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Priority Queue 
ADT (§7.1)

A priority queue stores a 
collection of items
An item is a pair
(key, element)
Main methods of the Priority 
Queue ADT

insertItem(k, o)
inserts an item with key k 
and element o
removeMin()
removes the item with the 
smallest key

Additional methods
minKey(k, o)
returns, but does not 
remove, the smallest key of 
an item
minElement()
returns, but does not 
remove, the element of an 
item with smallest key
size(), isEmpty()

Applications:
Standby flyers
Auctions
Stock market
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Total Order Relation

Keys in a priority 
queue can be 
arbitrary objects 
on which an order 
is defined
Two distinct items 
in a priority queue 
can have the 
same key

Mathematical concept of 
total order relation ≤

Reflexive property:
x ≤ x
Antisymmetric property:
x ≤ y ∧ y ≤ x ⇒ x = y
Transitive property:
x ≤ y ∧ y ≤ z ⇒ x ≤ z
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Comparator ADT (§7.1.4)
A comparator encapsulates the action of comparing 
two objects according to a given total order 
relation
A generic priority queue uses a comparator as a 
template argument, to define the comparison 
function (<,=,>)
The comparator is external to the keys being 
compared.  Thus, the same objects can be sorted 
in different ways by using different comparators.
When the priority queue needs to compare two 
keys, it uses its comparator
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Using Comparators in C++
A comparator class overloads 
the “()” operator with a 
comparison function.
Example: Compare two points 
in the plane lexicographically.

class LexCompare {
public:

int operator()(Point a, Point b) {
if        (a.x < b.x) return –1
else if (a.x > b.x) return +1
else if (a.y < b.y) return  –1
else if (a.y > b.y) return +1
else return 0;

}
};

To use the comparator, 
define an object of this type, 
and invoke it using its “()”
operator:
Example of usage:

Point p(2.3, 4.5);
Point q(1.7, 7.3);
LexCompare lexCompare;

if (lexCompare(p, q) < 0)
cout << “p less than q”;

else if (lexCompare(p, q) == 0)
cout << “p equals q”;

else if (lexCompare(p, q) > 0)
cout << “p greater than q”;
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Sorting with a 
Priority Queue (§7.1.2)

We can use a priority 
queue to sort a set of 
comparable elements

Insert the elements one 
by one with a series of 
insertItem(e, e) 
operations
Remove the elements in 
sorted order with a series 
of removeMin() 
operations

The running time of this 
sorting method depends on 
the priority queue 
implementation

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C
for the elements of S
Output sequence S sorted  in 
increasing order according to C
P ← priority queue with 

comparator C
while !S.isEmpty ()

e ← S.remove (S. first ())
P.insertItem(e, e)

while !P.isEmpty()
e ← P.minElement()
P.removeMin()
S.insertLast(e)
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Sequence-based Priority Queue
Implementation with an 
unsorted list

Performance:
insertItem takes O(1) time 
since we can insert the item 
at the beginning or end of 
the sequence
removeMin, minKey and 
minElement take O(n) time 
since we have to traverse 
the entire sequence to find 
the smallest key 

Implementation with a 
sorted list

Performance:
insertItem takes O(n) time 
since we have to find the 
place where to insert the 
item
removeMin, minKey and 
minElement take O(1) time 
since the smallest key is at 
the beginning of the 
sequence

4 5 2 3 1 1 2 3 4 5
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Selection-Sort

Selection-sort is the variation of PQ-sort where the 
priority queue is implemented with an unsorted 
sequence

Running time of Selection-sort:
Inserting the elements into the priority queue with n
insertItem operations takes O(n) time
Removing the elements in sorted order from the priority 
queue with n removeMin operations takes time 
proportional to

1 + 2 + …+ n
Selection-sort runs in O(n2) time 

4 5 2 3 1
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Insertion-Sort

Insertion-sort is the variation of PQ-sort where the 
priority queue is implemented with a sorted 
sequence

Running time of Insertion-sort:
Inserting the elements into the priority queue with n
insertItem operations takes time proportional to

1 + 2 + …+ n
Removing the elements in sorted order from the priority 
queue with  a series of n removeMin operations takes 
O(n) time

Insertion-sort runs in O(n2) time 

1 2 3 4 5
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What is a heap? (§7.3.1)
A heap is a binary tree 
storing keys at its internal 
nodes and satisfying the 
following properties:

