

Outline and Reading

- Strings (§11.1)
 Pattern matching algorithms
 Brute-force algorithm (§11.2.1)
 Boyer-Moore algorithm (§11.2.2)
 - Knuth-Morris-Pratt algorithm (§11.2.3)

Strings

- A string is a sequence of characters
 - Examples of strings:
 - C++ program
 - HTML document
 - DNA sequence
 - Digitized image
 - An alphabet Σ is the set of possible characters for a family of strings
 - Example of alphabets:
 - ASCII (used by C and C++)
 - Unicode (used by Java)
 - **{**0, 1}
 - {A, C, G, T}

3

Let *P* be a string of size *m*

- A substring *P*[*i*..*j*] of *P* is the subsequence of *P* consisting of the characters with ranks between *i* and *j*
- A prefix of *P* is a substring of the type *P*[0..*i*]
- A suffix of *P* is a substring of the type *P*[*i*..*m* - 1]
- Given strings T (text) and P (pattern), the pattern matching problem consists of finding a substring of T equal to P
 - Applications:

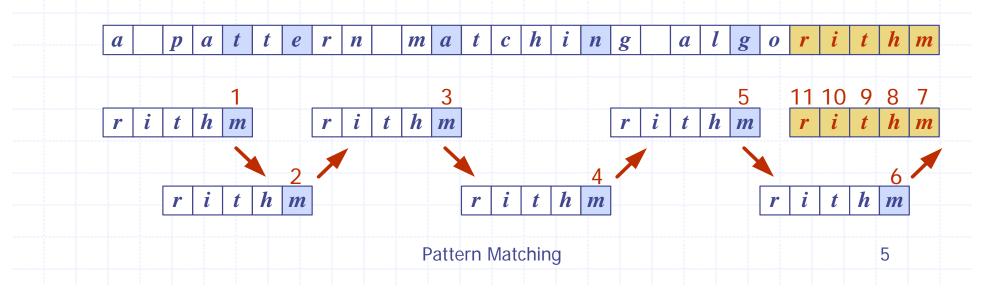
- Text editors
- Search engines
- Biological research

Brute-Force Algorithm

The brute force pettern	Algorithm <i>BruteForceMatch</i> (<i>T</i> , <i>P</i>)		
The brute-force pattern matching algorithm compares	Input text <i>T</i> of size <i>n</i> and pattern		
the pattern P with the text T	P of size m		
for each possible shift of P	Output starting index of a		
relative to T, until either	substring of T equal to P or -1		
 a match is found, or all placements of the pattern 	if no such substring exists		
	for $i \leftarrow 0$ to $n - m$		
have been tried	{ test shift <i>i</i> of the pattern }		
Brute-force pattern matching	$j \leftarrow 0$		
runs in time O (nm)	while $j < m \land T[i+j] = P[j]$		
Example of worst case:	$j \leftarrow j + 1$		
$\blacksquare T = aaa \dots ah$	if $j = m$		
$\blacksquare P = aaah$	return i {match at i }		
may occur in images and	{else mismatch at i}		
DNA sequences	return -1 {no match anywhere}		
 unlikely in English text 			
Pattern	Matching 4		

Boyer-Moore Heuristics

- The Boyer-Moore's pattern matching algorithm is based on two heuristics
 - Looking-glass heuristic: Compare *P* with a subsequence of *T* moving backwards
 - Character-jump heuristic: When a mismatch occurs at T[i] = c
 - If P contains c, shift P to align the last occurrence of c in P with T[i]
 - Else, shift P to align P[0] with T[i+1]
 - Example

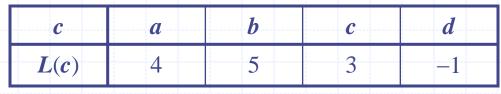


Last-Occurrence Function

- Boyer-Moore's algorithm preprocesses the pattern P and the alphabet Σ to build the last-occurrence function L mapping Σ to integers, where L(c) is defined as
 - the largest index i such that P[i] = c or
 - −1 if no such index exists

