

Dense Depth and Color Acquisition of Repetitive Motions

Yi Xu Daniel G. Aliaga
Department of Computer Science at Purdue University

{xu43|aliaga}@cs.purdue.edu

Abstract
Modeling dynamic scenes is a challenging

problem faced by applications such as digital content
generation and motion analysis. Fast single-frame
methods obtain sparse depth samples while multiple-
frame methods often reply on the rigidity of the object
to correspond a small number of consecutive shots for
decoding the pattern by feature tracking. We present a
novel structured-light acquisition method which can
obtain dense depth and color samples for moving and
deformable surfaces undergoing repetitive motions.
Our key observation is that for repetitive motion,
different views of the same motion state under different
structured-light patterns can be corresponded together
by image matching. These images densely encode an
effectively “static” scene with time-multiplexed
patterns that we can use for reconstruction of the time-
varying scene. At the same time, color samples are
reconstructed by matching images illuminated using
white light to those using structured-light patterns. We
demonstrate our approach using several real-world
scenes.

1. Introduction
Acquiring dense depth and color samples of

dynamic scenes is a challenging problem faced by
applications such as digital content generation and
motion analysis. In some dynamic environments, a
subset of motion states repeat over time and form

repetitive (or quasi-periodic) motions, such as with
some mechanical motions (e.g., toys, pendulum, etc.)
and human activities (e.g., exercises, walking, etc.). In
this paper, we present a robust method to densely
capture both depth and color samples of such
repetitively moving and deforming surfaces.

Many approaches have been proposed for
capturing the geometry and appearance of dynamic
scenes. On the one hand, passive methods are
unobtrusive and simultaneously obtain color and depth
information per pixel (e.g. [29]). However, they
depend on fragile correspondence computations, color
consistency over a large baseline (e.g. [24]), and/or
background subtraction (e.g. [2][16]). On the other
hand, active methods add energy into the scene in
order to significantly improve robustness. But, laser
scanners would require an excessively fast update rate
for dynamic scenes. A traditional structured-light
approach might be able to project a few patterns in
rapid succession and assume the scene is temporarily
stationary, but obtaining dense depth, as well as color
information, is hard. Incrementally building a model
might be possible but it usually assumes rigid motions
and cooperation between scene and capture operator.

The main challenges in robustly acquiring
dynamic scenes are three-fold. First, the method should
obtain dense information, as expected with active
methods, despite constant scene motion. Second, the
approach should obtain both depth and color for each

a) b) c) d) e)
Figure 1. Acquiring repetitive motions. a) Example input video frames observing repetitive motions. b-c)
Images showing two motion states under two projected patterns. d-e) After reconstruction, renderings for novel
viewpoints can be generated at any sampled time instance of the motion.

sample. Third, capture should be able to sample
moving and perhaps deforming objects.

Our key insight is that for scenes with repetitive
motions temporally disjoint images capturing the same
motion state but under different illumination patterns
can be corresponded together. This allows using time-
multiplexed codes to capture each motion state without
the need to track pattern boundaries, without assuming
a static scene during several contiguous frames, and
without being limited to rigid scene motion. In this
way, the dynamic scene acquisition problem is
converted to a series of more robust static scene
reconstructions. Furthermore, since the state of the
moving scene can also be matched against fully-
illuminated images, the color and texture of the
moving scene can be recovered as well.

Our approach uses a geometrically and spectrally
calibrated camera-projector pair to capture a scene
containing repetitive motions (Figure 1). For
acquisition, an all white image and a set of two-color
Gray-code patterns are sequentially projected onto the
scene. Each pattern lasts for a while. Image analysis is
performed to find a set of motion-state images under
white illumination that generate a smoothly changing
and repeating image sequence and that can be well-
matched against the images captured under the
illumination of the two-color patterns. Matching is
done using an image differencing operator that is
calibrated to work with different colored light sources.
Since the observed motion tends to repeat, eventually
many motion states are sampled by all patterns,
yielding the ability to reconstruct each motion state
individually. The collection of reconstructed motion
states can then be used to re-create a scene similar to
the original or to produce new motion sequences. We
demonstrate our approach using several real-world
scenes rendered as colored points or as texture-mapped
triangles.