Heap-Order: for every 
internal node v other than 
the root,
key(v) ≥ key(parent(v))
Complete Binary Tree: let h
be the height of the heap

for i = 0, … , h − 1, there are 
2i nodes of depth i
at depth h − 1, the internal 
nodes are to the left of the 
external nodes
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The last node of a heap 
is the rightmost internal 
node of depth h − 1

last node
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Height of a Heap
Theorem: A heap storing n keys has height O(log n)
Proof: (we apply the complete binary tree property)

Let h be the height of a heap storing n keys
Since there are 2i keys at depth i = 0, … , h − 2 and at least one key 
at depth h − 1, we have n ≥ 1 + 2 + 4 + … + 2h−2 + 1
Thus, n ≥ 2h−1 , i.e., h ≤ log n + 1
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Heaps and Priority Queues
We can use a heap to implement a priority queue
We store a (key, element) item at each internal node
We keep track of the position of the last node
For simplicity, we show only the keys in the pictures

(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)
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Insertion into a 
Heap (§7.3.2)

Method insertItem of the 
priority queue ADT 
corresponds to the 
insertion of a key k to 
the heap
The insertion algorithm 
consists of three steps

Find the insertion node z
(the new last node)
Store k at z and expand z 
into an internal node
Restore the heap-order 
property (discussed next)
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Upheap
After the insertion of a new key k, the heap-order property may be 
violated
Algorithm upheap restores the heap-order property by swapping k
along an upward path from the insertion node
Upheap terminates when the key k reaches the root or a node 
whose parent has a key smaller than or equal to k
Since a heap has height O(log n), upheap runs in O(log n) time
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Removal from a Heap (§7.3.2)
Method removeMin of 
the priority queue ADT 
corresponds to the 
removal of the root key 
from the heap
The removal algorithm 
consists of three steps

Replace the root key with 
the key of the last node w
Compress w and its 
children into a leaf
Restore the heap-order 
property (discussed next)
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Downheap
After replacing the root key with the key k of the last node, the 
heap-order property may be violated
Algorithm downheap restores the heap-order property by 
swapping key k along a downward path from the root
The swapping is done with the sibling with the smallest key
Upheap terminates when key k reaches a leaf or a node whose 
children have keys greater than or equal to k
Since a heap has height O(log n), downheap runs in O(log n) time
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Updating the Last Node
The insertion node can be found by traversing a path of O(log n) 
nodes

Go up until a left child or the root is reached
If a left child is reached, go to the right child
Go down left until a leaf is reached

Similar algorithm for updating the last node after a removal
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Heap-Sort (§7.3.4)

Consider a priority 
queue with n items 
implemented by means 
of a heap

the space used is O(n)
methods insertItem and 
removeMin take O(log n) 
time
methods size, isEmpty, 
minKey, and minElement
take time O(1) time

Using a heap-based 
priority queue, we can 
sort a sequence of n
elements in O(n log n) 
time
The resulting algorithm 
is called heap-sort
Heap-sort is much 
faster than quadratic 
sorting algorithms, such 
as insertion-sort and 
selection-sort
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Merging Two Heaps
We are given two 
heaps and a key k
We create a new heap 
with the root node 
storing k and with the 
two heaps as subtrees
We perform downheap 
to restore the heap-
order property 
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We can construct a heap 
storing n given keys in 
using a bottom-up 
construction with log n
phases
In phase i, pairs of 
heaps with 2i −1 keys are 
merged into heaps with 
2i+1−1 keys

Bottom-up Heap 
Construction (§7.3.5)

2i −1 2i −1

2i+1−1
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Example

1516 124 76 2023
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Example (contd.)
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Example (contd.)
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Example (end)
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Analysis
We visualize the worst-case time of a downheap with a proxy path 
that goes first right and then repeatedly goes left until the bottom 
of the heap (this path may differ from the actual downheap path)
Since each node is traversed by at most two proxy paths, the total 
number of nodes of the proxy paths is O(n)
Thus, bottom-up heap construction runs in O(n) time 
Bottom-up heap construction is faster than n successive insertions 
and speeds up the first phase of heap-sort
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Vector-based Heap 
Implementation (§7.3.3)

We can represent a heap with n
keys by means of a vector of 
length n + 1
For the node at rank i

the left child is at rank 2i
the right child is at rank 2i + 1

Links between nodes are not 
explicitly stored
The leaves are not represented
The cell of at rank 0 is not used
Operation insertItem corresponds 
to inserting at rank n + 1
Operation removeMin corresponds 
to removing at rank n
Yields in-place heap-sort
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