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Outline and Reading

#Strings (811.1)

#Pattern matching algorithms
= Brute-force algorithm (811.2.1)

= Boyer-Moore algorithm (811.2.2)
= Knuth-Morris-Pratt algorithm (811.2.3)
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Strings

# A string is a sequence of
characters

# Examples of strings:
m C++ program
= HTML document
m  DNA sequence

= Digitized image

o no “\"“

- %
o\ o

# Let P be a string of size m

m A substring P[i .. j] of P is the
subsequence of P consisting of
the characters with ranks
between i and |

m A prefix of P is a substring of
the type P[0 .. i]

m A suffix of P is a substring of

# An alphabet 2'is the set of the type P[i .m — 1]

possible characters for a
family of strings

# Example of alphabets:

# Given strings T (text) and P
(pattern), the pattern matching
problem consists of finding a

s ASCII (used by C and C++) substring of T equal to P

= Unicode (used by Java)

« {0, 1}
w{AC; 6T}

# Applications:
=  Text editors
m Search engines

= Biological research
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Brute-Force Alg
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# The brute-force pattern
matching algorithm compares
the pattern P with the text T
for each possible shift of P
relative to T, until either

s a match is found, or

= all placements of the pattern
have been tried

4 Brute-force pattern matching
runs in time O(nm)
4 Example of worst case:
m T=aaa...ah
= P=aaah

may occur in images and
DNA sequences

Algorithm BruteForceMatch(T, P)

Input text T of size n and pattern
P of sizem

Output starting index of a
substring of T equal to P or -1
If no such substring exists

for i< 0ton—-m
{ test shift i of the pattern }
j <0
while j <m A T[i +|] = P[j]
J«—]+1
if j=m
return 1 {match at i}
{else mismatch at i}
return -1 {no match anywhere}

unlikely in English text
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Boyer-Moore Heuristics

# The Boyer-Moore’s pattern matching algorithm is based on two

heuristics

Looking-glass heuristic: Compare P with a subsequence of T

moving backwards

Character-jump heuristic: When a mismatch occurs at T[i] =c

= If P contains c, shift P to align the last occurrence of ¢ in P with T{[i]

m Else, shift P to align P[0] with T[i + 1]

# Example
a plajt|{tje|r|n mja|t|{c|h|i|ln]|g a g ryi|t{h|m
1 3 5 1110 9 8 7
riift|him ryift|him rii m ryift|ihim
\2/ 'Y 4/ '\ 6/
riijt{h{m rii|t{h{m | t|h|m

Pattern Matching




L ast-Occurrence Function
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Boyer-Moore’s algorithm preprocesses the pattern P and the
alphabet 2 to build the last-occurrence function L mapping X'to
integers, where L(c) is defined as

m the largest index i such that P[i] =c or
s —1 if no such index exists

Example: " -
= >={ab,c, d} ¢ a ¢
= P =abacab L(c) A S 3 -1

The last-occurrence function can be represented by an array
iIndexed by the numeric codes of the characters

The last-occurrence function can be computed in time O(m +s),
where m is the size of P and s is the size of X
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The Boyer-Moore Algorithm
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Algorithm BoyerMooreMatch(T, P, 2)

L « lastOccurenceFunction(P, 2')
l<m-1
Jem-1
repeat
if T[i] = P[j]
if =0
return i { matchati }
else
l«<1-1
J«<]-1
else
{ character-jump }
| < L[TT[i]]
< T1+m-min(j, 1 +1)
Jem-1
until i>n-1
return —1 { no match }

Case 1: j<1+1

QD

— | O

Case 2: 1 +1<]
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Example

alblalclala ald|clal|blalc|alb
1
alblalclal|b
A 42 3 13 12 11 10 9 8
alblalc]|a alblalclalb
4 5 - A
alblalc b alblalclalb
4 6 ¥
albla alb
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Analysis

»

®

Boyer-Moore’s algorithm
runs in time O(nm + 3)

Example of worst case:
m [=aaa...a
= P =baaa
The worst case may occur In

Images and DNA sequences
but is unlikely in English text

Boyer-Moore’s algorithm is
significantly faster than the
brute-force algorithm on
English text

DI | D

QD

QD |0 QD (= | D
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The KMP Algorithm - Motivation

# Knuth-Morris-Pratt’s algorithm
compares the pattern to the

N

text in left-to-right, but shifts | .| .| al bl al al bl x

the pattern more intelligently
than the brute-force algorithm. I

* When_a mismatch occurs, | al bl al al bl a
what is the most we can shift
the pattern so as to avoid )

redundant comparisons?