Our main contributions include
• a dense depth and color acquisition system for

scenes containing rigid and non-rigid objects
undergoing repetitive motions,

• an algorithm for finding smoothly varying motion
states spanning all illumination patterns, and

• a two-color structured-light method combined
with a color-calibrated image matching operation
to uniquely match images of a scene under
different structured-light patterns.

2. Related work
Our approach relates to both active ranging of

dynamic scenes and repetitive motion analysis. In the
following, we summarize related work in these areas.

2.1 Dynamic scene acquisition
Active ranging techniques project patterns onto

the scene and capture their projection to obtain range.
Methods that only require “one-frame” are suitable for
dynamic scenes. However, the pattern must encode as
much information as possible to facilitate camera-
camera (camera-projector) correspondences. Davies
and Nixon [5] use windows of neighboring dots with
unique color configurations. Chen et al. [4] use
projected color stripes and stereo matching to
correspond features. Zhang et al. [27] use de Bruijn
illumination patterns and multi-pass dynamic
programming. Fong and Buron [8] use a fixed pattern
that combines color stripes and sinusoidal intensity
changes. Koninckx et al. [13][14] improves
performance by adjusting geometric and color-coded
patterns to the scene. As opposed to our dense
acquisitions, one-frame methods obtain reconstructions
of limited density. Furthermore, while our method uses
colored patterns, we only require two colors and two
transitions; this makes color decoding much easier.

Some one-frame methods have partially remedied
simultaneously projecting structured-light patterns and
acquiring scene color. Frueh and Zakhor [9] use two
cameras to capture color and low-resolution infra-red
structured-light patterns. The Z-Cam [11] captures
both color and low-resolution depth using a single
infra-red “light pulse”. Waschbüsch et al. [25] use at
least three cameras and a rapidly-alternating
structured-light pattern and its inverse to acquire color
and to enhance the scene with features for stereo
matching. In contrast, in our setting we acquire color
and structured-light patterns separately without having
to quickly change patterns or use infra-red.

For slowly moving objects, multi-frame methods
can be used. For example, Rusinkiewicz et al. [10][18]
sample rigid and colorless objects by projecting and
tracking at high frame-rate a small number of patterns
where each stripe boundary has a unique code over
four consecutive frames. The space-time stereo
framework [28] can be extended to use projected
patterns but dense correspondence is ultimately limited
by feature-matching performance. In our method,
temporally disjoint frames can be corresponded and no
limit is placed on the code length. Moreover, we are
not limited to rigid objects.

2.2 Repetitive motion analysis & acquisition
Analyzing and capturing repetitive motions in 2D

and in 3D settings has gained significant interest from
the computer graphics community and related fields in
past years. Several research efforts have focused on
detecting and measuring repetitive motions usually
from image sequences (e.g., [6][15][22]). More

recently, Schödl et al. introduced the concept of a 2D
video texture [21], and Agarwala et al. presented its
panoramic video extension [1]. Both produce an
infinitely-long varying video sequence. However,
these efforts focus on analyzing 2D images and/or do
not obtain dense depth and color data.

Several passive 3D methods have been proposed
as well for repetitive motions. For example, Starck et
al. [23] capture human motion from a multiple
viewpoint video sequence and use a motion graph to
generate transitions of different motions in order to
synthesize novel animation sequences. Einarsson et al.
[7] acquire a 7D time-varying reflectance field of
constant-speed human locomotion on a treadmill, but
no explicit geometry is reconstructed. In addition, our
captured motion does not need to be of constant speed.
Instead, we find a set of best matches for each motion
state by comparing images. Our early work [26]
acquires low-resolution volumetric representations of
table-top objects undergoing repetitive motions by
using two cameras. In that work, we use a static
camera to determine the motion state and a constantly
moving second camera at known position to capture
the motion from multiple viewpoints. By assuming
constant illumination, motion state can be determined
by simple image matching. In this paper, the scene is
illuminated by varying structured-light patterns,
producing robust correspondences, and requiring a
robust color-calibrated image difference operation.

3. Acquisition
Our method captures a single video sequence and

sequentially projects white light, a set of colored Gray-
code patterns [12], and their inverses. We choose to
use time-multiplexed patterns due to high accuracy in
the encoding/decoding process. A repeating motion
sequence from the video captured under white-light is
found via image analysis. Images capturing the same
motion state under different structured-light patterns
are grouped together enabling the reconstruction of the
dynamic scene. Figure 2 contains our system pipeline.

