
Precise Calling Context Encoding

William N. Sumner, Yunhui Zheng, Dasarath Weeratunge, Xiangyu Zhang
Department of Computer Science, Purdue University

{wsumner,zheng16,dweeratu,xyzhang}@cs.purdue.edu

ABSTRACT
Calling contexts are very important for a wide range of ap-
plications such as profiling, debugging, and event logging.
Most applications perform expensive stack walking to re-
cover contexts. The resulting contexts are often explicitly
represented as a sequence of call sites and hence bulky. We
propose a technique to encode the current calling context
of any point during an execution. In particular, an acyclic
call path is encoded into one number through only integer
additions. Recursive call paths are divided into acyclic sub-
sequences and encoded independently. We leverage stack
depth in a safe way to optimize encoding: if a calling con-
text can be safely and uniquely identified by its stack depth,
we do not perform encoding. We propose an algorithm to
seamlessly fuse encoding and stack depth based identifica-
tion. The algorithm is safe because different contexts are
guaranteed to have different IDs. It also ensures contexts
can be faithfully decoded. Our experiments show that our
technique incurs negligible overhead (1.89% on average). For
most medium-sized programs, it can encode all contexts with
just one number. For large programs, we are able to encode
most calling contexts to a few numbers.

1. INTRODUCTION
The goal of calling context encoding is to uniquely repre-

sent the current context of any execution point using a small
number of integer identifiers (IDs), ideally just one. Such
IDs are supposed to be automatically generated at runtime
by program instrumentation. Efficient context encoding is
important for a wide range of applications.

Event logging is essential to understanding runtime inter-
actions between different components of large distributed or
parallel systems. However, different modules in these sys-
tems tend to use the same library to communicate, e.g.,
sending a message using a socket library. Simply logging
these communication events often fails to record the intents
of these events. Recording their contexts would be very in-
formative, but on the other hand, expensive and bulky, as it
often implies walking stack frames to reconstruct a context
and explicitly dumping the context as a sequence of sym-
bolic function names. It has been shown in [22] that context
sensitive event logging is critical for event reduction, which
speeds up execution replay by removing events in a replay
log that are not relevant to producing a failure. In that
work, context information was retrieved through expensive
stack walks. Calling contexts have also been used to reverse
engineer the format of program input in Autoformat [11].
In aspect oriented programming, properties of calling con-

texts may be used to precisely locate aspects and have been
used to support gathering execution information for debug-
ging and unit test generation [19]. Context information has
been shown to be very useful in testing sensor network ap-
plications in [9].

Context encoding can also improve bug reporting. The
backtrace of a failure, itself a context, is a very useful com-
ponent in a bug report. With context encoding, succinct
bug reports can be generated. Moreover, it is also possible
to collect contexts of additional execution points besides the
failure point. For programs without symbolic information
(for the sake of intellectual property protection), context
encoding provides a way to anonymously represent contexts
and allows them to be decoded at the developers’ site.

Context sensitive profiling is very important to program
optimization [23, 3, 5]. It annotates program profiles, such
as execution frequencies, dependences, and object life times,
with context information. Stack walking is too expensive
when profile information is generated at a high frequency.
Context sensitive optimizations [21, 7] often specify how pro-
grams should behave in various contexts to achieve efficiency.
For example, region-based memory management [7] tries to
cluster memory allocations into large chunks, called regions,
so that they can be explicitly managed; context sensitive
region-based memory management specifies in which region
an allocation should be performed under various contexts.
Such analyses need to disambiguate the different contexts
reaching a program point at runtime to decide if the current
context is one of those specified. Context encoding is highly
desirable in this case.

Realizing the importance of context encoding, in recent
years, a few encoding methods have been proposed. In [5],
a technique is proposed to instrument call sites to cumu-
latively compute a hash of the function and line number
containing the call site. The same encoding is guaranteed
to be produced if the same context is encountered because
the hash function is applied over the same data in the same
order. The technique lacks a decoding component, meaning
the context cannot be directly decoded from the computed
hash. Note that such capability is essential to applications
that require inspecting and understanding contexts. More-
over, different contexts may have the same encoding.

In [13], an approach is proposed to change stack frame
sizes by allocating extra space on stack frames such that
the stack offset, which is essentially the aggregation of stack
frame sizes, disambiguates the contexts. This approach is
not safe either, especially in the presence of recursion. The
reason is that the number of stack frames at runtime could

be arbitrary such that the aggregated size cannot be stati-
cally analyzed or safely profiled. Hence, the extra space on
individual stack frames cannot be safely determined. The
technique relies on offline training to generate a decoding
dictionary. Both the inherent imprecision and incomplete-
ness in the training set may lead to failure of decoding. The
reported failure rate could be as high as 27% [13].