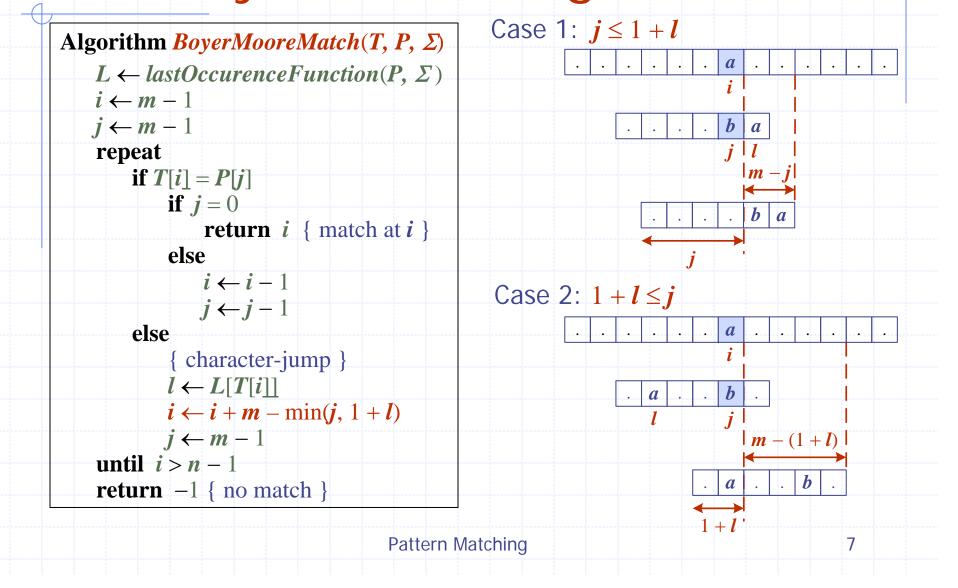
Example:

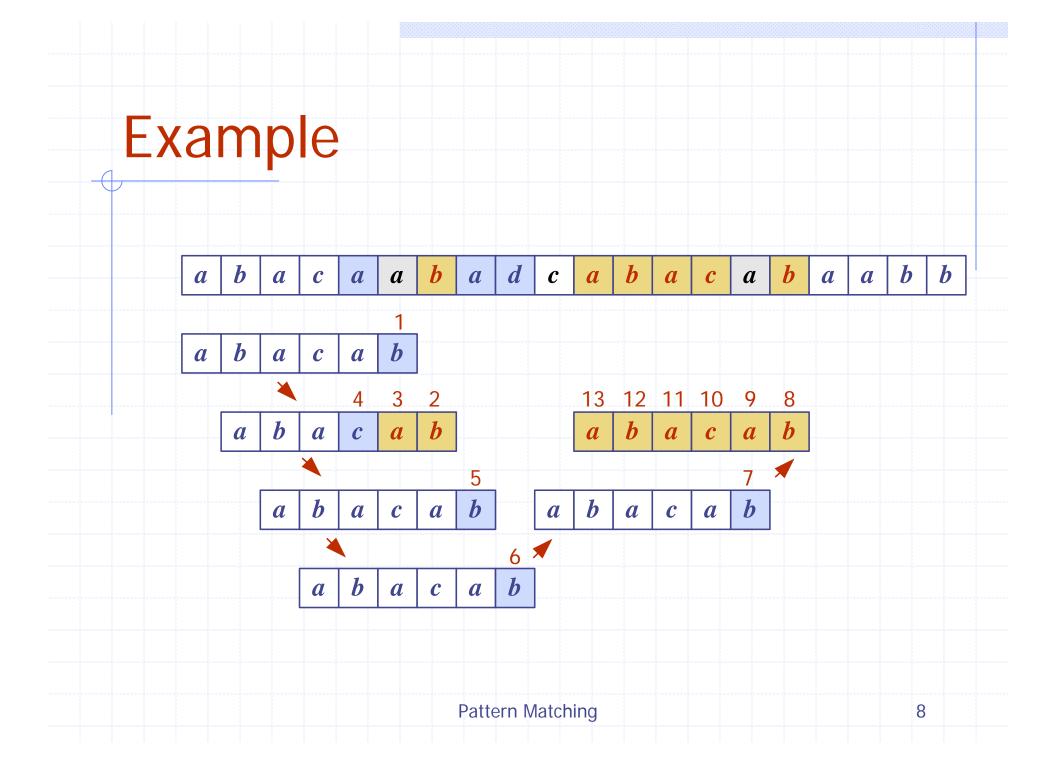
- $\Sigma = \{a, b, c, d\}$
- $\bullet P = abacab$



- The last-occurrence function can be represented by an array indexed by the numeric codes of the characters
- The last-occurrence function can be computed in time O(m + s), where *m* is the size of *P* and *s* is the size of Σ

