
 1

CS 251, Fall 2007
Voicu Popescu
Assignment 10
Due Monday December 3rd, 11:59PM

Graphs & more

1. Implement an undirected graph data structure using adjacency lists, as a C++ class
UGraph in UGraph.cpp. A skeleton of UGraph.cpp is provided. The class should have the
following functionality:

a. Constructor UGraph ():
i. makes an undirected graph from input file “graphinput” (always use this

file name, you can hardcode the file name).
ii. the file format is the number of vertices n on the first line and then one line

for each vertex; a line starts with the degree of the vertex followed by the
adjacency list, which gives the indices of the adjacent vertices; the
constructor should maintain the adjacency list order given in the input files;
for example a complete graph with 3 nodes (i.e. “triangle”) is described as

3
2 1 2
2 0 2
2 0 1

iii. a vertex stores a character label ‘u’ or ‘v’ corresponding to “unexplored” or
“visited”, an integer degree, an array of adjacent vertex indices modeling
the adjacency list of the vertex, and an array of character edge labels with
possible values ‘u’, ‘d’, ‘b’, or ‘c’, corresponding to unexplored, discovery,
back, or cross edges, respectively; it is known that the maximum degree
of any vertex is 20, so you can statically allocate the adjacency list array
and the edge label array; initially all vertices and all edges are unexplored,
indicated with labels ‘u’.

b. Destructor ~ UGraph (): releases all and only dynamically allocated memory.
c. Print graph print(): outputs the edges of vertex with index k on line k; an edge is

printed out as a vertex index and a label, separated by a space; edges are
separated by a space; for example the graph above in the initial state would be
printed out as

1 u 2 u
0 u 2 u
0 u 1 u

d. Clear all labels clearall(): sets all vertex and edge labels to ‘u’.
e. Depth first search traversal dfs(int vi): labels edges according to a traversal

starting from vertex with index vi; the traversal should respect the adjacency list
order; the function does not output anything, it just sets the labels.

f. Breadth first search traversal bfs(int vi)l: labels edges according to a traversal
starting from vertex with index vi; the traversal should respect the adjacency list
order; the function does not output anything, it just sets the labels.

g. Reachability of vertex with index wi from vertex with index vi isreachable(int vi,
int wi); the function prints “yes” or “no”.

h. Print shortest distance between vertices with indices vi and wi
shortestdistance(int vi, int wi) as an integer.

 2

i. Additional instructions
i. Sample and code skeleton files are provided in a10_files.zip
ii. The main.cpp file is provided, but your UGraph class should work with any

valid main file. DO NOT modify the main file, the grader will use both the
provided main file and another main file to test your class
implementation’s correctness, therefore your own code segment in the
main file instead of the class files will most likely lead to a 0 for the overall
program grade.

iii. Example input and output is provided in files “sampleinput” and
“sampleoutput”. The provided main file will take keyboard input, and you
could use “main < sampleinput” on borg machines to redirect the
sampleinput file as the input. The output should be printed on the screen
and you could also use “main < sampleinput > sampleoutput” to save the
output into a file. Please make sure that your program can EXACTLY
reproduce that output file given the input file. You may want to use the
`diff' program to test this.

iv. DO NOT change any of the function signatures. Doing so will most likely
lead to a compile error when using and a 0 for your overall program grade.

v. Use the provided Makefile.
vi. Do not partition your code into files we haven't asked for. If you want to

use auxiliary classes, please put the code inside the UGraph.cpp and
UGraph.h files.

2. Extra credit 1 (2%): Show that the algorithm for testing strong connectivity given on
page 615 of our text in the “Testing for Strong Connectivity” section is correct.

3. Extra credit 2 (2%): Show that a DAG has a vertex with no outgoing edges.

4. Extra credit 3 (3%):

a. Build a text file named “paper.txt” from an ACM Transactions on ABC paper;
ABC should be your favorite computer science subfield.

b. Implement a void kmp(char *string) function that searches the text file for the
string using the Knuth-Morris-Pratt algorithm; the function prints out the failure
function for the string and prints out “found” or “not found”.

c. A main function is provided in e3.cpp, as well as a Makefile in a10_ex3.zip.

5. Turn in instructions:
a. Assignment specific:

i. Turn in files:
1. Required Part: UGraph.cpp, UGraph.h, main.cpp, Makefile
2. Extra credit:

a. extracredit.pdf for extra credit 1 and 2 (in one pdf file) in
lab10 folder.

b. If extracredit 3 is attempted, create a folder named ex3
under your lab10 folder; inside this folder, include e3.cpp
(which will include your kmp function), Makefile, and the text
file paper.txt. DO NOT include ex3 folder if extracredit 3 is
not attempted.

 3

c. Submit the corresponding extra credit blank file.
ii. Your code is REQUIRED to compile with /opt/csw/gcc3/bin/g++ (gcc

version 3.4.5) on the borg machines. If your code doesn't compile
with this compiler, then even if it compiles with another, your code
will still be considered non-compiling.

iii. Remember that assignment-specific turn-in instructions override general
instructions.

iv. Directory structure: all files in the directory lab10.
v. turnin command executed in the directory containing your lab10 directory:

 turnin -c cs251 -p lab10 lab10.
b. General:
 See instruction at http://www.cs.purdue.edu/cgvlab/courses/251/As/turnin.html

Make sure to check it EVERY TIME before submitting a new assignment. It is
updated periodically.

