\V

Pattern Matching

Pattern Matching

a alb
1
a b
3 2
alb
1.
N

N

Outline and Reading

#Strings (811.1)

#Pattern matching algorithms
= Brute-force algorithm (811.2.1)

= Boyer-Moore algorithm (811.2.2)
= Knuth-Morris-Pratt algorithm (811.2.3)

Pattern Matching

N

Strings

A string is a sequence of
characters

Examples of strings:
m C++ program
= HTML document
m DNA sequence

= Digitized image

o no “\"“

- %
o\ o

Let P be a string of size m

m A substring P[i .. j] of P is the
subsequence of P consisting of
the characters with ranks
between i and |

m A prefix of P is a substring of
the type P[0 .. i]

m A suffix of P is a substring of

An alphabet 2'is the set of the type P[i .m — 1]

possible characters for a
family of strings

Example of alphabets:

Given strings T (text) and P
(pattern), the pattern matching
problem consists of finding a

s ASCII (used by C and C++) substring of T equal to P

= Unicode (used by Java)

« {0, 1}
w{AC; 6T}

Applications:
= Text editors
m Search engines

= Biological research
Pattern Matching 3

orithm

Brute-Force Alg

N

The brute-force pattern
matching algorithm compares
the pattern P with the text T
for each possible shift of P
relative to T, until either

s a match is found, or

= all placements of the pattern
have been tried

4 Brute-force pattern matching
runs in time O(nm)
4 Example of worst case:
m T=aaa...ah
= P=aaah

may occur in images and
DNA sequences

Algorithm BruteForceMatch(T, P)

Input text T of size n and pattern
P of sizem

Output starting index of a
substring of T equal to P or -1
If no such substring exists

for i< 0ton—-m
{ test shift i of the pattern }
j <0
while j <m A T[i +|] = P[j]
J«—]+1
if j=m
return 1 {match at i}
{else mismatch at i}
return -1 {no match anywhere}

unlikely in English text

Pattern Matching

N

Boyer-Moore Heuristics

The Boyer-Moore’s pattern matching algorithm is based on two

heuristics

Looking-glass heuristic: Compare P with a subsequence of T

moving backwards

Character-jump heuristic: When a mismatch occurs at T[i] =c

= If P contains c, shift P to align the last occurrence of ¢ in P with T{[i]

m Else, shift P to align P[0] with T[i + 1]

Example
a plajt|{tje|r|n mja|t|{c|h|i|ln]|g a g ryi|t{h|m
1 3 5 1110 9 8 7
riift|him ryift|him rii m ryift|ihim
\2/ 'Y 4/ '\ 6/
riijt{h{m rii|t{h{m | t|h|m

Pattern Matching

L ast-Occurrence Function

N

®

Boyer-Moore’s algorithm preprocesses the pattern P and the
alphabet 2 to build the last-occurrence function L mapping X'to
integers, where L(c) is defined as

m the largest index i such that P[i] =c or
s —1 if no such index exists

Example: " -
= >={ab,c, d} ¢ a ¢
= P =abacab L(c) A S 3 -1

The last-occurrence function can be represented by an array
iIndexed by the numeric codes of the characters

The last-occurrence function can be computed in time O(m +s),
where m is the size of P and s is the size of X

Pattern Matching 6

The Boyer-Moore Algorithm

N
\

Algorithm BoyerMooreMatch(T, P, 2)

L « lastOccurenceFunction(P, 2')
l<m-1
Jem-1
repeat
if T[i] = P[j]
if =0
return i { matchati }
else
l«<1-1
J«<]-1
else
{ character-jump }
| < L[TT[i]]
< T1+m-min(j, 1 +1)
Jem-1
until i>n-1
return —1 { no match }

Case 1: j<1+1

QD

— | O

Case 2: 1 +1<]

Pattern Matching

N

Example

alblalclala ald|clal|blalc|alb
1
alblalclal|b
A 42 3 13 12 11 10 9 8
alblalc]|a alblalclalb
4 5 - A
alblalc b alblalclalb
4 6 ¥
albla alb

Pattern Matching

N

Analysis

»

®

Boyer-Moore’s algorithm
runs in time O(nm + 3)

Example of worst case:
m [=aaa...a
= P =baaa
The worst case may occur In

Images and DNA sequences
but is unlikely in English text

Boyer-Moore’s algorithm is
significantly faster than the
brute-force algorithm on
English text

DI | D

QD

QD |0 QD (= | D

Pattern Matching

16

15

14

13

23

22

21

20

19

The KMP Algorithm - Motivation

Knuth-Morris-Pratt’s algorithm
compares the pattern to the

N

text in left-to-right, but shifts | .| .| al bl al al bl x

the pattern more intelligently
than the brute-force algorithm. I

* When_a mismatch occurs, | al bl al al bl a
what is the most we can shift
the pattern so as to avoid)

redundant comparisons?

