
Heaps and Priority Queues 1

Heaps and Priority Queues

2

65

79

Heaps and Priority Queues 2

Priority Queue
ADT (§7.1)

A priority queue stores a
collection of items
An item is a pair
(key, element)
Main methods of the Priority
Queue ADT

insertItem(k, o)
inserts an item with key k
and element o
removeMin()
removes the item with the
smallest key

Additional methods
minKey(k, o)
returns, but does not
remove, the smallest key of
an item
minElement()
returns, but does not
remove, the element of an
item with smallest key
size(), isEmpty()

Applications:
Standby flyers
Auctions
Stock market

Heaps and Priority Queues 3

Total Order Relation

Keys in a priority
queue can be
arbitrary objects
on which an order
is defined
Two distinct items
in a priority queue
can have the
same key

Mathematical concept of
total order relation ≤

Reflexive property:
x ≤ x
Antisymmetric property:
x ≤ y ∧ y ≤ x ⇒ x = y
Transitive property:
x ≤ y ∧ y ≤ z ⇒ x ≤ z

Heaps and Priority Queues 4

Comparator ADT (§7.1.4)
A comparator encapsulates the action of comparing
two objects according to a given total order
relation
A generic priority queue uses a comparator as a
template argument, to define the comparison
function (<,=,>)
The comparator is external to the keys being
compared. Thus, the same objects can be sorted
in different ways by using different comparators.
When the priority queue needs to compare two
keys, it uses its comparator

Heaps and Priority Queues 5

Using Comparators in C++
A comparator class overloads
the “()” operator with a
comparison function.
Example: Compare two points
in the plane lexicographically.

class LexCompare {
public:

int operator()(Point a, Point b) {
if (a.x < b.x) return –1
else if (a.x > b.x) return +1
else if (a.y < b.y) return –1
else if (a.y > b.y) return +1
else return 0;

}
};

To use the comparator,
define an object of this type,
and invoke it using its “()”
operator:
Example of usage:

Point p(2.3, 4.5);
Point q(1.7, 7.3);
LexCompare lexCompare;

if (lexCompare(p, q) < 0)
cout << “p less than q”;

else if (lexCompare(p, q) == 0)
cout << “p equals q”;

else if (lexCompare(p, q) > 0)
cout << “p greater than q”;

Heaps and Priority Queues 6

Sorting with a
Priority Queue (§7.1.2)

We can use a priority
queue to sort a set of
comparable elements

Insert the elements one
by one with a series of
insertItem(e, e)
operations
Remove the elements in
sorted order with a series
of removeMin()
operations

The running time of this
sorting method depends on
the priority queue
implementation

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C
for the elements of S
Output sequence S sorted in
increasing order according to C
P ← priority queue with

comparator C
while !S.isEmpty ()

e ← S.remove (S. first ())
P.insertItem(e, e)

while !P.isEmpty()
e ← P.minElement()
P.removeMin()
S.insertLast(e)

Heaps and Priority Queues 7

Sequence-based Priority Queue
Implementation with an
unsorted list

Performance:
insertItem takes O(1) time
since we can insert the item
at the beginning or end of
the sequence
removeMin, minKey and
minElement take O(n) time
since we have to traverse
the entire sequence to find
the smallest key

Implementation with a
sorted list

Performance:
insertItem takes O(n) time
since we have to find the
place where to insert the
item
removeMin, minKey and
minElement take O(1) time
since the smallest key is at
the beginning of the
sequence

4 5 2 3 1 1 2 3 4 5

Heaps and Priority Queues 8

Selection-Sort

Selection-sort is the variation of PQ-sort where the
priority queue is implemented with an unsorted
sequence

Running time of Selection-sort:
Inserting the elements into the priority queue with n
insertItem operations takes O(n) time
Removing the elements in sorted order from the priority
queue with n removeMin operations takes time
proportional to

1 + 2 + …+ n
Selection-sort runs in O(n2) time

4 5 2 3 1

Heaps and Priority Queues 9

Insertion-Sort

Insertion-sort is the variation of PQ-sort where the
priority queue is implemented with a sorted
sequence

Running time of Insertion-sort:
Inserting the elements into the priority queue with n
insertItem operations takes time proportional to

1 + 2 + …+ n
Removing the elements in sorted order from the priority
queue with a series of n removeMin operations takes
O(n) time

Insertion-sort runs in O(n2) time

1 2 3 4 5

Heaps and Priority Queues 10

What is a heap? (§7.3.1)
A heap is a binary tree
storing keys at its internal
nodes and satisfying the
following properties:

Heap-Order: for every
internal node v other than
the root,
key(v) ≥ key(parent(v))
Complete Binary Tree: let h
be the height of the heap

for i = 0, … , h − 1, there are
2i nodes of depth i
at depth h − 1, the internal
nodes are to the left of the
external nodes

2

65

79

The last node of a heap
is the rightmost internal
node of depth h − 1

last node

Heaps and Priority Queues 11

Height of a Heap
Theorem: A heap storing n keys has height O(log n)
Proof: (we apply the complete binary tree property)

