
1

Appeared: Communications of the ACM (CACM)
Vol. 40. No. 3., pp. 49-54, March, 1997

Virtual Objects in the Real World
Daniel G. Aliaga

Computer Science Department
University of North Carolina
Chapel Hill, NC 27599-3175

Virtual Reality usually refers to systems that generate a totally synthetic environment. The

end-user is able to specify all the characteristics of the new environment. A head-mounted display

and an orientation and position tracker enable the user to roam around the new virtual world

looking up, down and walking into rooms that don't really exist! This capability allows the user to

experience environments which are not yet created (e.g., architectural walkthroughs) or position

himself in worlds he can never really visit (e.g., exploring a surface at an atomic level).

There are, however, situations where the user might want to remain in the real world and

instead of completely replacing the real world with a virtual world, might wish to merge the

virtual world with the real world. An Augmented Reality system (see figure 1) employs a see-

through head-mounted display and an image generation system to present the user with a world

consisting simultaneously of virtual and real objects. Such a system could allow an architect to

make actual-size modifications to an existing building, a home-owner to decorate an empty (real)

house, or children to design and build virtual toys which could be used simultaneously with real

toys. Yet another application could allow a doctor to view ultrasound images of a fetus registered

in place over a pregnant women's womb [Bajura92]. The KARMA system [Feiner93] uses an

Augmented Reality system to assist the user in performing 3D tasks. This system combines an

Intent-Based Illustration system with a prototype Augmented Reality system to explain simple

laser printer maintenance tasks.

2

Figure 1: An Augmented Reality System. A see-through head-mounted display is

connected to an image generation system to present to the user a world consisting of

both virtual and real objects.

Objects in the real world are affected by phenomena such as gravity, friction and

collisions. Future applications of merged virtual and real environments might wish to model such

phenomena; otherwise, the interaction of the two worlds may not be convincing at all. Significant

work must be done before a virtual environment convincingly simulates these phenomena.

Consider an office environment where the user has a virtual notepad. The merged environment

would not be convincing, if when the notepad is placed on the real table, it apparently falls

through the table. Similarly, in the previous example of a home-owner decorating an empty

house, the home-owner might desire the addition of a sliding door or venetian blinds. These

virtual additions should properly interact with the surrounding (real) house.

VROC

The VROC (Virtual and Real Object Collisions) system uses computational power readily

available today, for modeling interactive collision detection and collision response of moderately

complex environments containing both virtual objects and real objects. A 3D mouse (or hand-held

tracker) is provided with which the user can grab and control the linear and angular velocities of

3

the virtual objects. The system constantly performs collision detection and computes a classical

mechanics-based collision response to model the interaction (e.g., collisions) between virtual and

real objects, as well as the interactions among the virtual objects themselves. Figure 2 presents an

outline of the entire VROC system.

See-Through
Head-Mounted
Display

User

Collision Response

Real World

3D Model
(Images)

(Images)

Collision Detection

Virtual World

Hand-held tracker

Figure 2: Schematic of entire VROC System. The user employs a 3D mouse (or hand-

held tracker) to control the initial position and velocities of the virtual world objects.

Collision detection and collision response is performed in the merged virtual and real

world environment. Virtual imagery is combined with real world imagery in the see-

through head-mounted display and presented to the user.

Collisions

In order to maintain sufficient realism, we need to maintain highly interactive performance

(12 frames per second is the minimum acceptable frame rate). Thus we need a very fast collision

detection method. The collision detection method will determine which objects are intersecting

and how they are intersecting. This information is then passed on to the collision response

method which alters the trajectory of the objects according to the laws of classical mechanics.