The Boyer-Moore Algorithm





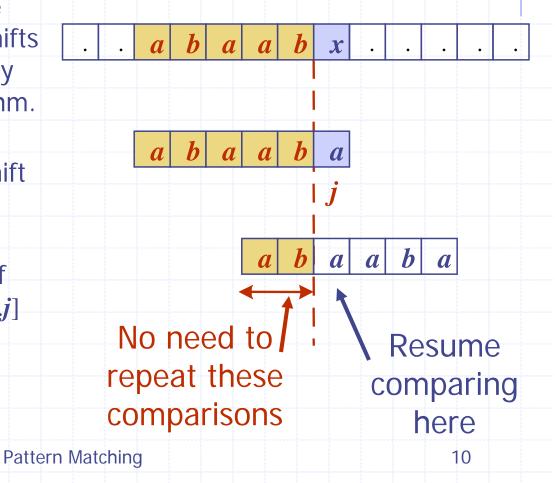
Analysis

- Boyer-Moore's algorithm runs in time O(nm + s)
- Example of worst case:
 - $\bullet \quad T = aaa \dots a$
 - $\bullet P = baaa$
- The worst case may occur in images and DNA sequences but is unlikely in English text
- Boyer-Moore's algorithm is significantly faster than the brute-force algorithm on English text

a a a a a a a a a 5 3 2 6 4 b a a a a a 12 11 10 9 8 7 b a a a a a 18 17 16 15 14 13 b a a a a a 24 23 22 21 20 19 b a a a a a 9

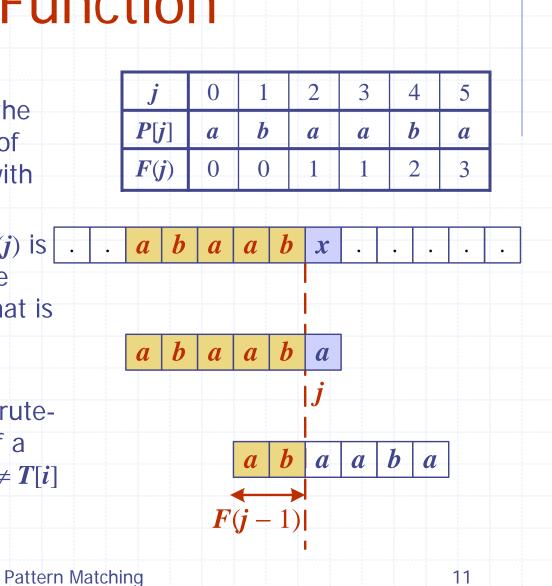
The KMP Algorithm - Motivation

Knuth-Morris-Pratt's algorithm compares the pattern to the text in left-to-right, but shifts the pattern more intelligently than the brute-force algorithm.
 When a mismatch occurs, what is the most we can shift the pattern so as to avoid redundant comparisons?
 Answer: the largest prefix of *P*[0..*j*] that is a suffix of *P*[1..*j*]



KMP Failure Function

- Knuth-Morris-Pratt's algorithm preprocesses the pattern to find matches of prefixes of the pattern with the pattern itself
- The failure function F(j) is defined as the size of the largest prefix of P[0..j] that is also a suffix of P[1..j]
- ♦ Knuth-Morris-Pratt's algorithm modifies the bruteforce algorithm so that if a mismatch occurs at P[j] ≠ T[i]we set j ← F(j - 1)



The KMP Algorithm

- The failure function can be represented by an array and can be computed in O(m) time
- At each iteration of the whileloop, either
 - *i* increases by one, or
 - the shift amount *i*−*j* increases by at least one (observe that *F*(*j*−1) < *j*)
- Hence, there are no more than 2n iterations of the while-loop
- Thus, KMP's algorithm runs in optimal time O(m + n)

