to find a grammar with the same

pecification (within ε) even for the most noisy model. This also

roves the superiority of guided proceduralization over traditional

roceduralization in case of noisy input models. Note that the
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Fig. 12. Poisson reconstructions of (a,b) input and of (c,d) proceduralized point 

clouds. The identification of representative instances and exploitation of repetitions 

improve the reconstruction. 

Fig. 13. Completion. Original model (top) and proceduralized and edited model 

(bottom) are compared for completion and synthesis. Blue boxes focus on improve- 

ments for window details, provided by consensus model based proceduralization. 

Red and green boxes focus on edited parts and their smooth blending, the green 

box zooming into the entrance of the building. (For interpretation of the references 

to color in this figure, the reader is referred to the web version of this article.) 

m  

s  

c

 

c  

i  
segmentation approaches in both systems are the same, thus the

evaluation purely compares the overall frameworks. 

5.3. Family of grammars 

We observe that different grammars for different purposes can

be obtained using guided proceduralization. In Fig. 11 , different

rules and different decompositions are colored as repeating pat-

terns on the models. Moreover, we can guide the user towards dif-

ferent use cases by suggesting different grammars per model. This

visual suggestion mechanism helps the user to approximate the

grammar values �∗ visually, instead of guessing numerically (as

explained in Section 6.4 ). For example, the system suggests hori-

zontal patterns on the left end of the tower body in Fig. 11 and

vertical patterns on the right end. Similarly, the granularity of cap-

tured patterns decreases from left to right for the patio model. We

also show that our approach is applicable to models with differ-

ent structure (i.e., curved buildings), different scale (i.e., neighbor-

hoods), and different complexity (tower with 2K polygons to the

union building with 80K polygons). 

5.4. Completion and architectural reconstruction 

Although similarities and segmentations are exploited for

some reconstruction techniques as in previous methods of Pauly

et al. [43] and Simon et al. [44] , the controlled discovery of gram-

mars is not a focus of such papers. In contrast to prior reconstruc-

tion methods, we can improve the completion of point clouds be-

fore triangulation, without using any priors. We run our controlled

proceduralization system on building point clouds, where the user

roughly sets �∗ to indicate the desired grammar values. The opti-

mization finds the parameter values �′ 
S that best segments and la-

bels the point cloud and �′ 
D 

that extracts the best grammar. After-

wards, we use all representative instances v ∗x to create consensus

models (CM) [11] that are used to improve the quality per instance.

The key innovation in using proceduralization for reconstruction

emerges from i) exploiting repetitions for completion in a proce-

dural setting, and ii) controlling proceduralization to get rid of the

tedious task of semi-automatic segmentation for deciding the seg-

ments (as mentioned in Section 4.1.3 ). At a first glance, our recon-

struction may seem blurrier, however this occurs from the fact that

our approach combines all instances of the same terminal into a
Fig. 11. Grammar variety . Instead of representing a structure with a unique gram- 

mar, we are able to create a family of grammars, for architecturally varying struc- 

tures. 
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ore complete CM, and overall noise is reduced by edge-aware re-

ampling. The smoothness of the components should not be per-

eived as blurriness. 

Fig. 13 compares an input point cloud of 1.2M points vs. its pro-

eduralized and edited version. Blue boxes emphasize the regions

mproved by only consensus models, prior to any editing sessions.

ed boxes emphasize the parts after both automatic completion

nd procedural editing sessions, and how the blending is seamless.

he green inset shows an extreme case where the modeler changes

he structure is completely after the completion, but the underly-

ng procedural engine is still able to preserve the style. Fig. 12 also

ompares a model with 2M points with its proceduralized version,

fter reconstruction of the point clouds. As shown in the insets,

ontrolled proceduralization as a pre-construction step produces

ore complete models. The completion is evaluated by compar-

ng the amount of additional points in the new model, after CM

odels are generated and placed using edge-aware resampling to

eep the point density similar – thus additional points most likely

eans more surfaces are complete or filled. For example, the com-

leted model in Fig. 12 has 24% more points, compared to the orig-

nal model with a similar local point density in an epsilon. 