In this paper, we leverage the Ball-Larus (BL) control flow
encoding algorithm to solve the context encoding problem.
The scenario of encoding contexts has different constraints
such that a more efficient algorithm can be devised. The
basic idea is to instrument function calls with additions to
an integer ID such that the value of the ID uniquely iden-
tifies contexts. Our algorithm is safe, uniquely identifying
different contexts. It can precisely recover a context from its
encoding. It has low overhead and handles function pointers,
stack allocations, recursion, and so on.

Our main contributions are summarized as follows.

• We leverage the BL algorithm to encode acyclic con-
texts. The algorithm is more efficient as it exploits the
unique characteristics of calling context encoding.

• We propose an algorithm to encode recursive contexts.
Recursive contexts are divided into acyclic sub-sequences
that are encoded independently. The sub-sequence en-
codings are stored to a stack. A featherweight generic
compression further reduces the stack depth.

• We propose an algorithm to safely leverage stack depths
to disambiguate contexts. Instead of allocating ex-
tra space on stack to distinguish contexts, we use our
acyclic encoding algorithm in a lazy fashion, meaning
that we apply it to contexts that cannot be safely dis-
ambiguated through stack offsets.

• We have a publicly available prototype implementa-
tion [1]. We evaluate it on a set of SPEC benchmarks
and other large real world benchmarks. Our experi-
ments show that our technique has very low overhead
(1.89% on average) and it can encode all contexts of
most medium-sized programs with just one 32 bits in-
teger. For large programs, it can encode most runtime
contexts with a few numbers.

2. MOTIVATION

1. if (p1)

2. s1 4. s2

5. if (p2)

8. s4

Entry

Exit

id=0

id+=2

id+=1

if (p1)

 s1;

else

 s2;

if (p2)

 s3;

else

 s4;

1.

2.

3.

4.

5.

6.

7.

8.

path id
1256 0

1258 1

1456 2

1458 3

4

4

2 2

2

1

1

6. s3 1

Figure 1: Example for Ball-Larus path encoding. Instru-
mentation is marked on control flow edges. Node annota-
tions (rounded boxes at the corners) represent the number
of paths starting from the annotated point.

Background: Ball-Larus Path Encoding. In the semi-
nal paper [4], Ball and Larus proposed an efficient algorithm
(referred to as the BL algorithm) to encode intra-procedural
control flow paths taken during execution. The basic BL
algorithm translates an acyclic path encoding into instru-
mentation on control flow edges. At runtime, a sequence of
instrumentation is executed following a control flow path,
resulting in the path identifier being computed. All instru-
mentation involves only simple additions. The idea can be
illustrated by the example in Fig. 1. The code is shown on
the left and the control flow graph is shown on the right.
Instrumentation is marked on control flow edges. Before the
first statement, id is initialized to 0. If the false branch is
taken at line 1, id is incremented by 2. If the false branch is
taken at line 5, id is incremented by 1. As shown on bottom
left, executions taking different paths lead to different values
in id. Simply, id encodes the path.

The algorithm first computes the number of paths leading
from a node to the end of the procedure. For example, node
1 has four paths reaching Exit. Such numbers are annotated
as rounded boxes in Fig. 1. Given a node with n paths, the
instrumentation from the node to Exit generates IDs falling
into the range of [0, n) to denote the paths. For instance,
the instrumentation in Fig. 1 generates paths with IDs in
[0,4). In particular, the instrumentation on 1 → 4 separates
the range into two sub-ranges: [0,2) and [2,4), denoting the
paths following edges 1 → 2 and 1 → 4, respectively. The
instrumentation on 5 → 8 further separates the two paths
from 5 to Exit.

More details about the BL algorithm can be found in [4].
The algorithm has become canonical in control flow encoding
and been widely used in many applications [10, 6, 16].

Inadequacy of BL for Context Encoding. Although
the BL algorithm is very efficient at encoding control flow
paths, we observe that it is inadequate for encoding call-
ing contexts, which are essentially paths in a call graph.
Consider the example in Fig. 2. The code is shown on the
left. Figures (b) and (c) show the call graph with two en-
coding schemes. The BL encoding is presented in (b), and
(c) shows more efficient encoding. Nodes in a call graph
represent functions and edges represent function calls. BL
encoding is designed to encode statement granularity paths
leading from the entry of a function to the end of it. The
criterion is that each of these paths has a unique encoding.
As shown in Figure (b), all the paths leading from A to E or
F have different encodings. However, context encoding has
a different criterion, that is, all unique paths leading from
the root to a specific node have unique encodings, because we
only need to distinguish the different contexts with respect to
that node. In other words, there are no constraints between
the encodings of paths that end at different nodes. It is fine
if two paths that end at different nodes have the same en-
coding. For example, paths ABDE and ABDF have the same
encoding 0 according to the scheme in (c). As a result, al-
though the encoding in Figure (c) has less instrumentation
(on 2 edges versus 3 in (b)) and requires a smaller encoding
space (the maximum ID is 1 versus 3 in (b)), it still clearly
distinguishes the various contexts of any node.