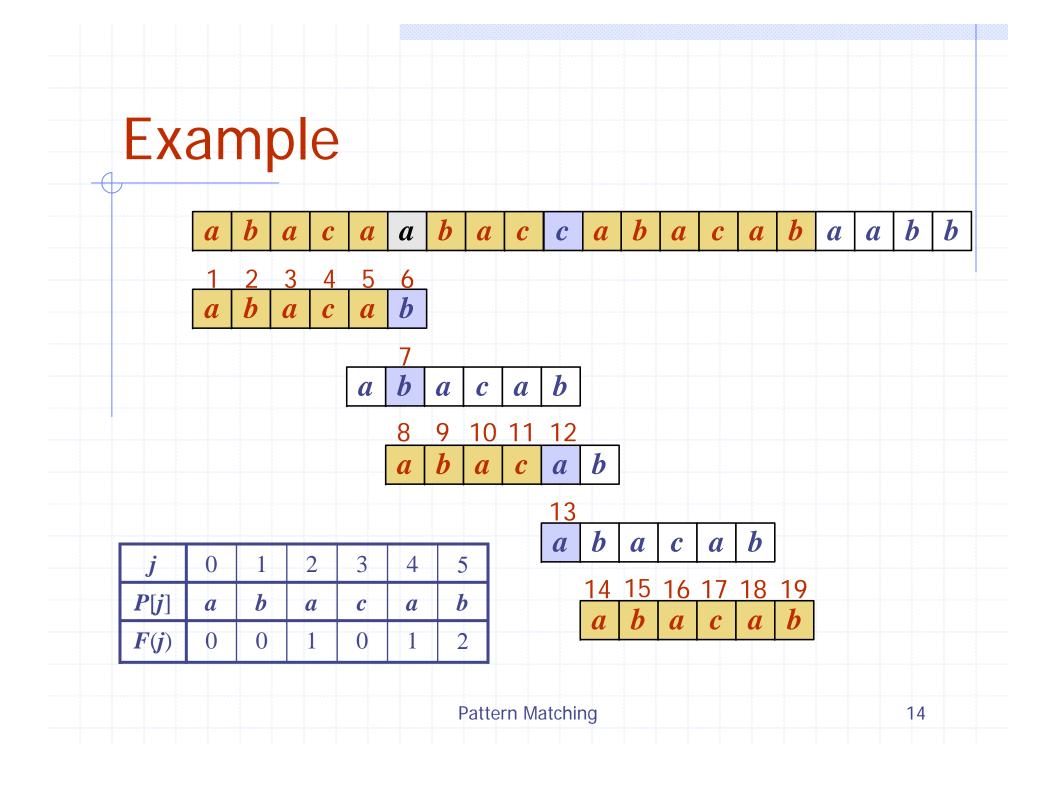
Algorithm *KMPMatch*(*T*, *P*) $F \leftarrow failureFunction(P)$ $i \leftarrow 0$ $i \leftarrow 0$ while i < n**if** T[i] = P[j]if j = m - 1**return** i - j { match } else $i \leftarrow i + 1$ $j \leftarrow j + 1$ else if j > 0 $j \leftarrow F[j-1]$ else $i \leftarrow i + 1$ **return** -1 { no match }