3.1 Image-based motion states
Our system chooses from among the images under

white-light illumination a compact subset of image-
based motion states. We desire images that form a
smoothly varying repetitive motion (in similar spirit to
[21]), and represent motion states that repeat while the
structured-light patterns are projected in the rest of the

video. Our method is based on the following two
assumptions: (1) scene motion can be decomposed into
states that repeat over time and (2) each motion state
can be uniquely identified by its projection onto the
camera’s image plane. The observed motion does not
need to be periodic and does not need to be of constant
speed. Rather, our approach automatically extracts the
motion states that can be assembled to form a smoothly
repeating sequence and can be used for scene
reconstruction. The resulting motion sequence will be
similar to the original but not necessarily the same.

Our method uses a two-step algorithm. The input
video has a total of (N+2PN) images where P equals
the number of patterns and N is the number of images
captured under the illumination of each pattern. More
precisely, the video contains N white-light images and,
for each of P patterns, the video has N images for the
pattern and N images for its inverse. Although we
capture equal-length pattern segments, they are not
synchronized with the motion in anyway. In a first
step, our method computes a ranking of the N white-
light images based on their similarity to images in the
subsequent pattern segments. The ranking will give
preference to motion states that tend to repeat and will
downplay spurious motions. A complete ranking of
white-light images is computed by comparing each
white-light image to each pattern image. As shown in
Figure 3, the comparison for each white-light image
produces an array of length P where each entry
contains the index of the most similar image from each
pattern segment. The list of arrays is sorted based on
the average similarity between the grouped white-light
images and pattern images.

In a second step, our method matches the highest-
ranked white-light images to a chosen white-light
video segment for reconstruction. Our method allows
the user either to choose an automatically computed
looping segment of the input video or to manually
specify a (new) desired image/motion sequence. To
automatically compute a best looping segment, our
system computes a 2D image similarity matrix. The
entries along the diagonal correspond to image self-
similarity while the typically sparse off-diagonal
entries correspond to strong similarities between
distinct images at the beginning/end of a looping
segment. The algorithm compares the matrix against a
user-specified minimum similarity threshold which
results in only a few possible repeating motion

States
All patterns
 per-state Image-Based Motion

 State Analysis
Motion-State

Matching
Scene

Reconstruction Video Time-
varying model

Figure 2. System pipeline.

sequences with small transitions errors. The system or
the user chooses the best or any one for reconstruction.

Once the looping white-light segment is selected,
our system maps all other white-light images, within a
threshold of image similarity, to these selected images.
This clustering process has the effect of grouping
together white-light images observing the same motion
state (as well as their associated pattern images) and
thereby increasing the chance of finding a good set of
pattern images to reconstruct the motion state. The
improvement of reconstruction quality comes at the
price of less faithfully reproducing the specified
looping segment. From the multiple images per cluster,
the one with the smallest difference between pattern
images and corresponding white-light image is chosen;
thus, the reconstruction quality is maximized. The
resulting (image-based) motion states are the ones used
for reconstruction and are stored as the time-varying
model. In the next two sections, we describe how the
pattern images are best matched to the white-light
images.

3.2 Two-color structured light
Our system matches pattern images to the white-

light images of the motion states. Our assumption that
motion states eventually repeat enables projecting each
structured-light pattern for a relatively long amount of
time (namely, until all states have been observed at
least once). This prevents having to rapidly change
illumination patterns and omits needing camera-
projector synchronization. However, it necessitates
robustly matching the motion-state images (under
white-light) to the pattern images that are illuminated
by structured-light patterns. As opposed to methods
which use multiple colors to reduce the total number of
patterns [3] or to improve robustness [17], our
approach uses two-color patterns to enable accurately
matching pattern images to white-light images. It is
worth noting that in many structured-light methods for
dynamic scenes only the images illuminated by the
patterns can be used to obtain color information. In our
case, we extract color from the white-light motion-
state images and thus the coloring of the patterns does
not affect the color quality of the final reconstruction.