Our technique is based on the above observation. It han-
dles recursive calls and function pointers. It also leverages
stack offset, namely, the offset of the stack pointer regarding
the stack base, to achieve efficiency. More important, our

int C () {

 D(...);

 …

}

int D(...) {

 E()

 F();

}

1.

2.

3.

4.

5.

6.

7.

8.

int A () {

 B();

 C();

}

int B() {

 …

 D(...);

}

9.

10.

11.

12.

13.

14.

15.

16.

A

B C

D

E F

id=0

id+=2

id+=1

context id

ABDE 0

ABDF 1

ACDE 2

ACDF 3

……

A

B C

D

E F

id=0

id+=1

context id

ABDE 0

ACDE 1

ABDF 0

ACDF 1

ABD 0

ACD 1

AB 0

AC 0

A 0
(a) Code (b) BL encoding (c) Our encoding

Figure 2: The inadequacy of the BL algorithm for encoding contexts.

n

p1 pmp2

main

... ...
...

...

... ...

id+=numCC(p1)

numCC(n)= Σ numCC(pi)
i=1…m

i=1…(m-1)

id+= Σ numCC(pi)

Figure 3: Intuition of our algorithm.

algorithm is precise, meaning it ensures that each context
has a unique encoding, and it allows decoding.

3. DEFINITIONS

Definition 1. A call graph (CG) is a pair 〈N, E〉. N is
a set of nodes with each node representing a function. E is a
set of directed edges. Each edge e ∈ E is a triple 〈n, m, ℓ〉, in
which n, m ∈ N , represent a caller and callee, respectively,
and ℓ represents a call site where n calls m.

In the above definition of call graph, call edges are mod-
eled as a triple instead of a caller and callee pair because
we want to model cases in which a caller may have multiple
invocations of the callee.

Definition 2. The calling context (CC) of a given func-
tion invocation m, is a path in the CG leading from the root
node to the node representing m.

The context of an execution point can be computed by
concatenating the context of its enclosing function invoca-
tion and the program counter (PC) of the point.

Definition 3. A valid calling context encoding scheme is
a function En : CC → Z such that

∀n ∈ N,∀x, y ∈ {the CCs of n} ∧ x 6= y, En(x) 6= En(y)

Any encoding scheme that generates unique encodings,
i.e., integer sequences (Z represents a sequence of integers),
for unique contexts of the same function is a valid encoding
scheme. For example, a näıve but valid encoding scheme is
to use the sequence of call site PCs to denote a context.

Our research challenge is to devise a highly efficient valid
encoding scheme which also allows precise decoding. Fig. 2
(c) presents an example of such a scheme.

4. ENCODING ACYCLIC GRAPHS
In this section, we introduce an algorithm to encode call-

ing contexts that do not involve recursion. The basic idea is
illustrated in Fig. 3. Assume function numCC(n) represents
the number of contexts of a node n such that numCC(n) =
P

i=1...m numCC(pi) where for i ∈ [1, m], pi are the par-
ents of n. A critical invariant of our technique is that the
numCC(n) contexts of n should be encoded by the numbers
in the range of [0, numCC(n)). To do so, the edge instru-
mentation should separate the range into m disjoint sub-
ranges, with [0, numCC(p1)) representing the numCC(p1)

contexts along edge p1 → n, [numCC(p1), numCC(p1) +
numCC(p2)) representing the numCC(p2) contexts along
p2 → n, and [

P

j=1...(i−1) numCC(pj),
P

j=1...i numCC(pj))

encoding the numCC(pi) paths along pi → n. As shown in
Fig. 3, this can be achieved by instrumenting an edge pi → n
with “id+ =

P

j=1...(i−1) numCC(pj)”.

Algorithm 1 Encoding for Acyclic CGs.

1: Annotate (N , E) {
2: for n ∈ N in topological order do:

3: for each parent p of n do:

4: numCC[n]← numCC[n] + numCC[p]
5: }
6: Instrument (N , E) {
7: Annotate (N ,E)
8: for n ∈ N do:

9: s← 0
10: for each e = 〈p, n, ℓ〉 in E do:
11: annotate e with “+s”

12: insert id = id + s before ℓ

13: insert id = id− s after ℓ

14: s← s + numCC[p]
15: }

The algorithm is presented in Algorithm 1. It first com-
putes the number of calling contexts for each node (stored in
numCC). It then traverses each node n in the main loop in
lines 8-14. For each edge e = 〈p, n, ℓ〉, the following instru-
mentation is added: before the invocation at ℓ, the context
identifier id is incremented by the sum s of the numCCs of
all preceding callers; after the invocation, id is decremented
by the same amount to restore its original value.