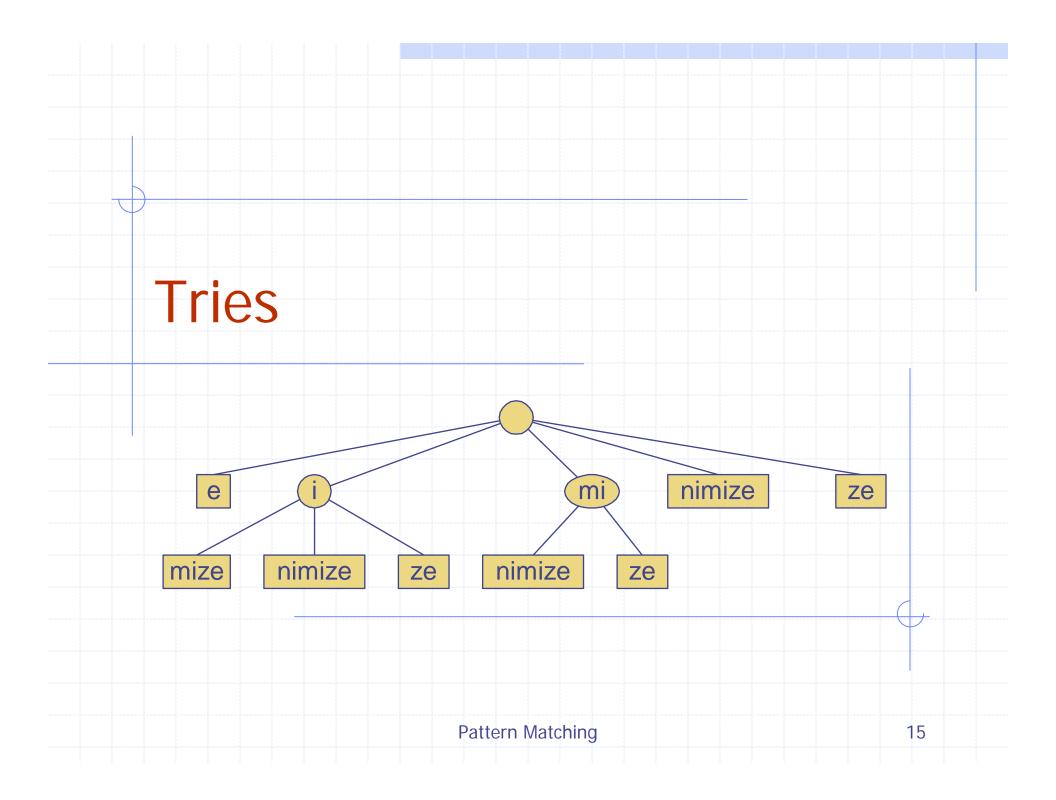
12

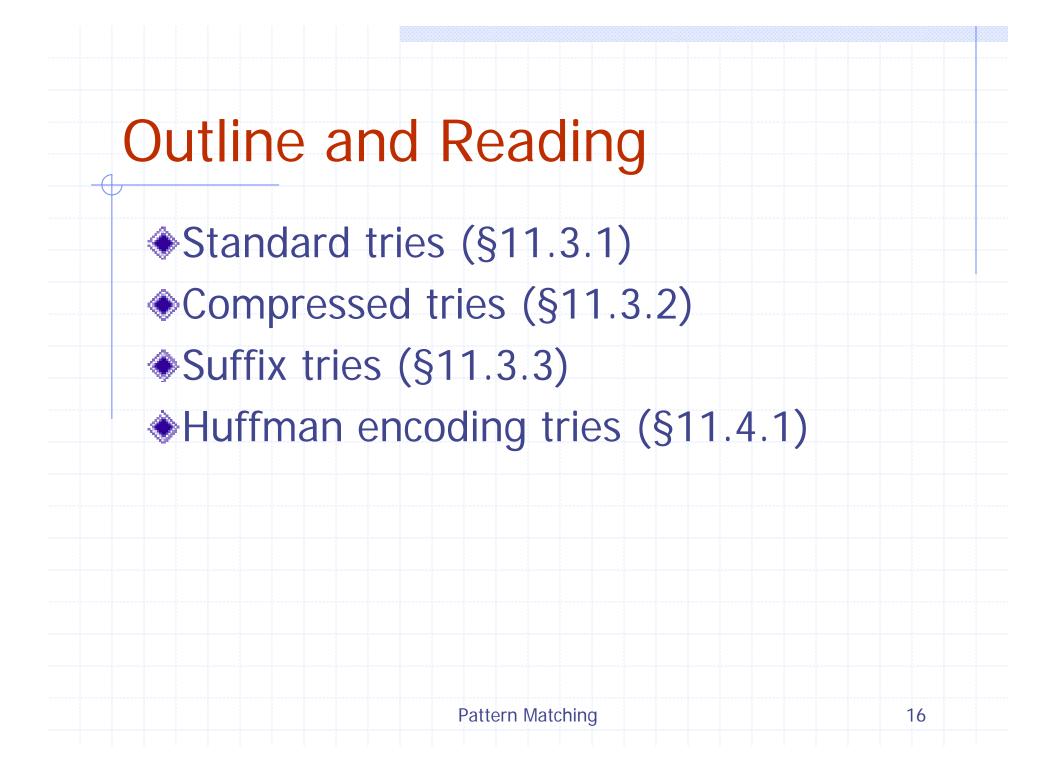
Computing the Failure Function

- The failure function can be represented by an array and can be computed in O(m) time
- The construction is similar to the KMP algorithm itself
- At each iteration of the whileloop, either
 - *i* increases by one, or
 - the shift amount *i j* increases by at least one
 (observe that *F*(*j* 1) < *j*)
- Hence, there are no more than 2m iterations of the while-loop

Algorithm *failureFunction(P)* $F[0] \leftarrow 0$ $i \leftarrow 1$ $j \leftarrow 0$ while *i* < *m* **if** P[i] = P[j]{we have matched $\mathbf{j} + 1$ chars} $F[i] \leftarrow j + 1$ $i \leftarrow i + 1$ $j \leftarrow j + 1$ else if j > 0 then {use failure function to shift **P**} $i \leftarrow F[i-1]$ else $F[i] \leftarrow 0 \{ \text{ no match } \}$ $i \leftarrow i + 1$







Preprocessing Strings

- Preprocessing the pattern speeds up pattern matching queries
 - After preprocessing the pattern, KMP's algorithm performs pattern matching in time proportional to the text size
- If the text is large, immutable and searched for often (e.g., works by Shakespeare), we may want to preprocess the text instead of the pattern
- A trie is a compact data structure for representing a set of strings, such as all the words in a text
 - A trie supports pattern matching queries in time proportional to the pattern size

Standard Trie (1)

- The standard trie for a set of strings S is an ordered tree such that:
 - Each node but the root is labeled with a character
 - The children of a node are alphabetically ordered
 - The paths from the external nodes to the root yield the strings of S

U

Pattern Matching

S

K

18

Example: standard trie for the set of strings

b

e

a

S = { bear, bell, bid, bull, buy, sell, stock, stop }

Standard Trie (2)

A standard trie uses O(n) space and supports searches, insertions and deletions in time O(dm), where:

Pattern Matching

S

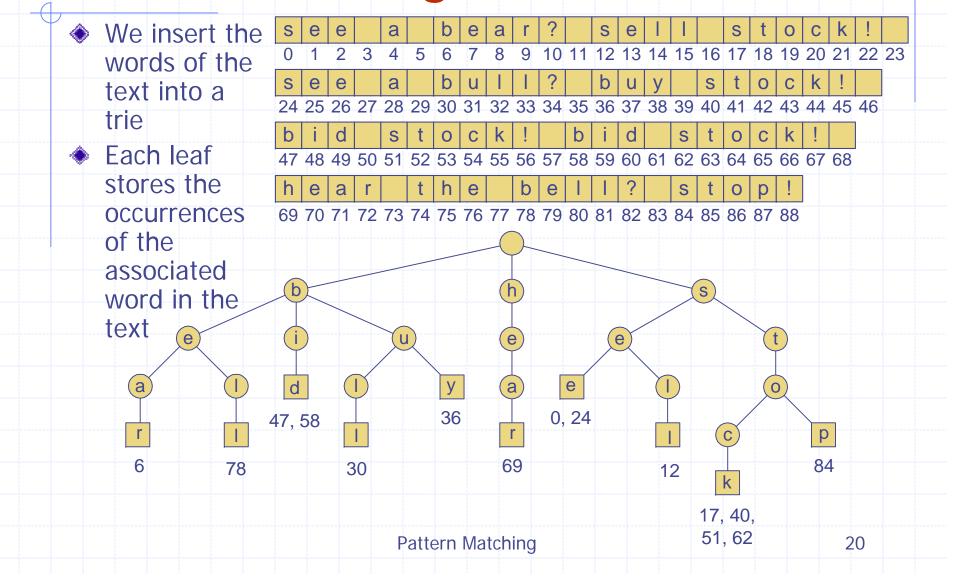
K

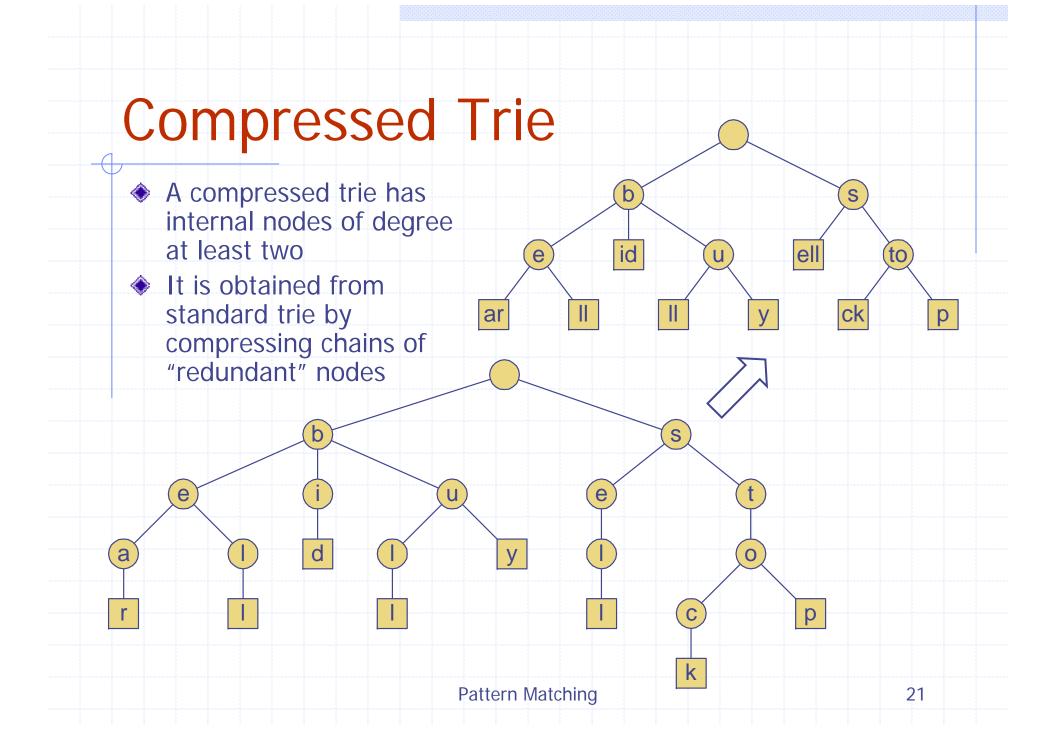
19

- n total size of the strings in S
- m size of the string parameter of the operation
- d size of the alphabet