Conventional Gray-code binary stripe patterns rely
on large illumination variance between stripes.
However, this is precisely the opposite of what is
needed for matching to homogeneously-illuminated
white-light images. In particular, binary stripe patterns
typically consist of white and black stripes. Any
motion in the non-illuminated (black) areas would be
invisible to the camera or appear too dark for robust
processing (Figure 4a-c). The problem is worse during
the initial stripe patterns of Gray codes because of the
large contiguous regions and, unfortunately, these are
exactly the patterns corresponding to the most-
significant bits of the Gray code sequence. The total
amount of ambiguity is, however, scene and motion
dependent.

For our objectives, this ambiguity affects both
motion-state matching and decoding process for scene
reconstruction (i.e., determining if a pixel is red or
blue). Having less illuminated pixels clearly places
more burden on the image comparison metric to

Figure 3. Motion states. For each white-light image,
we find an array of the best-matched pattern images.
White-light images are ranked based on the average
similarity to their corresponding best pattern images.
Then, the highest-ranked white-light images and their
matched pattern images are used to reconstruct a
chosen video segment.

N

P

white-light images

best matches
for image #1

1

2

3

4

N

pattern images

a) b) c) d) e)
Figure 4. Two-color structured light. a-b) Two example motion states. c) Using conventional white-black stripes,
both states seem identical. d-e) Our calibrated two-color structured light discerns between the two states.

correctly identify the motion state. Moreover, even if a
best match is found it does not guarantee the correct
motion state has been identified. Thus, when the
decoding process is performed to reconstruct a
particular motion state, the assumption of all patterns
observing the same motion state (i.e., a static scene)
would be violated. This might even occur between the
projection of a pattern and its inverse (a commonly
used method to improve robustness against unknown
surface albedo and global illumination effects [20]). In
general, this leads to pixels being inconsistently
labeled amongst the pattern images and thus producing
fewer correctly decoded pixels.

In our system, we use two visible colors (i.e., not
black) to represent the equivalent of a binary stripe
pattern (Figure 4d-e). The colored pattern pixels are
compared to the pixels in the corresponding channel of
the white-light motion-state image. However, the
spectral performance of the camera/projector is not the
same under color-stripe illumination and white-light
illumination which leads us to the following section.

3.3 Color-calibrated image matching
To compare color-pattern images to white-light

images, we use a color-calibrated image matching
procedure (Figure 5). Based on the standard color
spectrum, we expect the red and blue color channels to
offer little or no overlap and thus we use red and blue
color stripes. We fix the shutter speed, white balance,
and adjust gain to prevent overflow. A smaller gain is
used for capturing white-light images. The white-light
illuminated motion-state images encode the response
of the scene to red and blue light. However, in general

the response is not the same as red-only or blue-only
light. This is due to the various projector and camera
technologies which use different strategies to project
or capture color.

We estimate the spectral response of the camera to
projector light using a triple of calibration images. We
capture a scene (either the actual scene with no motion
or a similar one-time calibration scene) with red-only,
blue-only, and white projector light. Then, we
compute scale factors for the red channel and for the
blue channel of the white-light image that minimize the
difference between the single-channel images and the
multi-channel image. The scale values depend on the
scene and on the actual hardware used.

For motion state matching, our method computes a
normalized image difference. The stronger color
channel (r or b) of each pixel p of a pattern image is
subtracted from the corresponded and scaled pixel q of
the white-light image. Thus, given a predefined
threshold t, per-pixel image difference is defined to be

⎪⎩

⎪
⎨
⎧

+>−
+>−

=
otherwiseundefined

tpp|qp|
tpp|qp|

)q,p(d rbbb
brrr

.

4. Reconstruction
Scene reconstruction is performed only on

selected states, each of which has a complete set of
pattern images. The two-color patterns are used in a
similar fashion to standard binary structured-light
methods. To better account for global illumination
effects and unknown surface albedo, we project Gray
code patterns and their inverses. Same-code pixel
clusters that span too much image area are culled.
Corresponded points whose camera and projector rays
do not pass close enough are culled. Points floating in
space without nearby points are removed as well.