Consider the example in Fig. 4. Node annotations (i.e.
numbers in boxes) are first computed. In the first three
steps of the topological traversal, nodes A, B, and J are an-
notated with 1, meaning these functions have only one con-
text; node D’s annotation is the sum of those of B and J,
denoting there are two possible contexts when D is called;
the remaining nodes are similarly annotated. The program
is instrumented based on the annotations. Consider the in-
vocations to I, which are from F, G, and J. The empty label
on edge FI means that the invocation is instrumented with
“id+ = 0” and “id− = 0” before and after the call, respec-
tively. This instrumentation is optimized away. The edge
GI has the label “+4”, meaning the instrumentation before
and after comprises “id+ = 4” and “id− = 4”. Note that 4
is the annotation of F. Similarly, since the sum of the anno-
tations of F and G are 4+3=7, edge JI has the label “+7”.
Other edges are similarly instrumented. At runtime, the in-
strumentation yields the encodings as shown in the table in

context id
A

B J

D

F

G

+2

AB 0

AJ 0

ABD 0

AJD 1

ABE 0

ABD
1
F 0

AJD
1
F 1

ABD
2
F 2

AJD
2
F 3

…

I

E

H

1

1

2

1

1

4

4

3

8

+1

+4

+7+2

Figure 4: Example for acyclic en-
coding. Label “+c”means“id+ = c”
is added before the invocation and
“id− = c is added after; superscript
on D is to disambiguate call sites.

A

B C

D

F

G

E

H

recursion

A

B C

D

F

G

E

H

DUMMY

1

21

2

2

4

4

3

+1

+2

+1

void A (…) {

 B (…);

 …

 id+=1;

 C (…);

 id-=1;

 …

}

void F (…) {

 while (…) {

 push(<id,l>);

 id=0;

l: C (…);

 id=pop().first;

 …

 }

 H (…);

 …

}dummy edge

(a) Original Call Graph (b) Transformed Graph (c) Instrumentation

Figure 5: Example for encoding cyclic CGs.

Fig. 4.

In applications such as context sensitive profiling and con-
text sensitive logging, context IDs are emitted as part of the
profile. In order to facilitate human inspection, decoding is
often needed. The decoding algorithm is presented in Algo-
rithm 2. The algorithm traverses from the given function in
a bottom-up fashion and recovers the context by comparing
the encoding with edge annotations. In particular, at line 2,
the recovered context cc is initialized with the given func-
tion m, which is the leaf node of the final context. Lines
4-10 compose the main process, which terminates when the
the root node is reached. In the inner loop from lines 5 to 9,
the algorithm traverses edges ending at the current function
n. At line 6, it tests if the encoding falls in the encoding
range of the contexts along the current edge. If so, the edge
is taken; the caller p and the call site ℓ are attached to the
recovered context at line 7. Symbol ‘•’ represents concate-
nation. At line 8, the encoding is updated by subtracting
the edge annotation. This essentially reverses one step of
encoding. The process continues by treating the caller as
the new current function at line 10.

Consider the example in Fig. 4. Assume the ID 6 is gen-
erated at function I. The algorithm starts from I. Since
En(GI) ≡ 4 ≤ 6 < 7 ≡ En(GI) + numCC(G), the context
must have followed the edge GI. The edge is taken and the
encoding is decremented by 4 to the value 2. At G, since
En(JG) ≡ 2 ≤ 2 < 3 ≡ En(JG) + numCC(J), edge JG is
taken. Finally, edge AJ is taken, yielding the context AJGI.

Algorithm 2 Decode a context Id.
Input: the encoding id; the function m at which the encoding was
emitted; the edge set E; the edge annotations En.
Output: the explicit context cc.

1: Decode (id, m, E, En) {
2: cc←“m”
3: n← m

4: while n 6= root do:

5: for each e = 〈p, n, ℓ〉 in E do:

6: if En(e) ≤ id < En(e) + numCC[p] then:

7: cc←“pℓ” • cc

8: id← id - En(e)
9: break

10: n← p

11: }

5. ENCODING WITH RECURSION

In the presence of recursion, a context may be of un-
bounded length, making encoding using a bounded number
infeasible. We propose to use a stack to encode contexts with
recursion. The basic idea is to encode the acyclic sub-paths
of a recursive context. When a recursion occurs, the current
acyclic encoding is pushed to the stack and the following
acyclic sub-path is encoded with a new id. The numbers on
stack and the current ID together represent the context. In
order to perform correct acyclic sub-path encoding, recur-
sive CGs need to be transformed.