4

Over the last decade, multiple approaches have been developed for collision detection and

collision response. No one collision detection or collision response algorithm can be said to be

optimal. VROC uses a fast collision detection algorithm for 3D polygonal (convex) objects. The

algorithm is based on Lin and Canny's [1991,1992] work (since the implementation of the VROC

system, the Lin and Canny collision detection algorithm has been further enhanced and used in

larger scale environments [Cohen95]). A 3D polygonal model approximates an object as a

collection of planar patches, typically triangles, which together form a 3D object. The algorithm

provides efficient collision detection by assuming that an object's position and orientation will not

drastically change from one frame to another (interframe coherency). The algorithm maintains a

list of the closest features between all pairs of polygonal objects (see figure 3). A feature

corresponds to either a face (2D polygonal patch) or to one of its edges or vertices. When the

distance between the features is less than a minimum tolerance value, the objects are considered to

have collided.

time

Figure 3: Closest features during 3 contiguous frames (time advances from left to right).

Initially, the closest features are 2 vertices. As the objects rotate, the closest features become

a face of the cube and an edge of the tetrahedron.

Once two objects have collided, a response needs to be computed. The VROC system

assumes that all objects are rigid and have nearly inelastic properties. Furthermore, only single

point contact between a pair of objects is modeled (since all objects used are convex, this is

generally the case) [Moore88]. These assumptions simplify the collision response computation.

5

Based on the conservation of linear and angular momentum, the new velocities can be easily

obtained:
m 1v 1 = m 1v 1 + R
m 2v 2 = m 2 v 2 − R

I1w1 = I1w 1 + p1 ×R
I 2 w 2 = I 2w 2 − p 2 × R

The variables m, I, v, w describe each object's mass, inertia tensor matrix, linear velocity

and angular velocity. The p vector is the relative vector from each object's center of mass to the

point of contact (see figure 4). R is the impulse transfer vector (computed by inverting the 15x15

matrix formed using the above equations). Each object has its own elasticity coefficient. In order

to simulate (slightly) elastic collisions, the computed R vector is scaled by the minimum of the 2

elasticity coefficients.

w2
p2

v2

p1v1

w1

Object 1 Object 2

Figure 4: Two objects colliding. Arrows show linear velocity v, angular velocity w and

vector p from collision point to each object's center of mass.

The collision detection and collision response algorithms are combined to form a dynamics

simulation [Baraff89][Barraff92]. This implies that all the computations must be parametrized by

time. The user must specify the time step to use to go from one frame to the next frame. The

main problem with key-frame collision detection is that objects with large velocities might

penetrate or pass through each other in one frame transition. Given the maximum linear velocity

6

and a collision distance (largest distance at which two objects are considered to have collided

[Lin91]), the frame time step can be divided into internal time steps such that the internal time

steps are small enough to guarantee that no two objects will totally pass through each other.

Furthermore, the exact time of collision can be found by recursively subdividing the internal time

step (binary search).

Optimizations

Since objects have continuous motion, it is possible to construct a sorted list of possible

collision times [Lin92]. Given the distance between two objects, the bounds on the maximum

linear velocity and linear acceleration, it is possible to predict the earliest time at which an object

pair could collide. Since, in addition, objects have angular velocities, a safe prediction requires

the difference between the radius of the inscribed sphere and the radius of the circumscribing

sphere of each object to be subtracted from the inter-object distance.

R1

r1

R2

r2

Object 1
Object 2

d

Figure 5: Inter-object distance, d, is reduced by (R2-r2) + (R1-r1) to ensure that the

collision prediction will never be incorrect due to angular rotation.

Collision checking must be performed on all object pairs because it is not known which

objects will collide in an environment. This gives a maximum of n2 collision pairs, where n is the

number of objects. Fortunately, in the environments that the VROC system simulates, many of

the objects (virtual or real) are not expected to move (e.g., real world tables, monitors, etc.).

7

These objects are considered static and no collision checking is done between two static objects.

For example, if an environment uses 100 static objects to construct a desktop and only one

moving (dynamic) object, then only 100 object pairs are checked as opposed to the more than

10,000 pairs that would have to be checked otherwise.

(a) (b)

Figure 6: This example shows a simple merged virtual and real environment. The

figures are 2 frames from a VROC video sequence where the user grabs a virtual ball

and bounces it on a real staircase. Here we see a real miniature staircase with virtual

balls superimposed over the staircase. The wireframe lines represent where the system

expects the edges of the staircase to be. The user employs a 3D mouse to select one of

the balls (a), pick it up and throw in on top of the stairs (b) (in the full video sequence,

the ball bounces on the staircase and collides with the other balls). The video sequence

was recorded by placing a small camera in front of the user's left eye.