.5. Structure-aware urban modeling 

As mentioned in the introduction, the raw 3D data coming

rom manual modeling or acquisition systems does not contain

ny structural or semantic organization. However procedural rep-

esentations inherently solve that problem and enable faster mod-

ling. We implemented an interactive structure-preserving editing

ystem that uses our procedural engine enhanced with some at-
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Fig. 14. Urban modeling. Our guided proceduralization allows creation of complex 

architectures using simple operations, with an average editing time of 15 min. 
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Fig. 15. Procedural generation. (a) Input map ω = “C&G”, followed by the rendered 

model in (b) color-coded tree nodes, (c) labeled buildings, (d) textured buildings, 

and (e) street view. 
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achment rules to preserve the adjacencies of grammar elements

cross rules (similar to [45] ). We convert the instance tree into an

nstance graph, where the non-tree edges (newly included edges)

ontain the parameters of spatial adjacencies between not directly

elated nodes. When the user performs an edit, our framework op-

imizes the derivation for the propagation of the operation from

he edited node to other nodes in the graph, preserving the attach-

ent rules. After the optimization converges, the parameters are

e-computed and the model is ready to be exported. Fig. 14 shows

ariations of a complex building structure synthesized by our edit-

ng system built upon the controlled proceduralization framework

mphasizing (b) horizontal patterns, (c) vertical patterns, and (d)

ixed patterns. The processing takes less than an hour to process

nd editing sessions are kept under 5 min for this model. 

Without guided proceduralization, some users were confused

bout which patterns to use while editing. However, enabling user

nfluence while generating patterns helped users to more intu-

tively edit the patterns that they defined, and reduced the over-

ll editing time. Another benefit of guided proceduralization over

roceduralization is that it reveals some patterns that would never

ave been discovered by prior proceduralization methods. Consider

he last row of Fig. 5 and the last column of Fig. 8 . The pattern pa-

ameters for those non-terminals are highly noisy, but guided pro-

eduralization still captures the essence of double windows. Such

ases are especially important in editing systems where the granu-

arity of patterns should follow user’s intuition. Our system enables

uch implicit granularity declarations over previous work converg-

ng on the smallest component configuration. A real-world exam-

le of this improvement can be observed at the roof of the gazebo

n Fig. 11 . Previous approaches would have discovered only the

ight-most configuration with too many rules and terminals (each

ndicated in a different color), in search of perfect repetitions. In

ontrast, guided proceduralization enables more compact configu-

ations by auto-adjusting the granularity and rule/terminal simi-

arity following the guidance (instances are colored with the same

olor), adding the flexibility to fit imperfect repetitions into rules. 

.6. Procedural content generation 

Finally, we use our controlled proceduralization framework to

reate procedural models for large content creation, which is used

or compression and efficient rendering. Previous approaches (e.g.,

14,28,30,40,46] ) either need a grammar for inverse procedural

odeling, or use thresholds to create derivation trees. However

ur approach keeps the details of the procedural model under the

ood and enables content generation based only on a geomet-

ic model, and optionally grammar specification values. We used
ur controlled proceduralization framework to convert 4K build-

ngs in the 180 km 

2 
metropolitan area of New York into a proce-

ural representation, achieving 95% compression in size (reducing

rom 1.7M polygons to175K polygons, and from 1060 MB of tex-

ures to 49 MB). We show a new city (called “CG York”) generated

sing the extracted grammar in Fig. 15 . We also demonstrate input

ap, nodes of the derivation tree, color-coded components, and a

treet view from our new city. 

. Discussions 

.1. Expressiveness 

At first glance, one can claim that finding the most effective

rammar (i.e., compact) is not possible, because finding the min-

mal description | d (.)| covering all instances of all possible gram-

ars requires computing their Kolmogorov complexity (i.e., K (.)),

hich is not a computable function. However, in our case i) gram-

ars can be regarded as compressors that implicitly eliminate

ome redundant information and simplify the description, and ii)

e do not seek a minimal description (i.e., | d(. ) | = K(. ) ) but a de-

cription that approximates our target grammar specification val-

es (| d (.)| ≈ K (.)). We incorporate user specified �∗ to decide on

he level of simplification and to produce the most useful grammar

ased-on-need, as shown in different decompositions and rules of

ig. 9 . For example, if we were to look for the minimal descrip-

ion of “abcabababab”, we would have to find a description includ-

ng “c”. But if the user indicates that single occurrences are noise,

r the label “c” can be simplified, or wants four instances, then

n easy and efficient description would be “(ab) ∗5”. In Fig. 9 , such

ser specification is incorporated as different �∗ values, and the

esults indicate how much variance is tolerated within each ter-

inal group (similarity noise) and within each rule (like the “ab”

xample). 

