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Outline and Reading

Strings (§11.1)
Pattern matching algorithms

Brute-force algorithm (§11.2.1)
Boyer-Moore algorithm (§11.2.2)
Knuth-Morris-Pratt algorithm (§11.2.3)
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Strings
A string is a sequence of 
characters
Examples of strings:

C++ program
HTML document
DNA sequence
Digitized image

An alphabet Σ is the set of 
possible characters for a 
family of strings
Example of alphabets:

ASCII (used by C and C++)
Unicode (used by Java)
{0, 1}
{A, C, G, T}

Let P be a string of size m
A substring P[i .. j] of P is the 
subsequence of P consisting of 
the characters with ranks 
between i and j
A prefix of P is a substring of 
the type P[0 .. i]
A suffix of P is a substring of 
the type P[i ..m − 1] 

Given strings T (text) and P
(pattern), the pattern matching 
problem consists of finding a 
substring of T equal to P
Applications:

Text editors
Search engines
Biological research
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Brute-Force Algorithm
The brute-force pattern 
matching algorithm compares 
the pattern P with the text T
for each possible shift of P
relative to T, until either

a match is found, or
all placements of the pattern 
have been tried

Brute-force pattern matching 
runs in time O(nm)
Example of worst case:

T = aaa … ah
P = aaah
may occur in images and 
DNA sequences
unlikely in English text

Algorithm BruteForceMatch(T, P)
Input text T of size n and pattern 

P of size m
Output starting index of a 

substring of T equal to P or −1
if no such substring exists 

for i ← 0 to n − m
{ test shift i of the pattern }
j ← 0
while j < m ∧ T[i + j] = P[j]

j ← j + 1
if  j = m

return  i {match at i}
{else mismatch at i}

return  -1 {no match anywhere}
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Boyer-Moore Heuristics
The Boyer-Moore’s pattern matching algorithm is based on two 
heuristics
Looking-glass heuristic: Compare P with a subsequence of T
moving backwards
Character-jump heuristic: When a mismatch occurs at T[i] = c

If P contains c, shift P to align the last occurrence of c in P with T[i] 
Else, shift P to align P[0] with T[i + 1]

Example 

1

a p a t t e r n m a t c h i n g a l g o r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m
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7891011
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Last-Occurrence Function
Boyer-Moore’s algorithm preprocesses the pattern P and the 
alphabet Σ to build the last-occurrence function L mapping Σ to 
integers, where L(c) is defined as

the largest index i such that P[i] = c or
−1 if no such index exists 

Example:
Σ = {a, b, c, d}
P = abacab

The last-occurrence function can be represented by an array 
indexed by the numeric codes of the characters
The last-occurrence function can be computed in time O(m + s), 
where m is the size of P and s is the size of Σ

−1354L(c)
dcbac
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m − j

i

j l

. . . . . . a . . . . . .

. . . . b a

. . . . b a

j

Case 1: j ≤ 1 + l

The Boyer-Moore Algorithm
Algorithm BoyerMooreMatch(T, P, Σ)

L ← lastOccurenceFunction(P, Σ )
i ← m − 1
j ← m − 1
repeat 

if T[i] = P[j]
if  j = 0

return  i  { match at i }
else

i ← i − 1
j ← j − 1

else
{ character-jump }
l ← L[T[i]]
i ← i + m – min(j, 1 + l)
j ← m − 1

until  i > n − 1
return  −1 { no match }

m − (1 + l)

i

jl

. . . . . . a . . . . . .

. a . . b .

. a . . b .