Implementation

The see-through head-mounted display used by the VROC system was developed by the

head-mounted display research group at the University of North Carolina at Chapel Hill Computer

Science Department in the spring of 1992. The head-mounted display was built (with off-the-

shelf components) to gain experience for a wide field-of-view model with custom optics and CRT.

8

It is an optical see-through head-mounted display which uses a pair of 2-inch LCD displays that

project the computer generated image onto a pair of half-silvered mirrors (see figure 7). The user

perceives a combined image of the real world and the computer generated world. In the

background of figure 1 is a monitor displaying the computer generated image which the user sees

superimposed on the real staircase.

Figure 7: See-through Head-Mounted Display. The images from a pair of 2-inch color

LCD displays is projected onto a pair of half-silvered mirrors placed in front of the

user's eyes. The user perceives virtual imagery superimposed on real world objects.

The see-through head-mounted display is connected to Pixel-Planes 5 [Fuchs89]. Pixel-

Planes 5 is a high-performance, scalable multi-computer for 3D graphics developed by the

Computer Science Department of the University of North Carolina at Chapel Hill. Pixel-Planes 5

has a front-end of 10-40 Intel i860 processors. These general-purpose processors are

programmed by the user to perform application computations and interact with the fast rendering

hardware.

A portion of the VROC system runs on each processor. Recall that the collision detection

scheme potentially requires a check to be performed between all possible object pairs. These

checks are performed in parallel. Furthermore, each processor will compute the collision

response for the object pairs it stores. The system is capable of achieving frame rates of up to 30

9

stereo frames per second. The multiple merged environments created with VROC range, on the

average, from 14 to 28 stereo frames per second.

The set of object pairs that have to be checked for collisions is constructed based on the

static model of the real world and on the set of virtual objects that "co-exist" with the real objects.

The number of object pairs is typically significantly less than n2, where n is the number of objects

in the merged environment. The object pairs are distributed in a round-robin fashion among the

multiple processors. Each processor will construct its sorted list of possible collision times.

Consequently, each processor will only have to instantiate a subset of the total number of objects.

An object may reside on multiple processors, but few objects will exist on all processors.

All Object Pairs

Proc1

Proc2

Proc3

Proc4

Object
Pool

Figure 8: Object pair and object instantiation distribution. Each processor receives its

partition of the total number of object pairs. Based on the object pairs it receives, each

processor only needs to instantiate a subset of the objects from the object pool.

If an object pair is determined to be in collision, the associated processor will compute the

collision response. Typically, each processor will only need to compute a single collision response.

If other processors encounter a collision, they will compute their own collision response.

Afterwards, processors that computed a collision response must broadcast the new velocities to

all processors that have a copy of the objects involved in the collision. Hence, on average, the

10

collision response computations for multiple simultaneous collisions across the system take the

same amount of time as one collision response (though some additional time is needed for the

update messages sent between processors).

(a) (b)

Figure 9: This example shows a close-up view of a merged virtual and real environment.

The user's hand is not visible in this sequence. The user has thrown the virtual blue ball

from a distance towards the real chair. The ball bounces off the multiple sides of the

stair, causing the balls resting on the chair bottom to disperse in various directions (a-b).

In the video sequence, some of balls fall off the chair while others, including the blue

ball, come to rest on the chair bottom.

Lessons Learned

Real World Models and Calibration

In order to create convincing interactions of the virtual and real world, the computer

system must know exactly where the static real world objects lie; otherwise, visual anomalies will

occur (for example, virtual objects might intersect or penetrate surrounding real objects). This

requires the creation of a precise model of the real world. For complex environments, this is a

time-consuming task. In addition to creating a geometrical model of the real world, the virtual

11

objects that interact with the real objects must be created with equally realistic colors and

textures. New techniques are being explored for obtaining real world object models, such as 3D

reconstruction from range images [Turk94], 3D scene analysis [Koch93], Plenoptics [Adelson91],

among others.