a

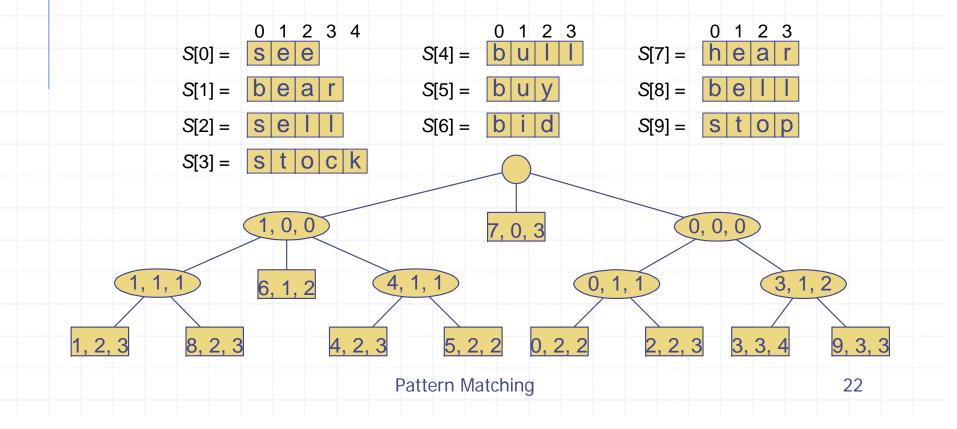
Word Matching with a Trie

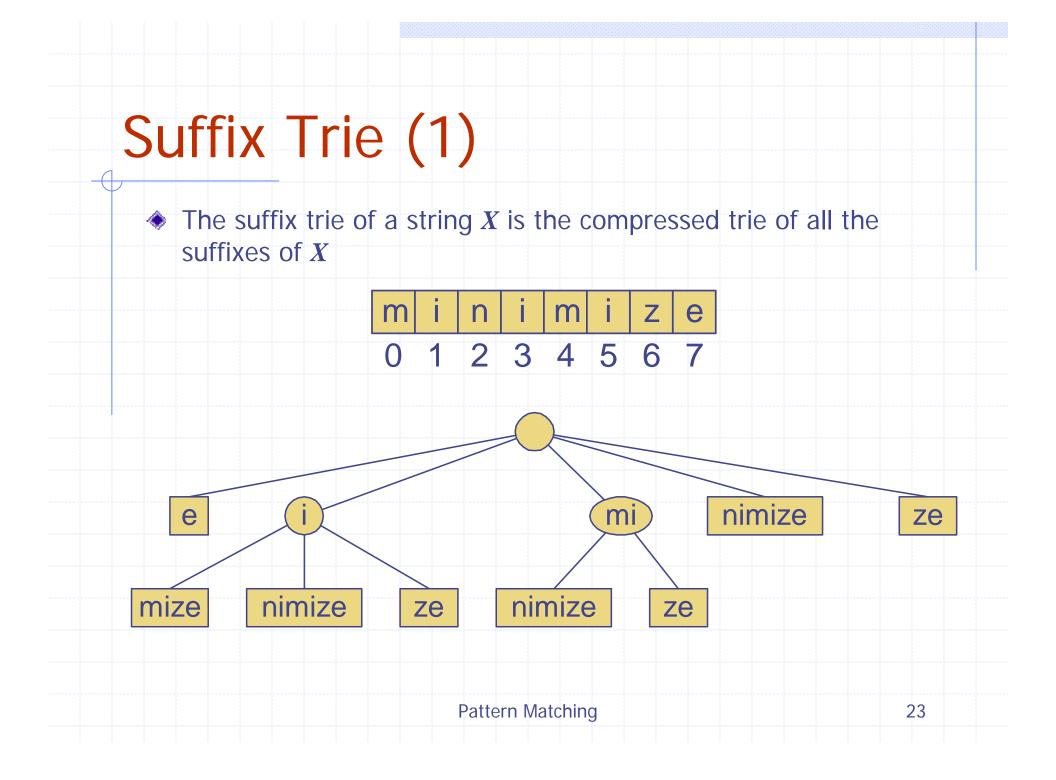




Compact Representation

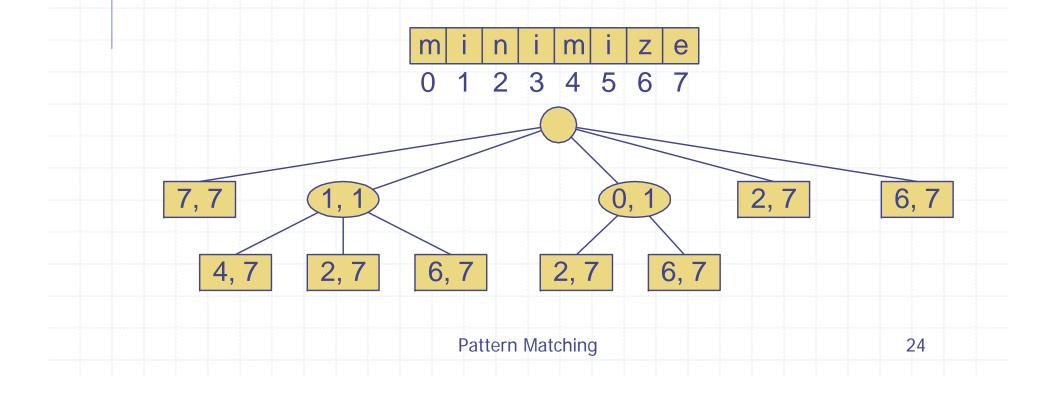
- Compact representation of a compressed trie for an array of strings:
 - Stores at the nodes ranges of indices instead of substrings
 - Uses O(s) space, where s is the number of strings in the array
 - Serves as an auxiliary index structure