5. Implementation details
We implemented our system in C/C++ using a PC

with a 3.6GHz CPU and 2GB memory. Our camera is
a Point Grey Dragonfly Express camera capturing
640x480 resolution color images at up to 200Hz. The
fast shutter speed of the camera helps reduce motion
blur. However, our system only stores images to disk
at a rate of 30Hz. To project patterns, we use a Canon
Realis SX6 LCOS projector with a resolution of
1280x1024 and three explicit LCD panels so as
minimize spectral overlap. Color calibration computed
that the camera’s average scale values to make white-
light images match separately-illuminated images are
1.398 and 1.043 for red and blue, respectively. The
projector and camera are geometrically calibrated by
the method of Sadlo et al. [19]. Our system projects a
total of 32 stripe patterns (8 horizontal, 8 vertical, and

b) d)
Blue channel

Red channel

a)

c) e)

Figure 5. Color calibration for image matching. a)
Image of scene under white light after white
balancing. b-c) Channels of the original white-light
image. d-e) Observed channels under red/blue light
only. After calibration, images in (b-c) become
virtually identical to (d-e).

their inverses). All image comparisons are done on the
CPU at full-resolution.

6. Experimental results
We have captured three different scenes to test our

method: Bicycle, Cruiser, and Exerciser. Details and
statistics are in Table 1. For all datasets, we reconstruct
the best repeating sequence obtained via the
thresholded similarity matrix of the white-light images.
As an example, Figure 6 shows part of the original
similarity matrix, thresholded matrix, and several
motion states of the Cruiser dataset.

Given the desired sequence for reconstruction, our
method clusters the white-light images as described in
Section 3.1. Figure 7 illustrates the tradeoff that results
from different clustering thresholds. The horizontal
axis represents the amount of clustering performed
between white-light images. The vertical axis
represents the matching error between pattern images
and white-light images. The units of both axes are
normalized per-pixel error. Ideally, we desire a
solution at y=0 (i.e., zero motion difference between
the pattern images and the white-light images) and x=0
(i.e., no clustering, thus exactly each frame of the
desired looping segment is reconstructed). However,
except for perfectly periodic motion (which results in a
horizontal line at y=0), this is impossible. Thus, we
seek for a “sweet spot” that produces a balanced trade-
off of the two errors. In general, this occurs at the point
on the graph closest to (x=0, y=0). For our datasets,
this occurs in the clustering range [0.03, 0.06] and is
the range we use.

Figure 8 compares the results of using our red-
blue patterns for the Bicycle dataset to only using a

single color for the subset of the image surrounding the
motion (e.g., using “red” and assuming “blue”
corresponds to black). The graph shows an advantage
in our favor of about 10% – the benefit is of course
motion and scene dependent. Pictorial examples of
failures were previously shown in Figure 4. Once the
motion states and patterns have been matched, scene
reconstruction can proceed. Figure 9a shows a virtual
viewer observing the Bicycle dataset using colored
points. Figures 9b-c contain renderings from novel
viewpoints of our other datasets using texture-mapped
triangles with “skins” removed automatically. Figures
9d-f contain the corresponding depth maps. Our
acquisition provides freedom to change the viewpoint,
to change the time instance, and to generate reordered
motion sequences. Thus, Figures 10a-c show a
temporal sequence from a novel but fixed viewpoint
for the Cruiser dataset. Figures 10d-f show a moving
viewpoint at a fixed time using our Bicycle dataset.

Regarding limitations, our system cannot
faithfully recover dark or green-only surfaces.
However, in a typical scene most surfaces are a
mixture of colors and are rarely pure green. Our
approach is also limited to in-place repetitive motions.
We look to feature tracking and image warping as a
means to re-center translating objects. Finally, motion
capture research focuses on capturing moving humans.

a)

Figure 6. Image-based motion states. a) Partial motion-state inter-similarity matrix (left) and the thresholded
one (right). b-d) Example motion states of the Cruiser dataset.

b) c) d)

Dataset No.
Points

Time/No.
Images

No.
States

Compute
Time

Bicycle 33000 5.5 mins/9900 34 3.5 hrs
Cruiser 33200 4.6 mins/8250 53 3.2 hrs
Exerciser 34000 2.7 mins/4900 20 0.6 hrs

Table 1. Dataset statistics. Time refers to length of
recorded video, number of states refers to number of
unique images in the best repeating sequence.

Figure 7. Clustering trade-off. We show the
tradeoff between clustering and matching error.