4 Answer: the largest prefix of aj bj al a| b a

|

P[0..j] that is a suffix of P[L.]] r | \
No need to| - Resume
repeat these comparing
comparisons here
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# Knuth-Morris-Pratt’s
algorithm preprocesses the
pattern to find matches of
prefixes of the pattern with
the pattern itself

KMP Faillure Function

J

O|1 1|23 ]|4]|35

# The failure function F(j) is

defined as the size of the
largest prefix of P[0..j] that is
also a suffix of P[1..]]

# Knuth-Morris-Pratt’s
algorithm modifies the brute-
force algorithm so that if a
mismatch occurs at P[j] # T[i]
we set <« F(—-1)

P[j] a | a a

F() Ool1]|1] 2
alblala|b|Xx
I
alblala|b|a
]
I

alblala|b|a
T
F(G - 1)l
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The KMP Algorithm

# The failure function can be
represented by an array and
can be computed in O(m) time

# At each iteration of the while-
loop, either

= iincreases by one, or

m the shift amount i —j
Increases by at least one
(observe that F(j — 1) <))

# Hence, there are no more
than 2n iterations of the
while-loop

# Thus, KMP’s algorithm runs in
optimal time O(m + n)

Algorithm KMPMatch(T, P)

F « failureFunction(P)
1«0
j<«0
while i < n
if T[i] = PJj]
if j=m-1
return i—j{ match }
else
< 1+1
J<«—j+1
else
if >0
J<F-1]
else
< 1+1
return —1 { no match }
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Computing the Failure
Function

N

# The failure function can be

represented by an array and - ['ajgorithm failureFunction(P)
can be computed in O(m) time F[0] « 0

# The construction is similar to <1
the KMP algorithm itself J< 0
: ; _ while i <m
# At each iteration of the while- if P[i] = P[j]
loop, either {we have matched j + 1 chars}
= iincreases by one, or Fli] < J+1

_ ! l<1+1
= f[he shift amount i — | jej+1
increases by at least one else if j >0 then
(observe that F(j — 1) <)) {use failure function to shift P}
# Hence, there are no more J<Fl-1]
than 2m iterations of the else
_ F[i] <« 0 { no match }
while-loop f—i+1
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Example

Pattern Matching

alblalclalal|blalc|cl|lalbla|clalb b
1 2 3 4 5 6
alblalclalb
.
alblalclalb
8 9 10 11 12
alblalclal|b
13
: alblalc|alb
J 1O 314 |5
: 14 15 16 17 18 19
P b
['_] i alblalclal|b
F(j) 0 1]2
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nimize

mize

nimize

yAS

nimize

yAS

yAS
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Outline and Reading

#Standard tries (811.3.1)
#Compressed tries (811.3.2)
# Suffix tries (811.3.3)

#Huffman encoding tries (811.4.1)
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Preprocessing Strings

# Preprocessing the pattern speeds up pattern matching
gueries

m After preprocessing the pattern, KMP’s algorithm performs
pattern matching in time proportional to the text size

# If the text is large, iImmutable and searched for often

(e.g., works by Shakespeare), we may want to
preprocess the text instead of the pattern

# A trie is a compact data structure for representing a
set of strings, such as all the words in a text

= A trie supports pattern matching queries in time proportional
to the pattern size

Pattern Matching 17




Standard Trie (1)

@ The standard trie for a set of strings S is an ordered tree such that:
= Each node but the root is labeled with a character
= The children of a node are alphabetically ordered
s The paths from the external nodes to the root yield the strings of S
# Example: standard trie for the set of strings
S = { bear, bell, bid, bull, buy, sell, stack, stop }
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Standard Trie (2)

# A standard trie uses O(n) space and supports
searches, insertions and deletions in time O(dm),
where:

n total size of the strings in S
m size of the string parameter of the operation
d size of the alphabet

Pattern Matching 19




Word I\/Iatchlng with a Trie

f‘\

@ We insert the
words of the
text into a
trie

# Each leaf
stores the
occurrences
of the
associated
word in the
text

S

=

e

a

e

a

r

?