4 Answer: the largest prefix of aj bj al a| b a

|

P[0..j] that is a suffix of P[L.]] r | \
No need to| - Resume
repeat these comparing
comparisons here

Pattern Matching 10

N

Knuth-Morris-Pratt’s
algorithm preprocesses the
pattern to find matches of
prefixes of the pattern with
the pattern itself

KMP Faillure Function

J

O|1 1|23]|4]|35

The failure function F(j) is

defined as the size of the
largest prefix of P[0..j] that is
also a suffix of P[1..]]

Knuth-Morris-Pratt’s
algorithm modifies the brute-
force algorithm so that if a
mismatch occurs at P[j] # T[i]
we set <« F(—-1)

P[j] a | a a

F() Ool1]|1] 2
alblala|b|Xx
I
alblala|b|a
]
I

alblala|b|a
T
F(G - 1)l

Pattern Matching

11

N

The KMP Algorithm

The failure function can be
represented by an array and
can be computed in O(m) time

At each iteration of the while-
loop, either

= iincreases by one, or

m the shift amount i —j
Increases by at least one
(observe that F(j — 1) <))

Hence, there are no more
than 2n iterations of the
while-loop

Thus, KMP’s algorithm runs in
optimal time O(m + n)

Algorithm KMPMatch(T, P)

F « failureFunction(P)
1«0
j<«0
while i < n
if T[i] = PJj]
if j=m-1
return i—j{ match }
else
< 1+1
J<«—j+1
else
if >0
J<F-1]
else
< 1+1
return —1 { no match }

Pattern Matching 12

Computing the Failure
Function

N

The failure function can be

represented by an array and - ['ajgorithm failureFunction(P)
can be computed in O(m) time F[0] « 0

The construction is similar to <1
the KMP algorithm itself J< 0
: ; _ while i <m
At each iteration of the while- if P[i] = P[j]
loop, either {we have matched j + 1 chars}
= iincreases by one, or Fli] < J+1

_ ! l<1+1
= f[he shift amount i — | jej+1
increases by at least one else if j >0 then
(observe that F(j — 1) <)) {use failure function to shift P}
Hence, there are no more J<Fl-1]
than 2m iterations of the else
_ F[i] <« 0 { no match }
while-loop f—i+1

Pattern Matching 13

N

Example

Pattern Matching

alblalclalal|blalc|cl|lalbla|clalb b
1 2 3 4 5 6
alblalclalb
.
alblalclalb
8 9 10 11 12
alblalclal|b
13
: alblalc|alb
J 1O 314 |5
: 14 15 16 17 18 19
P b
['_] i alblalclal|b
F(j) 0 1]2

14

\V

nimize

mize

nimize

yAS

nimize

yAS

yAS

N

Pattern Matching

15

N

Outline and Reading

#Standard tries (811.3.1)
#Compressed tries (811.3.2)
Suffix tries (811.3.3)

#Huffman encoding tries (811.4.1)

Pattern Matching

16

N

Preprocessing Strings

Preprocessing the pattern speeds up pattern matching
gueries

m After preprocessing the pattern, KMP’s algorithm performs
pattern matching in time proportional to the text size

If the text is large, iImmutable and searched for often

(e.g., works by Shakespeare), we may want to
preprocess the text instead of the pattern

A trie is a compact data structure for representing a
set of strings, such as all the words in a text

= A trie supports pattern matching queries in time proportional
to the pattern size

Pattern Matching 17

Standard Trie (1)

@ The standard trie for a set of strings S is an ordered tree such that:
= Each node but the root is labeled with a character
= The children of a node are alphabetically ordered
s The paths from the external nodes to the root yield the strings of S
Example: standard trie for the set of strings
S = { bear, bell, bid, bull, buy, sell, stack, stop }

Pattern Matching 18

N

Standard Trie (2)

A standard trie uses O(n) space and supports
searches, insertions and deletions in time O(dm),
where:

n total size of the strings in S
m size of the string parameter of the operation
d size of the alphabet

Pattern Matching 19

Word I\/Iatchlng with a Trie

f‘\

@ We insert the
words of the
text into a
trie

Each leaf
stores the
occurrences
of the
associated
word in the
text

S

=

e

a

e

a

r

?