0.1

0.11

0.12

0.13

0.01 0.05 0.09 0.13 0.17

Clustering Threshold

M
at

ch
in

g
E

rro
r

Bicycle
Cruiser
Exerciser

But, such approaches often require a priori models of
the human body and do not actually recover a 3D
model but rather parameters of the joints of an existing
model. While we do demonstrate our method with
humans, we make no special assumptions. In fact the
deformations that occur (e.g., bending of clothing)
actually make the problem more difficult because we
cannot assume rigid motions.

7. Conclusions and future work
We have presented a robust method to densely

capture both depth and color samples of dynamic
scenes containing repetitively moving and deforming
surfaces. Our demonstrations indicate that with video
sequences of only a few minutes in length and by
automated processing, high quality reconstructions of a
time-varying model can be obtained. By converting a
dynamic scene problem into a series of more robust
static scene reconstructions, our method achieves high
density by using the more accurate time-multiplexed

codes (as opposed to single-frame codes).
There are several avenues of future work. In

particular, we would like to use graphics hardware to
accelerate our image processing, thus reducing
processing time, to extend our method to a multi-
viewpoint capture, and to pursue automatic adaptation.
Thus, as capture proceeds the system should advance
to the next pattern as soon as possible.

Acknowledgement
The authors would like to thank the reviewers for their
comments and Haiqiong Li for performing the motion.
This work was supported by NSF CCF 0434398 and
by a Purdue Research Foundation grant.

References
[1] A. Agarwala, K.C. Zheng, C. Pal, M. Agrawala, M. Cohen, B.

Curless, D. Salesin, and R. Szeliski, “Panoramic Video
Textures”, ACM Trans. on Graphics, 24, 3, 2005, pp. 821-827.

[2] J. Carranza, C. Theobalt, M.A. Magnor, and H.-P. Seidel,
“Free-Viewpoint Video of Human Actors”, ACM Trans. on
Graphics, 22, 3, 2003, pp. 569 - 577.

[3] D. Caspi, N. Kiryati, J. Shamir, "Range Imaging with Adaptive
Color Structured Light", IEEE PAMI, 20, 5, 1998, pp. 470 -
480.

[4] C.-S. Chen, Y.-P. Hung, C.-C. Chiang, and J.-L. Wu, “Range
Data Acquisition using Color Structured Lighting and Stereo
Vision”, Image and Vision Comp., 15, 6, 1997, pp. 445-456.

[5] C.J. Davies, and M.S. Nixon, “A Hough Transform for
Detecting the Location and Orientation of Three-Dimensional
Surfaces via Color Encoded Spots”, IEEE Trans. on Systems,
Man and Cybernetics, 28, 1, 1998, pp. 90 - 95.

[6] R. Cutler and L. Davis, “Robust Real-Time Periodic Motion
Detection, Analysis, and Applications”, IEEE Trans. on PAM.,
22, 8, 2000, pp. 781-796.

[7] P. Einarsson, C.-F. Chabert, A. Jones, W.-C. Ma, B. Lamond,
T. Hawkins, M. Bolas, S. Sylwan, and P. Debevec, “Relighting

Figure 8. Comparison of decoded pixels.
Because of better state matching, our two-color
structured light patterns decode more pixels.

Decoded Pixels

12000

12500

13000

13500

14000

14500

15000

15500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

State Number

No
. P

oi
nt

s

Red-blue stripes
White-black stripes

Figure 9. Reconstructions.
a) Colored point rendering of
Bicycle dataset b-c) Texture-
mapped triangle rendering of
Cruiser and Exerciser data-
sets. d-f) Depth maps
corresponding to the images
in a-c) computed by
interpolating the depth
samples.

a) b) c)

d) e) f)

Human Locomotion with Flowed Reflectance Fields”, Proc. of
EGSR, 2006, pp. 183-194.

[8] P. Fong, F. Buron, “High-resolution 3-dimensional Sensing of
Fast Deforming Objects”, Proc. IROS, 2005, pp. 1606- 1611.

[9] C. Frueh, A. Zakhor, “Capturing 2½D Depth and Texture of
Time-varying Scenes using Structured Infrared Light”, Proc. of
3DIM, 2005, pp. 318 - 325.

