N
¥

Stacks

= 8

N

Outline and Reading

®T
®A

#Array-based implementation (84.2.2)

*G

ne Stack ADT (84.2.1)

oplications of Stacks (84.2.3)

rowable array-based stack

Stacks

Abstract Data Types (ADTs)

N

An abstract data 4 Example: ADT modeling a
type (ADT) Isan simple stock trading system
abstraction of a = The data stored are buy/sell

data structure orders
® An ADT specifies: . The operations supported are

= Data stored + order buy(stock, shares, price)

= Operations on the + order sell(stock, shares, price)
data + void cancel(order)

= Error conditions = Error conditions:
associated with + Buy/sell a nonexistent stock
operations

+ Cancel a nonexistent order

Stacks 3

The Stack ADT

p
N
The Stack ADT stores # Auxiliary stack
arbitrary objects operations:
Insertions and deletions = top(): returns a reference
follow the last-in first-out t0.the-last Inserted,. .
element without removing
scheme 1
@ Think of a spring-loaded s size(): returns the number
plate dispenser of elements stored
Main stack operations: = ISEmpty(): returns a
: 7 Boolean value indicating
= push(object 0): inserts

whether no elements are

element o
stored

= pop(): removes and returns
the last inserted element

Stacks 4

N

Exceptions

Attempting the # In the Stack ADT,
execution of an operations pop and
operation of ADT may top cannot be
sometimes cause an performed If the
error condition, called stack Is empty
an exception # Attempting the

Exceptions are said to execution of pop or
be “thrown” by an top on an empty

operation that cannot stack throws an
be executed EmptyStackException

Stacks 5

Applications of Stacks

N

Direct applications
= Page-visited history in a Web browser
= Undo seguence in a text editor
= Saving local variables when one function calls
another, and this one calls another, and so on.
Indirect applications
= Auxiliary data structure for algorithms
= Component of other data structures

Stacks

N

The C++ run-time system
keeps track of the chain of
active functions with a stack

\When a function is called, the
run-time system pushes on the
stack a frame containing

= Local variables and return value
= Program counter, keeping track of
the statement being executed

\When a function returns, its
frame is popped from the stack
and control is passed to the
method on top of the stack

Stacks

C++ Run-time Stack

main() {
inti=5;
foo(i);
}

foo(int J) {
int k;
kK=]+1,
bar(k);
}

bar(int m) {

bar
PC=1
m:

foo
PC=3

(S

main
PC=2
=5

N

Array-based Stack

A simple way of
Implementing the
Stack ADT uses an
array

We add elements

from left to right
A variable keeps

Algorithm size()
returnt+ 1

Algorithm pop()
If iIsEmpty() then
throw EmptyStackException
else

track of the index of tet-1
the top element return S[t + 1]
S NN
012 t

Stacks 8

N

The array storing the
stack elements may
become full

A push operation will
then throw a
FullStackException

= Limitation of the array-
based implementation

= Not intrinsic to the
Stack ADT

Array-based Stack (cont.)

Algorithm push(o)
If t =S.length — 1 then
throw FullStackException
else
te—t+1
S[t] « 0

012

Stacks

Performance and Limitations

N

Performance
= Let n be the number of elements in the stack
= The space used is O(n)
= Each operation runs in time O(1)

Limitations

x The maximum size of the stack must be defined a
priori , and cannot be changed

= Trying to push a new element into a full stack
causes an implementation-specific exception

Stacks 10

Computing Spans

N

-

We show how to use a stack ¢
as an auxiliary data structure g
In an algorithm

Glven an an array X, the span
S[i] of X[i] is the maximum

number of consecutive 2
elements X[j] immediately 1
preceding X[i] and such that
X[] = X[1]

Spans have applications to
financial analysis
m E.Q., stock at 52-week high

Stacks

w

N

O

N

w

N

Quadratic Algorithm

Algorithm spans1(X, n)
|nput array X of n integers
Output array S of spans of X
S « new array of n integers
for i< Oton—-1do

s« 1
whiles <1 A X[1 —s] < X][i]
S« s+1
S[1] « s
return S

> 5 5

1+2+...+(n-1)
1+2+ ...+ (nh-1)

n
1

Algorithm spansl runs in O(n?) time

Stacks

12

N

We keep in a stack the
Indices of the elements
visible when “looking
back”

\We scan the array from
left to right
= Let i be the current index

= We pop indices from the
stack until we find index |
such that X[i] < X][j]

m Weset S[i] «1—]
= We push x onto the stack

Stacks

Computing Spans with a Stack

1

012345867

13

N

Linear Algorithm

Each index of the
array

= Is pushed into the
stack exactly one

= |s popped from

the stack at most

once
The statements in
the while-loop are
executed at most

n times

Algorithm spans2
runs in O(n) time

Algorithm spans2(X, n) =
S < new array of nintegers n
A < new empty stack 1
for i< Oton-1do n
! Je—i1-1 1

while (=A.ISEmpty() A
X[top()] £ X[i])do n
] <= A.pop() n
If A.isEmpty() then n
S[i] «1+1 n

else

S[i] «1—] n
A.push(i) n
return S 1

Stacks 14

N

In a push operation, when
the array is full, instead of
throwing an exception, we
can replace the array with
a larger one

How large should the new
array be?