Our solution is presented in Algorithm 3. The first step
deals with CG transformation (in AnnotateRecursive()). A
dummy root node is introduced. A dummy edge is intro-
duced between the new root and the original root. Dummy
edges are further introduced between the new root and any
nodes that are the target of a back edge. Note that only one
dummy edge is introduced even if there are multiple back
edges to the same node. A dummy edge is always the first
edge in the edge set of a node. In the transformed graph,
back edges are removed to allow acyclic encoding. Con-
sider the example in Fig. 5. The recursion FC is removed
and dummy edges are introduced between the dummy root
and the original root A, as well as between the dummy root
and the recursive edge target C. Intuitively, after transfor-
mation, acyclic sub-sequences of a recursive context become
valid contexts in the transformed CG. Hence, they can be
taken into account in the annotation computation. In Fig. 5
(b), the dummy edge from DUMMY to C makes the acyclic sub-
paths, such as CDF and CGF, become valid contexts and have
unique encodings in the transformed graph. Note that paths
that do not involve recursion, such as ACGFH, are not divided
into sub-paths, even if they contain a node that may be the
target of a back edge, such as C in this case.

The instrumentation algorithm is shown in function In-
strumentRecursive(). The instrumentation is performed on
the original graph, which may have back edges. Since the
transformed graph shares the same node set as the original
graph (except the dummy root), the acyclic node annota-
tions on the transformed graph are also annotations on the
original graph and hence used in instrumentation. Similar
to the previous algorithm, s maintains the sum of contexts
of callers that precede the one being processed. At line 12,
it is initialized to 1 if the node could be a back edge target,
0 otherwise. Setting to 1 respects the numbering caused

by the dummy edge on the transformed graph. Lines 14-17
handle non-back-edges, and they are the same for acyclic
graphs. Lines 19-21 handle back edges. Specifically, before
a recursive invocation, the current id and the call site are
pushed to the stack, and id is reset to 0. Resetting id in-
dicates that the algorithm starts to encode the next acyclic
sub-path. After the invocation, id is restored to its previous
value. Fig. 5 (c) shows the instrumentation for functions A

and F, which are the callers of C.

Algorithm 3 Handling Recursion.
Description:
〈N ′, E′〉 represents the transformed CG;
stack is the encoding stack.

1: AnnotateRecursive (N , E) {
2: N ′ ←{DUMMY} ∪ N

3: E′ ← E ∪ {〈DUMMY, root,−〉}
4: for each back edge e = 〈p, n, ℓ〉 in E do:

5: E′ ← E′ - e

6: E′ ← E′ ∪ {〈DUMMY, n,−〉}
7: Annotate(N ′, E′)
8: }
9: InstrumentRecursive (N , E) {
10: AnnotateRecursive (N , E)
11: for n ∈ N do:

12: s← (n has a dummy edge in E′) ? 1 : 0
13: for each edge e = 〈p, n, ℓ〉 in E do:

14: if e is not a back edge then:

15: insert id = id + s before ℓ

16: insert id = id− s after ℓ

17: s← s+numCC(p)
18: else:

19: insert push(〈id, ℓ〉) before ℓ

20: insert id = 0 before ℓ

21: insert id = pop().first after ℓ

22: }
23: DecodeStack (id, stack, m, E′, EnE′

) {
24: ℓ←Ø
25: while true do:

26: Decode (id, m, E′, EnE′

)
27: wcc← cc • wcc

28: if stack.empty() then:

29: break

30: 〈id, ℓ〉 ← stack.pop()
31: m← the residence function of ℓ

32: }

Consider the example context ACGFCDE. It is encoded as a
sub-path with ID 3 on the stack and the current sub-path
id = 1. The encoding 3 is pushed to the stack before F calls
C. After the id value is pushed, it is reset to 0. As a result,
taking the remaining path CDE leads to id = 1. Assume the
execution returns from E, D, C, and then calls C, D, F, and H,
yielding the context of ACGFCDFH. The context is encoded as
3 on the stack and current id = 0.

The decoding algorithm for recursive CGs is presented in
function DecodeStack(). It takes the numbers on the stack,
the current sub-path encoding, and the current function as
part of its inputs. Intuitively, it decodes one acyclic sub-
path of the recursive context at a time, until all encodings
on the stack are decoded. Decoding an acyclic sub-path is
done by calling the acyclic decoding algorithm on the trans-
formed graph at line 26. The resulting acyclic sub-path cc
is concatenated with the whole recovered context wcc. At
line 31, the call site label ℓ is used to identify the method
in which the id was pushed to the stack, which is also the
starting point of the next round of decoding.

Consider an example. Assume we want to decode a con-
text represented by the stack having an entry 〈3, F to C〉, the
current id = 1, and the current function E. After the first
iteration, i.e. Decode(1, E, ...), the sub-path CDE is decoded.
Function F is decided as the starting point of the next round
of decoding, according to the call site on the stack. After the
round, the value 3 on the stack is decoded to the sub-path
ACGF. The two sub-paths constitute the context.