Proper calibration of the static real objects and their computer generated counterparts

depends not only on a properly measured model but also on:

• Compensation for the optical distortion generated by the see-through head-

mounted display.

• The approximate perspective computations used for the virtual objects and

computer models of real objects.

• The latency introduced by the trackers, refresh delay of the head-mounted

display and the graphics pipeline. This latency (or lag) causes the virtual

objects to apparently swim around the real world.

Even though the latency is only on the order of 60-150ms [Mine93] per frame, it is very

noticeable especially with a see-through head-mounted display. Consequently, the illusion of

virtual objects lying on real objects is less convincing. Studies have shown that people regularly

turn their head at speeds above 300 degrees/second; in fact, fighter pilots turn their heads at

speeds in excess of 2,000 degrees/second. Lets consider a user turning his head at a rate of 200

degrees/second [Bishop84] with a total latency of only 50 milliseconds; thus, the generated image

will be off by approximately 10 degrees. A typical head-mounted display, which a field-of-view of

60 degrees, will display the image shifted to one side by one sixth the display resolution!

Solving the calibration problem would help to improve the apparent location of real

objects from within the see-through head-mounted display, thus enabling precise collision

responses and other feedback (sound, force, tactile, etc.). Furthermore, virtual objects could be

accurately obscured (partially obscured or totally obscured) by the real objects in front of them.

For example, Wloka [1995] constructed a system capable of resolving occlusion between virtual

12

and real world objects using a (video) see-through head-mounted display and depth inferred from

stereo images.

So far we have assumed a static model of the real world. This limits the range of possible

environments. It is not clear how to go about removing this assumption. Information about the

movement of real objects could be obtained from a tracker placed in each of the moving objects.

The KARMA system [Feiner93] places individual trackers on some of the dynamic real-world

objects. Unfortunately, this scheme is subject to the inaccuracies of the trackers but it is a

potential solution. Another approach is to use imaging technology and to continuously compute

from a 2D camera view of the world, the position and orientation of the 3D objects contained in it

[Tomasi92]. In any case, this is certainly a difficult problem.

Feedback

How real the interaction of the virtual and real world appears to the user is not totally

dependent on the visual cues from the head-mounted display. Other sensory input, such as sound,

is also needed [Astheimer93]. When two real world objects collide, a specific sound is produced

dependent on the objects involved. Similarly, when a virtual and a real object collide, a different

sound should be emitted. Stereo or 3D sound would improve the realism of the merged worlds.

Current audio technology is advanced enough to produce such effects reasonably well.

A more important (and difficult to implement) type of feedback is force feedback. The

user may have a large virtual object in his hand. It would be helpful if the user could feel when

the virtual object's surface has collided with a real object. For example, an application which

allows the user to place virtual furniture in an empty real room could give the user force feedback

when the virtual sofa being placed hits a wall.

Force feedback is not only useful for virtual and real object interaction but also for user

and virtual object interaction. The user may wish to touch and feel the contours of a virtual

object. The illusion of realism would certainly be improved if the user could run his hand along

the stairs of the environment of figure 6 and feel the presence of the virtual balls. Another

13

example is a sculpting environment. Tactile feedback is essential to provide an effective sculpting

tool.

Conclusions

To summarize, the intent of VROC is to create an integrated system to model the

interaction of virtual and real objects in a merged environment. A see-through head-mounted

display system is combined with a graphics engine to present to the user the merged environment

while performing collision detection and collision response computations. Hopefully the

observations and lessons learned will benefit further research of such systems.

Acknowledgments

I would like to thank my professors, Henry Fuchs, Gary Bishop and Dinesh Manocha for

their patience and wisdom. I would like to thank the many people who have helped me

throughout this project; Anselmo Lastra for answering my questions regarding Pixel-Planes 5,

Rich Holloway for assisting with the see-through head-mounted display hardware and Rik Faith,

Mark Mine, Marc Olano, William Mark, Amitabh Varshney, Yunshan Zhu. Grants from the

National Science Foundation's Supercomputing Center for Science and Technology (ASC-

8920219) and Advanced Research Projects Agency (DAEA 18-90-C-0044, DABT 63-92-C-

0048) made this work possible.