.2. Guided proceduralization vs. controlled IPM 

One option that some exploration algorithms in inverse pro-

edural modeling use is providing the user with some exam-

le derivations and letting them guide the generation. In prior

ork (e.g., [28,29,46,47] ) this approach assumed a known gram-

ar and a discretization of the derivation space. In our case for

roceduralization, we let the user specify desired grammar val-

es ( �∗) beforehand and perform an optimization. The distinc-

ion of those processes are more clear when visualized: Bottom

ow of Fig. 10 shows guided proceduralization output (the de-

ired grammar), and Fig. 14 shows controlled IPM outputs (the de-

ired instances of a grammar). For clarification, we do not input a

rammar (e.g. G = E(�) ), but we input perceptible grammar values

 �∗), i.e., the alphabet size, repetition per rule, etc. ( Section 4.2.1 ). 
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6.3. Optimization space 

The optimization search space P(�) has variables of geomet-

ric and topological similarity as discussed in definitions of �S 

( Section 4.1.2 ) and �D ( Section 4.2.5 ). We set appropriate bounds

for the search space parameters and run multiple iterations of

the proceduralization process until we converge on the desired

grammar specification values. Also, instead of a brute force explo-

ration, we use BOBYQA algorithm [48] to converge faster in this

well-bounded space without derivatives. This reduces the execu-

tion time of the optimization, from 1–1.5 days to 4–5 h on a sin-

gle machine with 8 CPUs, for a model of 20K triangles. The op-

timization is also flexible enough to include other parameters �

and specifications � if needed. We implemented an import/export

mechanism for our intermediate steps. Thus, the current grammar

can be exported at any stage of the optimization, which provides

flexibility to start from near-optimum grammars for faster conver-

gence. Also, the interactive user interface allows the underlying

system to use the grammar from the last step of the optimiza-

tion whenever new target values are set, instead of starting from

scratch. 

Although our prototype optimization may take a couple of

hours, converting the models into the desired procedural represen-

tation is a one-time offline operation that does not consume any

human labour. In addition, the procedural editing engine is com-

pletely online, enabling the user synthesize many complex mod-

els in minutes, following the procedural control that they defined.

It is also possible to make the offline part more efficient. To con-

verge faster, one can structure � to include differentiable features,

or to create a convex optimization space, and then change the al-

gorithm to a gradient-descent variation. Carrying the computation

to GPUs and introducing parallelization for the optimization is also

a suggested option. However in our experiments, we targeted for

the most flexible setup to support all possible features. 

6.4. User interaction 

We have implemented two means of defining target gram-

mar values �∗ for users. The first one presents some GUI ele-

ments (sliders and input boxes) for defining the grammar ele-

ments defined at the end of Section 4.2.1 . Users can set these

relative values using the GUI, and the system optimizes for the

grammar that best satisfies these values. The second setting vi-

sually provides suggestions as a variety of grammars where ele-

ments of each grammar choice are color-coded on the re-generated

input model ( Fig. 11 ). We achieve that by sampling the multi-

dimensional grammar value space [�m min 
, �m max ] and filtering the

results that converge to significantly different grammars. Then, we

re-generate the input model using each of the candidate grammars,

and demonstrate these instances of candidate grammars. The user

then selects the best grammar by choosing the instance that visu-

ally contains patterns and components applicable to the use case. 

After the grammar is generated, the procedural editing en-

gine provides operations like push-pull, copy-paste, and replicate-

join. All of those operations are conducted visually on the model

via mouse/keyboard interactions. The user can copy terminals and

non-terminals by clicking on them, which are adaptively pasted

into their new nodes to fill its volume. Replicate and join opera-

tions change the application counts of patterns by simple strokes

on the terminals and non-terminals. Finally, the user can pull a

model and the procedural engine resizes the model as explained in

Section 5.5 . Note that this operation is different than just changing

pattern parameters, because the adjacency graph of the nodes are

preserved during editing. 
. Conclusion 

In summary, our research shows that extending procedural-

zation frameworks to include user guidance discovers procedural

epresentations for existing models so as to improve reconstruction

nd modeling. As the graphics and vision communities converge in

utomatic asset creation in almost all domains, many fascinating

roblems await to be solved by procedural approaches instead of

anual and semi-automatic organization of geometry. 

Looking forward, we have identified the following items of fu-

ure work: (i) using a neural network model to approximate func-

ion f ( �′ ) → �∗ for better performance (to replace hours of opti-

ization with minutes of prediction), (ii) bringing our controlled

roceduralization framework to other domains, and (iii) proposing

valuation tools for output grammars to assess their generative ca-

acity in a general fashion. 
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