Our design can easily handle very deep contexts caused
by highly repetitive recursive calls. In such cases, contexts
are a string with repetitive substring patterns such as ACGF

CGF CGF CGF ... in Fig. 5. Such redundancy is not directly
removable without relatively expensive compression. With
encoding, the repetitive patterns are encoded into repetitive
integers and can be further encoded as a pair of ID and
frequency. The above context can be encoded to two pairs
3 : 1 and 2 : 3, with the former representing ACGF and the
latter representing the three repetitions of CGF.

6. SAFE HYBRID ENCODING LEVERAG-
ING STACK OFFSETS

The encoding algorithms we have discussed so far explic-
itly produce a unique id for each calling context. We call
them explicit encoding techniques. At runtime, it is often
the case that the stack offset, namely, the value of the cur-
rent stack pointer subtracted by the base of the entire stack,
can disambiguate the current context. Consider the example
in Fig. 2 (c). Previously, updates to id had to be inserted on
edge CD to distinguish the two contexts of D. Let the stack
offset at the entry of D in the context of ABD be x and the
offset in the context of ACD be y. If x does not equal y,
the two contexts can be disambiguated without any explicit
encoding. We call such stack offset based encoding implicit
encoding as explicit instrumentation is not needed.

In reality, a few factors make applying implicit encod-
ing difficult. First of all, there may be multiple contexts
that alias to the same implicit encoding, i.e., they have the
same stack offset. Consider the example in Fig. 4. The
two contexts ABD1F and ABD2F may have the same stack off-
set because the same sequence of functions are called. Sec-
ond, programming languages such as C/C++ allow declar-
ing variable-size local arrays. Gcc allocates such arrays on
stack. Stack allocations make stack offsets variable, and
hence implicit encoding is infeasible. Third, in the pres-
ence of recursion, stack offsets cannot be statically reasoned
about, which makes it inapplicable.

In order to address the aforementioned issues, we propose
a hybrid encoding algorithm that performs explicit encoding
when implicit encoding is not applicable. The algorithm is
safe, meaning that it uniquely encodes each possible context.
The intuition of the hybrid algorithm is presented in Fig. 6.
Besides the number of contexts, each node is also annotated
with a set of implicit contexts, denoted as ImCC, which rep-
resents a set of contexts of the node having distinct and fixed
stack offsets. It is a mapping from contexts to their offsets.
For instance, the implicit context set of node X in Fig. 6
contains context C1 and its stack offset 3 (symbol 7→ rep-
resents the maps-to relation). Each edge is annotated with
two pieces of information. The first piece is the stack frame
offset, which is the difference between the stack pointer and
the base of the current stack frame when the invocation de-
noted by the edge occurs. The stack offset of a context can

X Y

Z

1 1
54

“id+=1”

X Y

Z

1 1
64

“if (id) id+=1”

X Y

Z

1 2
64

“ ”

ImCCX={C1→3} ImCCY={C2→2}

(a) 3+4==2+5

ImCCZ={C1●Z→7}

ImCCX={C1→3} ImCCY={C2→2}

(b) 3+4 != 2+6 && |ImCCX/Y|==numCC(X/Y)

ImCCZ={C1●Z→7, C2●Z→8} ImCCZ={C1●Z→7, C2●Z→8}

ImCCX={C1→3} ImCCY={C2→2}

(c) 3+4 != 2+6 && |ImCCY|!=numCC(Y)

Figure 6: Intuition of Hybrid Encoding.

context offset
A

B J

D

F

G

ABD
1FI

AJD1FI

ABD2FI

AJD2FI

ABDGI

AJDGI

AJGI

AJI

ABDG

AJDG

AJGI

E

H

1

1

2

1

1

4

4

3

8

1 1

2 3

1

1

“ +2”

2

3

1

3

“ +2”

1

1

4 “if (id) +4”

0

0

2

2

0

0

6

0

0

0

2

context offset

ABD

AJD

ABD1F

AJD1F

ABDG

AJDG

ABD
1
FI

AJD
1
FI

ABDGI

AJDGI

AJI

3

4

4

5

4

5

8

9

5

6

2

node
ImCC

D

F

G

I

id

8

9

8

9

5

6

5

2

4

5

4

(b) New encoding scheme(a) Implicit contexts (c) Context encodings

Figure 7: Example of Hybrid Encoding. Edge instrumentations are quoted and stack frame offsets are not.

be computed by aggregating the edge offsets along the con-
text. The second annotation is the instrumentation, which
is quoted. Symbol ‘•’ represents concatenation.