References

[Adelson91] Adelson E.H., Bergen J.R., "The Plenoptic Function and the Elements of Early

Vision", Computational Models of Visual Processing, Chapter 1, Edited by

Michael Landy and J. Anthony Movshon. The MIT Press, Cambridge, Mass.

1991.

14

[Astheimer93] Astheimer P., "What you See is What you Hear - Acoustics Applied in Virtual

Worlds", IEEE Symposium on Research Frontiers in Virtual Reality, pp. 100-

107, Oct. 25-26, San Jose, CA, 1993.

[Bajura92] Bajura M., Fuchs H., Ohbuchi R., "Merging Virtual Objects with the Real

World: Seeing Ultrasound Imagery within the Patient", Computer Graphics

(Proc. SIGGRAPH), vol. 26, no. 2, July 1992.

[Baraff89] Baraff D., "Analytical Methods for Dynamic Simulation of Non-penetrating

 Rigid Bodies", Computer Graphics (Proc. SIGGRAPH), vol. 23, no. 3, pp. 223-

232, July 1990.

[Baraff92] Baraff D., "Rigid Body Dynamics", Computer Graphics Course Notes: An

Introduction to Physically Based Modeling (Proc. SIGGRAPH), pp. H3-H29,

1992.

[Bishop84] Bishop G., "Self-Tracker: A smart Optical Sensor on Silicon", Ph.D.

Dissertation, University of North Carolina at Chapel Hill, TR 84-002, 1984.

[Cohen95] Cohen J., Lin M., Manocha D., Ponamgi K., "I-COLLIDE: An Interactive and

Exact Collision Detection System for Large-Scale Environments", Symposium

on Interactive 3D Graphics (SIGGRAPH), Monterey, California, pp. 189-196,

April 1995.

[Feiner93] Feiner S., MacIntyre B., Seligmann D., "A Knowledge-Based Augmented

Reality", CACM, Vol. 36, No. 7, pp. 53-62, 1993.

[Fuchs89] Fuchs H., Poulton J., Eyles J., Greer T., Goldfeather J., Ellsworth D., Molnar

S., Turk G., Tebbs B., Israel L., "Pixel-Planes 5: A Heterogeneous

Multiprocessor Graphics System Using Processor-Enhanced Memories",

Computer Graphics (Proc. SIGGRAPH), vol. 23, no. 3, pp. 79-88, July 1989.

[Koch93] Koch R., "Dynamic 3D Scene Analysis through Synthesis Feedback Control",

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, No.

6, pp. 556-568, 1991.

15

[Lin91] Lin M., Canny J., "A fast algorithm for incremental distance calculations", IEEE

International Conference Robotics and Automation, pp. 1008-1014, 1991.

[Lin92] Lin M., Canny J., "Efficient Collision Detection for Animation", Third

Eurographics Workshop, Cambridge, England, September 1992.

[Mine93] Mine M., "Characterization of End-to-End Delays in Head-Mounted Displays",

University of North Carolina at Chapel Hill, TR 93-001, 1993.

[Moore88] Moore M., Wilhelms J., "Collision Detection and Response for Computer

Animation", Computer Graphics (Proc. SIGGRAPH), vol. 22, no. 4, pp. 289-

297, August 1988.

[Tomasi92] Tomasi C., Kanade T., "Shape and Motion from Image Streams under

Orthography: a Factorization Method", Intl. Journal of Computer Graphics, vol.

9, no. 2, pp. 137-154, 1992.

[Turk94] Turk G., Levoy M., "Zippered Polygon Meshes from Range Images", Computer

Graphics (Proc. SIGGRAPH), Annual Conference Series, pp. 311-318, July

1994.

[Wloka95] Wloka M., Anderson B., "Resolving Occlusion in Augmented Reality",

Symposium on Interactive 3D Graphics (SIGGRAPH), Monterey, California,

pp. 5-12, April 1995.