S

e

S

t

0]

1

2

4

6 7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

S|e

e

b

u

?

b

u

y

S

t

o

C

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

b

d

S

t

Oo|C

Kk

b

d

S

t

o

C

k

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

h

=

a

r

t

h

e

b

e

?

S

t

o

P

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

47, 58

Pattern Matching

12

17, 40,

51, 62

67

68

84

46

20

23

N

®

*®

Compressed Trie

A compressed trie has
internal nodes of degree
at least two

It is obtained from
standard trie by
compressing chains of
“redundant” nodes

ar Il

Pattern Matching

ck

21

N

Compact Representation

Compact representation of a compressed trie for an array of strings:
m Stores at the nodes ranges of indices instead of substrings
m Uses O(s) space, where s is the number of strings in the array
m Serves as an auxiliary index structure

01234 0123 0123
S[0]= |s|e|e si4]= |blu|l|l S[71= |hle|a|r
S[1]= |blela|r sis]= (bluly sig]= (blell|l
s[2]= |s|e|l |l s[e]= |b|i|d S[9]1= |[s|t|o|p
S[31= [s|t]|o|c|k

1,2, 3 8,2,3 4,2, 3 >, 2,2 0,2,2 2,2,3 3.3, 4 S 5,

Pattern Matching 22

N

Suffix Trie (1)

The suffix trie of a string X is the compressed trie of all the
suffixes of X

m
0

m
4

N | S

|
3
Q

mize nimize

e

nimize

Pattern Matching

O | N

~N | D

nimize

e

e

23

N

Suffix Trie (2)

Compact representation of the suffix trie for a string X of size n
from an alphabet of size d

m Uses O(n) space

m Supports arbitrary pattern matching queries in X in O(dm) time,
where m is the size of the pattern

m m
0 4

NS
Wl —
O | N
~ | D

4,7 2,7 6, 7 2,7 6, 7

Pattern Matching 24

N

Encoding Trie (1)

A code is a mapping of each character of an alphabet to a binary
code-word

A prefix code is a binary code such that no code-word is the prefix
of another code-word

An encoding trie represents a prefix code
m Each leaf stores a character

m The code word of a character is given by the path from the root to
the leaf storing the character (O for a left child and 1 for a right child

00 (010|011 | 10 | 11

Pattern Matching 25

N

Encoding Trie (2)

Given a text string X, we want to find a prefix code for the characters

of X that yields a small encoding for X

= Frequent characters should have long code-words
m Rare characters should have short code-words

Example
m X = abracadabra

= T, encodes X into 29 bits
= T, encodes X into 24 bits

T

Pattern Matching

26

Huffman s Algorithm

f‘\

4 (lven a string X,

4

Huffman’s algorithm
construct a prefix
code the minimizes
the size of the
encoding of X

It runs in time

O(n +d log d), where
n is the size of X
and d is the number
of distinct characters
of X

A heap-based
priority queue is
used as an auxiliary
structure

Algorithm HuffmanEncoding(X)
Input string X of size n
Output optimal encoding trie for X
C « distinctCharacters(X)
computeFrequencies(C, X)
Q « new empty heap
forallc e C
T « new single-node tree storing c
Q.insert(getFrequency(c), T)
while Q.size() > 1
f, < Q.minKey()
T, < Q.removeMin()
f, < Q.minKey()
T, < Q.removeMin()
T «join(T,, T),)
Q.insert(f, +f,, T)
return Q.removeMin()

Pattern Matching 27

Example

N

/ X = abracadabra
Frequencies

a | b

o

5 | 2

a b C d

5 2 1 1
U

/@\

a b C d

-

a C

a

>
it b

5

Pattern Matching