1 + l

Case 2: 1 + l ≤ j



Pattern Matching 8

Example
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Analysis
Boyer-Moore’s algorithm 
runs in time O(nm + s)
Example of worst case:

T = aaa … a
P = baaa

The worst case may occur in 
images and DNA sequences 
but is unlikely in English text
Boyer-Moore’s algorithm is 
significantly faster than the 
brute-force algorithm on 
English text

11

1

a a a a a a a a a

23456
b a a a a a

b a a a a a

b a a a a a

b a a a a a

7891012

131415161718

192021222324
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The KMP Algorithm - Motivation
Knuth-Morris-Pratt’s algorithm 
compares the pattern to the 
text in left-to-right, but shifts 
the pattern more intelligently 
than the brute-force algorithm. 
When a mismatch occurs, 
what is the most we can shift 
the pattern so as to avoid 
redundant comparisons?
Answer: the largest prefix of 
P[0..j] that is a suffix of P[1..j]

x

j

. . a b a a b . . . . .

a b a a b a

a b a a b a

No need to
repeat these
comparisons

Resume
comparing

here
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KMP Failure Function
Knuth-Morris-Pratt’s 
algorithm preprocesses the 
pattern to find matches of 
prefixes of the pattern with 
the pattern itself
The failure function F(j) is 
defined as the size of the 
largest prefix of P[0..j] that is 
also a suffix of P[1..j]
Knuth-Morris-Pratt’s 
algorithm modifies the brute-
force algorithm so that if a 
mismatch occurs at P[j] ≠ T[i] 
we set  j ← F(j − 1)

1
a
3

2
b
4 5210j

3100F(j)
aabaP[j]

x

j

. . a b a a b . . . . .

a b a a b a

F(j − 1)

a b a a b a
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The KMP Algorithm
The failure function can be 
represented by an array and 
can be computed in O(m) time
At each iteration of the while-
loop, either

i increases by one, or
the shift amount i − j
increases by at least one 
(observe that F(j − 1) < j)

Hence, there are no more 
than 2n iterations of the 
while-loop
Thus, KMP’s algorithm runs in 
optimal time O(m + n)

Algorithm KMPMatch(T, P)
F ← failureFunction(P)
i ← 0
j ← 0
while i < n

if T[i] = P[j]
if  j = m − 1

return  i − j { match }
else

i ← i + 1
j ← j + 1

else
if  j > 0

j ← F[j − 1]
else

i ← i + 1
return  −1 { no match }
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Computing the Failure 
Function

The failure function can be 
represented by an array and 
can be computed in O(m) time
The construction is similar to 
the KMP algorithm itself
At each iteration of the while-
loop, either

i increases by one, or
the shift amount i − j
increases by at least one 
(observe that F(j − 1) < j)

Hence, there are no more 
than 2m iterations of the 
while-loop

Algorithm failureFunction(P)
F[0] ← 0
i ← 1
j ← 0
while i < m

if P[i] = P[j]
{we have matched j + 1 chars}
F[i] ← j + 1
i ← i + 1
j ← j + 1

else if  j > 0 then
{use failure function to shift P}
j ← F[j − 1]

else
F[i] ← 0 { no match }
i ← i + 1
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Example

1

a b a c a a b a c a b a c a b a a b b

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

c

0
c
3

1
a
4 5210j

2100F(j)
babaP[j]
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Tries

e nimize

nimize ze

zei mi

mize nimize ze
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Outline and Reading

Standard tries (§11.3.1)
Compressed tries (§11.3.2)
Suffix tries (§11.3.3)
Huffman encoding tries (§11.4.1)
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Preprocessing Strings
Preprocessing the pattern speeds up pattern matching 
queries

After preprocessing the pattern, KMP’s algorithm performs 
pattern matching in time proportional to the text size

If the text is large, immutable and searched for often 
(e.g., works by Shakespeare), we may want to 
preprocess the text instead of the pattern
A trie is a compact data structure for representing a 
set of strings, such as all the words in a text

A trie supports pattern matching queries in time proportional 
to the pattern size
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Standard Trie (1)
The standard trie for a set of strings S is an ordered tree such that:

Each node but the root is labeled with a character
The children of a node are alphabetically ordered
The paths from the external nodes to the root yield the strings of S