The figure presents three cases. In case (a), the two im-
plicit contexts of Z have a conflicting offset, namely, 3+4 ≡
2+5. We cannot implicitly encode both. In such a case, we
implicitly encode the context along edge XZ and explicitly
encode that from YZ. Hence, ImCCZ is set to contain the
context from edge XZ and id is increased by numCC(X) = 1
along edge YZ. The instrumentation has the same effect of
separating the encoding space as in previous algorithms. In
case (b), the two implicit contexts do not conflict and all
contexts of X and Y can be implicitly encoded, implied by
the sub-condition |ImCCX/Y | ≡ numCC(X/Y). In such a
case, no explicit encoding is needed and the ImCC set of
Z contains both. In case (c), the two implicit contexts of
Z do not conflict but the contexts of Y are heterogeneously
encoded, denoted by |ImCCY | 6= numCC(Y). It implies
that id may be non-zero at Y, depending on the context at
runtime. If id is not zero, explicit encoding must have been
used, and the new context of Z should be explicitly encoded.
Hence, id is increased by numCC(X) = 1. If id is zero, the
context of Y is one of the contexts in ImCCY . Because the
corresponding context of Z does not have conflicts and can
be implicitly encoded, no update to id is needed. The above
logic is realized by the guarded instrumentation on edge YZ

in Fig. 6 (c).
The algorithm is presented in Algorithm 4. Variable ImCC

represents the set of contexts that are implicitly encoded
for each node. Function extend(ImCC[p], n) extends the
implicit contexts in ImCC[p] along the invocation p → n.
This is done by concatenating n to the contexts in ImCC[p]
and increasing the corresponding stack offsets by the stack
frame offset of p → n. Function conflict(ImCCx, ImCCy)

tests if two implicit context sets conflict. This is done by
checking if there are two contexts in the two respective sets
alias to the same stack offset.

The instrumentation algorithm is described in function In-
strument(). Here we only present the algorithm for acyclic
graphs. The extension to recursion can be achieved in a way
similar to explicit encoding and hence omitted. The algo-
rithm traverses the nodes in the topological order. It first
resets the ImCC for the current node n at line 3. It then
traverses the set of invocations to n, denoted by edges of
the form 〈p, n, ℓ〉, with p the caller and ℓ the call site. It ex-
tends ImCC[p] to n at line 6, and then tests if the extended
set conflicts with the implicit contexts of n that have been
computed so far. If there is no conflict, the extended set is
admitted and aggregated to the implicit set of n at line 8.
Line 9 checks if all contexts of p are implicit. If so, the afore-
mentioned case (b) in Fig. 6 is encountered. There is no need
to instrument the invocation. If not, case (c) is encountered,
namely, the contexts of p may be explicitly encoded. Hence,
the instrumentation should decide at runtime if the context
has been explicitly encoded. If so, the instrumentation will
continue to perform explicit encoding as shown by the boxes
in lines 11-12. If the extended implicit set incurs conflict,
case (a) is encountered. In lines 15-16, the edge is explicitly
encoded.

Encoding Example. Consider the earlier example in Fig. 4.
Fig. 7 (b) shows the graph with stack frame offset annota-
tions and instrumentation (quoted). For instance, when B is
called inside A, the stack frame offset is 1; when D is called
inside B, the frame offset is 2. Hence, the stack offset of the
context ABD is the sum of the two, which is 3. Similarly, the
stack offset of AJD is 1+3=4. The two different offsets dis-
ambiguate the two contexts, and thus the implicit context

Algorithm 4 Hybrid Encoding.
Definitions:

ImCC[] an array of implicit contexts indexed by nodes;
extend (ImCC[p], n)=

{C • n 7→ t + offset(p, n) | C 7→ t ∈ ImCC[p]}

in which offset(p, n) is the stack frame offset of the call to n in p.
conflict (ImCCx, ImCCy)=

1 ∃ C1 7→ t ∈ ImCCx ∧ C2 7→ t ∈ ImCCy

0 otherwise

1: Instrument (N , E) {
2: for n ∈ N in topological order do:

3: ImCC[n]← Ø
4: s← 0
5: for each edge e = 〈p, n, ℓ〉 in E do:

6: ImCC′ ←extend (ImCC[p],n)
7: if not conflict (ImCC[n], ImCC′) then:

8: ImCC[n]← ImCC[n] ∪ ImCC′

9: if |ImCC[p]| 6= numCC[p]) then:

10: /*case (c) in Fig. 6, otherwise case (b)*/

11: replace the call ℓ : n(...) in p with

12:

if (id) {
id = id + s;
n(...);
id = id− s;

} else n(...);

13: else:

14: /*case (a) */

15: insert id = id + s before ℓ

16: insert id = id− s after ℓ

17: s← s+numCC[p]
18: }

set of D, as shown in Fig. 7 (a), contains both contexts. No
instrumentation is needed.