Suffix Trie (2)

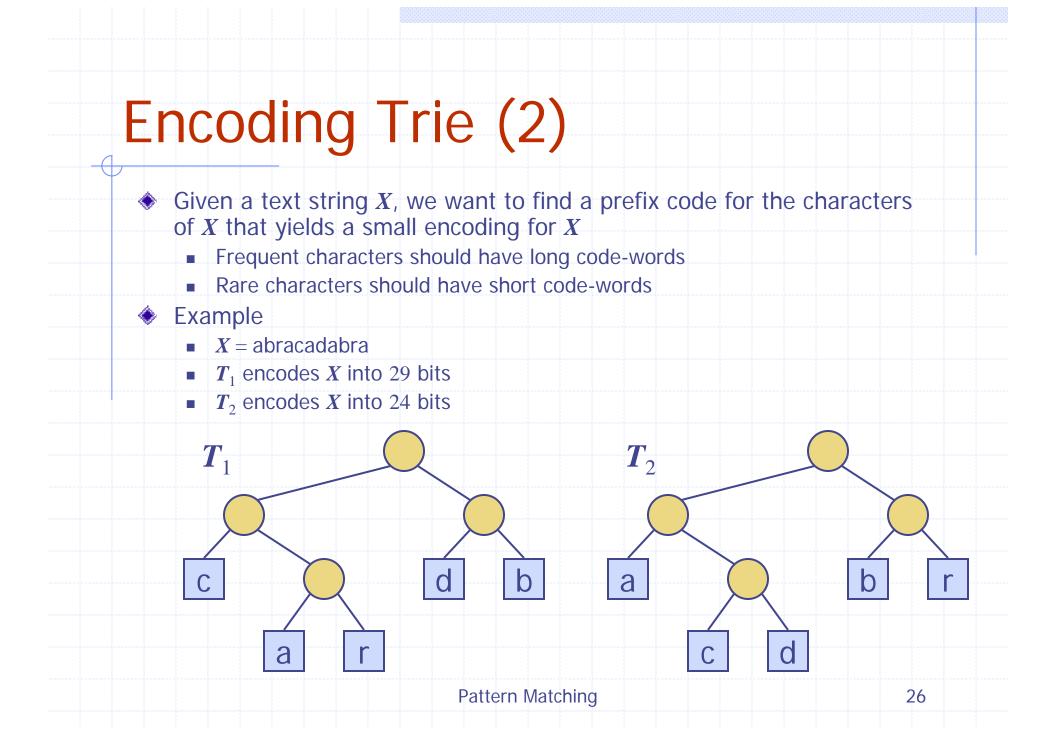
- Compact representation of the suffix trie for a string X of size n from an alphabet of size d
 - Uses O(n) space
 - Supports arbitrary pattern matching queries in X in O(dm) time, where m is the size of the pattern



Encoding Trie (1)

- A code is a mapping of each character of an alphabet to a binary code-word
 - A prefix code is a binary code such that no code-word is the prefix of another code-word
 - An encoding trie represents a prefix code
 - Each leaf stores a character
 - The code word of a character is given by the path from the root to the leaf storing the character (0 for a left child and 1 for a right child

00	010	011	10	11		
a	b	С	d	е	a	d e
					bc	
				Patterr	Matching	25



Huffman's Algorithm

 Given a string X, Huffman's algorithm construct a prefix code the minimizes the size of the encoding of X
 It runs in time O(n + d log d), where n is the size of X and d is the number of distinct characters of X
 A heap-based

priority queue is used as an auxiliary structure Algorithm *HuffmanEncoding(X)* **Input** string *X* of size *n* Output optimal encoding trie for X $C \leftarrow distinctCharacters(X)$ computeFrequencies(C, X) $Q \leftarrow$ new empty heap for all $c \in C$ $T \leftarrow$ new single-node tree storing cQ.insert(getFrequency(c), T) **while** *Q.size*() > 1 $f_1 \leftarrow Q.minKey()$ $T_1 \leftarrow Q.removeMin()$ $f_2 \leftarrow Q.minKey()$ $T_2 \leftarrow Q.removeMin()$ $T \leftarrow join(T_1, T_2)$ $Q.insert(f_1 + f_2, T)$ return Q.removeMin()