Example: standard trie for the set of strings
S = { bear, bell, bid, bull, buy, sell, stock, stop }
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Standard Trie (2)
A standard trie uses O(n) space and supports 
searches, insertions and deletions in time O(dm), 
where:
n total size of the strings in S
m size of the string parameter of the operation
d size of the alphabet 
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Word Matching with a Trie
We insert the 
words of the 
text into a 
trie
Each leaf 
stores the 
occurrences 
of the 
associated 
word in the 
text 

s e e b e a r ? s e l l s t o c k !

s e e b u l l ? b u y s t o c k !

b i d s t o c k !

a

a

h e t h e b e l l ? s t o p !

b i d s t o c k !
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Compressed Trie
A compressed trie has 
internal nodes of degree 
at least two
It is obtained from 
standard trie by 
compressing chains of 
“redundant” nodes
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Compact Representation
Compact representation of a compressed trie for an array of strings:

Stores at the nodes ranges of indices instead of substrings
Uses O(s) space, where s is the number of strings in the array
Serves as an auxiliary index structure

s e e
b e a r
s e l l
s t o c k

b u l l
b u y
b i d

h e
b e l l
s t o p

0 1 2 3 4
a rS[0] =

S[1] =

S[2] =

S[3] =

S[4] =

S[5] =

S[6] =

S[7] =

S[8] =

S[9] =

0 1 2 3 0 1 2 3

1, 1, 1

1, 0, 0 0, 0, 0

4, 1, 1

0, 2, 2

3, 1, 2

1, 2, 3 8, 2, 3

6, 1, 2

4, 2, 3 5, 2, 2 2, 2, 3 3, 3, 4 9, 3, 3

7, 0, 3

0, 1, 1
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Suffix Trie (1)
The suffix trie of a string X is the compressed trie of all the 
suffixes of X

e nimize

nimize ze

zei mi

mize nimize ze

m i n i z em i
0 1 2 3 4 5 6 7
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Suffix Trie (2)
Compact representation of the suffix trie for a string X of size n
from an alphabet of size d

Uses O(n) space
Supports arbitrary pattern matching queries in X in O(dm) time, 
where m is the size of the pattern

7, 7 2, 7

2, 7 6, 7

6, 7

4, 7 2, 7 6, 7

1, 1 0, 1

m i n i z em i
0 1 2 3 4 5 6 7
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Encoding Trie (1)
A code is a mapping of each character of an alphabet to a binary
code-word
A prefix code is a binary code such that no code-word is the prefix 
of another code-word
An encoding trie represents a prefix code

Each leaf stores a character
The code word of a character is given by the path from the root to 
the leaf storing the character (0 for a left child and 1 for a right child

a

b c

d e

111001101000

edcba
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Encoding Trie (2)
Given a text string X, we want to find a prefix code for the characters 
of X that yields a small encoding for X

Frequent characters should have long code-words
Rare characters should have short code-words

Example
X = abracadabra
T1 encodes X into 29 bits
T2 encodes X into 24 bits

c

a r

d b a

c d

b r

T1 T2
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Huffman’s Algorithm
Given a string X, 
Huffman’s algorithm 
construct a prefix 
code the minimizes 
the size of the 
encoding of X
It runs in time
O(n + d log d), where 
n is the size of X
and d is the number 
of distinct characters 
of X
A heap-based 
priority queue is 
used as an auxiliary 
structure

Algorithm HuffmanEncoding(X)
Input string X of size n
Output optimal encoding trie for X
C ← distinctCharacters(X)
computeFrequencies(C, X)
Q ← new empty heap 
for all c ∈ C

T ← new single-node tree storing c
Q.insert(getFrequency(c), T)

while Q.size() > 1
f1 ← Q.minKey()
T1 ← Q.removeMin()
f2 ← Q.minKey()
T2 ← Q.removeMin()
T ← join(T1, T2)
Q.insert(f1 + f2, T)

return Q.removeMin()
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Example

rdcba

21125

X = abracadabra
Frequencies

ca rdb
5 2 1 1 2

ca rdb
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5 2 2
ca bd r

2

5

4

ca bd r

2

5

4

6

c

a

bd r

2 4

6

11