Let h be the height of a heap storing n keys
Since there are 2i keys at depth i = 0, … , h − 2 and at least one key
at depth h − 1, we have n ≥ 1 + 2 + 4 + … + 2h−2 + 1
Thus, n ≥ 2h−1 , i.e., h ≤ log n + 1

1

2

2h−2

1

keys
0

1

h−2

h−1

depth

Heaps and Priority Queues 12

Heaps and Priority Queues
We can use a heap to implement a priority queue
We store a (key, element) item at each internal node
We keep track of the position of the last node
For simplicity, we show only the keys in the pictures

(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)

Heaps and Priority Queues 13

Insertion into a
Heap (§7.3.2)

Method insertItem of the
priority queue ADT
corresponds to the
insertion of a key k to
the heap
The insertion algorithm
consists of three steps

Find the insertion node z
(the new last node)
Store k at z and expand z
into an internal node
Restore the heap-order
property (discussed next)

2

65

79

insertion node

2

65

79 1

z

z

Heaps and Priority Queues 14

Upheap
After the insertion of a new key k, the heap-order property may be
violated
Algorithm upheap restores the heap-order property by swapping k
along an upward path from the insertion node
Upheap terminates when the key k reaches the root or a node
whose parent has a key smaller than or equal to k
Since a heap has height O(log n), upheap runs in O(log n) time

2

15

79 6z

1

25

79 6z

Heaps and Priority Queues 15

Removal from a Heap (§7.3.2)
Method removeMin of
the priority queue ADT
corresponds to the
removal of the root key
from the heap
The removal algorithm
consists of three steps

Replace the root key with
the key of the last node w
Compress w and its
children into a leaf
Restore the heap-order
property (discussed next)

2

65

79

last node

w

7

65

9
w

Heaps and Priority Queues 16

Downheap
After replacing the root key with the key k of the last node, the
heap-order property may be violated
Algorithm downheap restores the heap-order property by
swapping key k along a downward path from the root
The swapping is done with the sibling with the smallest key
Upheap terminates when key k reaches a leaf or a node whose
children have keys greater than or equal to k
Since a heap has height O(log n), downheap runs in O(log n) time

7

65

9
w

5

67

9
w

Heaps and Priority Queues 17

Updating the Last Node
The insertion node can be found by traversing a path of O(log n)
nodes

Go up until a left child or the root is reached
If a left child is reached, go to the right child
Go down left until a leaf is reached

Similar algorithm for updating the last node after a removal

Heaps and Priority Queues 18

Heap-Sort (§7.3.4)

Consider a priority
queue with n items
implemented by means
of a heap

the space used is O(n)
methods insertItem and
removeMin take O(log n)
time
methods size, isEmpty,
minKey, and minElement
take time O(1) time

Using a heap-based
priority queue, we can
sort a sequence of n
elements in O(n log n)
time
The resulting algorithm
is called heap-sort
Heap-sort is much
faster than quadratic
sorting algorithms, such
as insertion-sort and
selection-sort

Heaps and Priority Queues 19

Merging Two Heaps
We are given two
heaps and a key k
We create a new heap
with the root node
storing k and with the
two heaps as subtrees
We perform downheap
to restore the heap-
order property

7

3

58

2

64

3

58

2

64

2

3

58

4

67

Heaps and Priority Queues 20

We can construct a heap
storing n given keys in
using a bottom-up
construction with log n
phases
In phase i, pairs of
heaps with 2i −1 keys are
merged into heaps with
2i+1−1 keys

Bottom-up Heap
Construction (§7.3.5)

2i −1 2i −1

2i+1−1

Heaps and Priority Queues 21

Example

1516 124 76 2023

25

1516

5

124

11

76

27

2023

Heaps and Priority Queues 22

Example (contd.)

25

1516

5

124

11

96

27

2023

15

2516

4

125

6

911

23

2027

Heaps and Priority Queues 23

Example (contd.)

7

15

2516

4

125

8

6

911

23

2027

4

15

2516

5

127

6

8

911

23

2027

Heaps and Priority Queues 24

Example (end)

4

15

2516

5

127

10

6

8

911

23

2027

5

15

2516

7

1210

4

6

8

911

23

2027

Heaps and Priority Queues 25

Analysis
We visualize the worst-case time of a downheap with a proxy path
that goes first right and then repeatedly goes left until the bottom
of the heap (this path may differ from the actual downheap path)
Since each node is traversed by at most two proxy paths, the total
number of nodes of the proxy paths is O(n)
Thus, bottom-up heap construction runs in O(n) time
Bottom-up heap construction is faster than n successive insertions
and speeds up the first phase of heap-sort

Heaps and Priority Queues 26

Vector-based Heap
Implementation (§7.3.3)

We can represent a heap with n
keys by means of a vector of
length n + 1
For the node at rank i

the left child is at rank 2i
the right child is at rank 2i + 1

Links between nodes are not
explicitly stored
The leaves are not represented
The cell of at rank 0 is not used
Operation insertItem corresponds
to inserting at rank n + 1
Operation removeMin corresponds
to removing at rank n
Yields in-place heap-sort

2

65

79

2 5 6 9 7
1 2 3 4 50