= Incremental strategy:
Increase the size by a
constant c

= doubling strategy: double
the size

Stacks

Growable Array-based Stack

Algorithm push(o)

If t =S.length — 1 then
A < new array of
size...
for i<~ Ototdo
All] « S[i]

S« A
te—t+1
S[t] « 0

15

N

Comparison of the Strategies

\We compare the incremental strategy and
the doubling strategy by analyzing the total
time T(n) needed to perform a series of n

push operations

\We assume that we start with an empty
stack represented by an array of size 1

We call amortized time of a push operation
the average time taken by a push over the
series of operations, i.e., T(n)/n

Stacks

16

Incremental Strategy Analysis

N

We replace the array k = n/c times

The total time T(n) of a series of n push
operations is proportional to

n+c+2c+3c+4c+...+kc=
A-+h-(L+ 23+ K)=
n + ck(k + 1)/2
Since c is a constant, T(n) is O(n + k?), i.e.,
O(n?)
The amortized time of a push operation is O(n)

Stacks 17

N

Doubling Strategy Analysis

We replace the array k =1log, n
times

The total time T(n) of a series
of n push operations Is
proportional to

N+1+2+4+8+ .. .+2k=
n+2«+1-1 =2n-1
T(n) is O(n)
The amortized time of a push
operation is O(1)

geometric series

2

Stacks 18

Accounting Method Analysis

f‘\

~of the Doubling Strategy é

The accounting method determines the amortized
running time with a system of credits and debits

We view a computer as a coin-operated device requiring
1 cyber-dollar for a constant amount of computing.

= We set up a scheme for charging operations. This
IS known as an amortization scheme.

= The scheme must give us always enough money to
pay for the actual cost of the operation.

= The total cost of the series of operations is no more
than the total amount charged.

(amortized time) < (total $ charged) / (# operations)

Stacks 19

Amortization Scheme for

N

/ the Doubling Strategy

Consider again the & phases, where each phase consisting of twice
as many pushes as the one before.

At the end of a phase we must have saved enough to pay for the
array-growing push of the next phase.

At the end of phase /we want to have saved /cyber-dollars, to pay
for the array growth for the beginning of the next phase.

®O®O G ®
®O®® ®

8 9101112131415

0123456 7

e We charge $3 for a push. The $2 saved for a regular push are
“stored” in the second half of the array. Thus, we will have
2(#2)=1/cyber-dollars saved at then end of phase /.
e Therefore, each push runs in O(1) amortized time; 77 pushes run
in O(n) time.

Stacks 20

\V

N

N

Outline and Reading

#The Queue ADT (84.3.1)

#|mplementation with a circular array
(84.3.2)

#Growable array-based queue
#Queue interface in C++

Stacks

22

N

The Queue ADT

*®

*

*®

*

The Queue ADT stores arbitrary 4 Auxiliary queue
objects operations:
Insertions and deletions follow m front(): returns the element
the first-in first-out scheme at the front without
Insertions are at the rear of the removing i
queue and removals are at the = size(): returns the number
front of the queue of elements stored
- R m ISEmpty(): returns a
Main queue op_eratlon_s. Boolean indicating whether
= enqueue(Object 0): inserts an no elements are stored
element o at the end of the ;
queue # Exceptions
- dequeue(): removes and | Attemptlng the eXGCUtIOH Of
returns the element at the front dequeue or front on an
of the queue empty queue throws an
EmptyQueueException

Stacks 23

Applications of Queues

N

#Direct applications
= Waiting lists, bureaucracy
m Access to shared resources (e.g., printer)
= Multiprogramming

#Indirect applications
= Auxiliary data structure for algorithms
= Component of other data structures

Stacks 24

N

Array-based Queue

Use an array of size N in a circular fashion

Two variables keep track of the front and rear
f index of the front element
r index immediately past the rear element

Array location r is kept empty

normal configuration

QLTI I IIrtrtryrrrirrt
012 f r

wrapped-around configuration

QLLI I T IiIrtrtrrrrrrrt
012 r f

Stacks

25

Queue Operations

We use the Algorithm size()
modulo operator return (N —f +r) mod N
(r_e!fn_alnder ol Algorithm isEmpty()
division) return (f =)

QLTI T IIrtrtryrrrirrt
012 f r

QLI Ifrrrirrtrrrrrrrty
0-1-2--F f

Stacks

Queue Operations (cont.)

Operation enqueue Algorithm enqueue(o)
throws an exception if If size() =N — 1then
the array is full throw FullQueueException
This exception Is else
Implementation- Qlr} <o
dependent r< (r+1) modN
QLI TITITITVFTTT T T PT T 017011
012 f r
QLIT T I TTTIITIITI i iT]
012 r f

Stacks 27

N

Operation dequeue
throws an exception
If the queue is empty

This exception Is

Queue Operations (cont.)

Algorithm dequeue()
If IsEmpty() then
throw EmptyQueueException
else

specified in the 0 « QIf]
queue ADT f« (f+1) mod N
return o
QLIIT T T I T TV T PT T IT11 7]
012 f r
QLIIT T T ITITIITITTITTT]
012 r f

Stacks 28

Growable Array-based Queue

N

|n an engueue operation, when the array Is
full, instead of throwing an exception, we
can replace the array with a larger one

Similar to what we did for an array-based
stack

The enqueue operation has amortized
running time
= O(n) with the incremental strategy
= O(1) with the doubling strategy

Stacks 29