S

e

S

t

0]

1

2

4

6 7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

S|e

e

b

u

?

b

u

y

S

t

o

C

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

b

d

S

t

Oo|C

Kk

b

d

S

t

o

C

k

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

h

=

a

r

t

h

e

b

e

?

S

t

o

P

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

47, 58

Pattern Matching

12

17, 40,

51, 62

67

68

84

46

20

23




N

®

*®

Compressed Trie

A compressed trie has
internal nodes of degree
at least two

It is obtained from
standard trie by
compressing chains of
“redundant” nodes

ar Il
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Compact Representation

# Compact representation of a compressed trie for an array of strings:
m Stores at the nodes ranges of indices instead of substrings
m Uses O(s) space, where s is the number of strings in the array
m Serves as an auxiliary index structure

01234 0123 0123
S[0]= |s|e|e si4]= |blu|l|l S[71= |hle|a|r
S[1]= |blela|r sis]= (bluly sig]= (blell|l
s[2]= |s|e|l |l s[e]= |b|i|d S[9]1= |[s|t|o|p
S[31= [s|t]|o|c|k

1,2, 3 8,2,3 4,2, 3 >, 2,2 0,2,2 2,2,3 3.3, 4 S 5,
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Suffix Trie (1)

# The suffix trie of a string X is the compressed trie of all the
suffixes of X

m
0

m
4

N | S

|
3
Q

mize nimize

e

nimize
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Suffix Trie (2)

# Compact representation of the suffix trie for a string X of size n
from an alphabet of size d

m Uses O(n) space

m Supports arbitrary pattern matching queries in X in O(dm) time,
where m is the size of the pattern

m m
0 4

NS
Wl —
O | N
~ | D

4,7 2,7 6, 7 2,7 6, 7
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Encoding Trie (1)

# A code is a mapping of each character of an alphabet to a binary
code-word

# A prefix code is a binary code such that no code-word is the prefix
of another code-word

# An encoding trie represents a prefix code
m Each leaf stores a character

m The code word of a character is given by the path from the root to
the leaf storing the character (O for a left child and 1 for a right child

00 (010|011 | 10 | 11
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Encoding Trie (2)

# Given a text string X, we want to find a prefix code for the characters

of X that yields a small encoding for X

= Frequent characters should have long code-words
m Rare characters should have short code-words

# Example
m X = abracadabra

= T, encodes X into 29 bits
= T, encodes X into 24 bits

T

Pattern Matching
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Huffman s Algorithm

f‘\

4 (lven a string X,

4

Huffman’s algorithm
construct a prefix
code the minimizes
the size of the
encoding of X

It runs in time

O(n +d log d), where
n is the size of X
and d is the number
of distinct characters
of X

A heap-based
priority queue is
used as an auxiliary
structure

Algorithm HuffmanEncoding(X)
Input string X of size n
Output optimal encoding trie for X
C « distinctCharacters(X)
computeFrequencies(C, X)
Q « new empty heap
forallc e C
T « new single-node tree storing c
Q.insert(getFrequency(c), T)
while Q.size() > 1
f, < Q.minKey()
T, < Q.removeMin()
f, < Q.minKey()
T, < Q.removeMin()
T «join(T,, T),)
Q.insert(f, +f,, T)
return Q.removeMin()
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/ X = abracadabra
Frequencies

a | b

o

5 | 2

a b C d

5 2 1 1
U

/@\

a b C d

-

a C

a

>
it b

5
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