[10] O. Hall-Holt, S. Rusinkiewicz, “Stripe Boundary Codes for
Real-time Structured-light Range Scanning of Moving
Objects”, Proc. of ICCV, 2001, pp. 359-366.

[11] G.J. Iddan, and G. Yahav, “Three-dimensional Imaging in the
Studio and Elsewhere”, Proc. SPIE Vol. 4298, 2001, pp. 48-55.

[12] S. Inokuchi, K. Sato, and F. Matsuda, “Range imaging system
for 3-D object recognition”, Proc. ICPR, 1984, pp. 806-808.

[13] T.P. Koninckx, I. Geys, T. Jaeggli, and L. Van Gool, “A Graph
Cut based Adaptive Structured Light Approach for Real-time
Range Acquisition”, Proc. of 3DPVT, 2004, pp.413 - 421.

[14] T.P. Koninckx, A. Griesser, L. Van Gool, “Real-time Range
Scanning of Deformable Surfaces by Adaptively Coded
Structured Light”, Proc. of 3DIM, 2003, pp. 293 - 300.

[15] I. Laptev, S. Belongie, P. Perez, and J. Wills, “Periodic Motion
Detection and Segmentation via Approximate Sequence
Alignment”, Proc. ICCV, 2005, pp. 816-823.

[16] W. Matusik, C. Buehler, R. Raskar, S.J. Gortler, and L.
McMillan, “Image-based Visual Hulls”, Proc. of ACM
SIGGRAPH, 2000, pp. 369-374.

[17] C. Rocchini, P. Cignoni, C. Montani, P. Pingi, and R.
Scopigno, “A Low Cost 3D Scanner Based on Structured
Light,” Computer Graphics Forum, 20, 3, 2001, pp. 299-308.

[18] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3D
Model Acquisition”, ACM Trans. Graphics, 21, 3, 2002, pp.
438 - 446.

[19] F. Sadlo, T. Weyrich, R. Peikert, and M. Gross, “A Practical
Structured Light Acquisition System for Point-based Geometry
and Texture”, Proc. of PBG, 2005, pp. 89-98.

[20] D. Scharstein and R. Szeliski, “High-Accuracy Stereo Depth
Maps Using Structured Light”, Proc. of CVPR 2003, pp. 195-
202.

[21] A. Schödl, R. Szeliski, D.H. Salesin, and I. ESSA, “Video
Textures”, Proc. of ACM SIGGRAPH, 2000, pp. 489-498.

[22] S. Seitz and C. Dyer, “View-Invariant Analysis of Cyclic
Motion”, Int’l Journal of Computer Vision, 3, 1997, pp. 231-
251.

[23] J. Starck, G. Miller, and A. Hilton, “Video-based Character
Animation”, Proc. of SCA, 2005, pp. 49-58.

[24] S. Vedula, S. Baker, S. Seitz, and T. Kanade, “Shape and
Motion Carving in 6D”, Proc. of CVPR, 2000, pp. 592 – 598.

[25] M. Waschbüsch, S. Würmlin, D. Cotting, F. Sadlo and M.
Gross, “Scalable 3D Video of Dynamic Scenes”, The Visual
Computer, 21, 8-10, 2005, pp. 629-638.

[26] Y. Xu and D.G. Aliaga, “Efficient Multi-viewpoint Acquisition
of 3D Objects Undergoing Repetitive Motions”, Proc. of I3D,
2007, pp. 113-120.

[27] L. Zhang, B. Curless, S.M. Seitz, “Rapid Shape Acquisition
using Color Structured Light and Multi-pass Dynamic
Programming”, Proc. of 3DPVT, 2002, pp. 24 - 36.

[28] L. Zhang, B. Curless, and S.M. Seitz, “Spacetime Stereo: Shape
Recovery for Dynamic Scenes”, In Proc. of CVPR, 2003, pp.
367-374.

[29] C.L. Zitnick, S.B. Kang, M. Uyttendaele, S. Winder, and R.
Szeliski, “High-Quality Video View Interpolation using a
Layered Representation”, ACM Trans. on Graphics, 23, 3,
2004, pp. 600-608.

a) b) c)

Figure 10. Synthetic sequences. a-c) A temporal sequence of Cruiser from a stationary but novel viewpoint.
d-f) A frozen time sequence of Bicycle from novel and different viewpoints.

d) e) f)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