Now let us consider F. When the first edge is processed.
extend(ImCC[D1], F) is computed as {ABD1F 7→ 4, AJD1F 7→
5} at line 6, and it is assigned to ImCC[F] at line 8. When
the second edge is processed, extend(ImCC[D2], F) is com-
puted as {ABD2F 7→ 4, AJD2F 7→ 5}. The conflict test at line
7 fails, so ImCC(F) only contains the set extended along the
edge D1F, as shown in Fig. 7 (a). Moreover, the algorithm
instruments the edge D2F according to lines 15-16.

When I is considered, the extensions from ImCC[F], ImCC[G]
and ImCC[J] do not conflict. However, contexts to G may
be explicitly encoded as |ImCC[G]| = 2 6= 4 = numCC[G].
The instrumentation has to be guarded as shown on the edge
GI. Sample encodings can be found in Fig. 7 (c). Compared
to the instrumentation in Fig. 4, in which 5 edges need to be
instrumented with each instrumentation comprising one ad-
dition and one subtraction (2 reads and 2 writes), the hybrid
version instruments 3 edges. Furthermore, the instrumen-
tation on edge GI may need just one read (the read in the
predicate).

Decoding Example. The decoding algorithm is elided for
brevity. We will use examples to intuitively explain the idea.
The encoding of a context under the hybrid algorithm is
a triple, which comprises the stack offset, the explicit ID,
and the current function. Note that only the explicit ID is
computed by instrumentation, the other two can be inferred
at any execution point. Assume we are given the encoding of
offset = 5, id = 0 and the current function G. The explicit
encoding id = 0 means that the context is not explicitly
encoded and can be looked up from the ImCC set. From

ImCC[G], we recover the context as AJDG.
Assume we are given the encoding offset = 5, id = 6 and

the current function I. The nonzero explicit encoding means
that explicit encoding is used. From the encoding graph in
Fig. 7 (b), we know that explicit IDs at I in range [4, 7)
represent contexts along the edge GI. We reverse both the
stack offset and the explicit encoding along this edge and
get offset = 5 − 1 = 4 and id = 6 − 4 = 2. The IDs at G in
range [2,3) represent contexts along JG. Backtracking along
the edge leads to offset = 4 − 3 = 1 and id = 2 − 2 = 0.
Now with id = 0, we know that the remaining part of the
context can be looked up, yielding AJ. Here we recover the
whole context AJGI.

7. HANDLING PRACTICAL ISSUES
Handling Insufficient Encoding Space. Since our tech-
nique uses a 32 bit ID, it allows a function to have a max-
imum of 232 different contexts. We observe for some large
programs a function may have more than 232 contexts. For
example, in GCC, there are a few functions that are called
by a few thousand other functions, leading to an overflow
in the encoding space. In order to handle such cases, we
propose a selective reduction approach. We use profiles to
identify hot and cold call edges. Cold edges are replaced
with dummy edges such that sub-paths starting with these
cold edges can be separately encoded. As a result, the over-
all encoding pressure is reduced. At runtime, extra pushes
and pops are needed when the selected cold edges are taken.

Handling Function Pointers. If function pointers are
used, points-to analysis is needed to identify the targets of
invocations. Due to the conservative nature of points-to
analysis, the possible targets may be many. We employ a
simple and safe solution. We profile the set of targets for a
function pointer invocation with a number of runs. Edges
are introduced to represent these profiled targets and then
instrumented normally. During real executions, if a callee is
out of the profiled set, push and pop are used.

Handling setjmp/longjmp. Setjmp allows a developer
to mark a position in the calling context that a successive
use of longjmp can then automatically return to, unwind-
ing the calling context to the marked point. Our approach
safely handles such unwinding by detecting when a setjmp is
encountered and storing a copy of the context stack height
and current context identifier within the local variables of
the function containing setjmp. When longjmp unwinds the
calling context, these values are then safely restored from
the local copies, unwinding the context encoding as well.

Handling Stack Allocations. Implicit encoding is not
possible when stack allocation is used, e.g., when allocating
a variable-size array on the stack. We use static analysis
to identify all functions that have stack local allocation and
prohibit implicit encoding for those functions.

8. EVALUATION
We have implemented our approach in OCaml using the

CIL source-to-source instrumentation infrastructure [14]. The
implementation has been made available on our project web-
site [1]. All experiments were performed on an Intel Core 2
2.1GHz machine with 2GB RAM and Ubuntu 9.04.

Note that because we use source level analyses for our im-
plementation, we do not have as much information as would

be available were the analysis within the actual compilation
phase. In particular, we don’t know if the compiler even-
tually inlines a function, resulting in indistinguishable stack
frame sizes. Hence, we disabled inlining during our experi-
ments. Observe that this is not a limitation of our algorithm
but rather an outcome of our infrastructure selection. An
implementation inside a compiler after functions are inlined
can easily handle the issue.

Table 1 presents the static characteristics of the programs
we use. Since CIL only supports C programs, our imple-
mentation currently supports C programs. We use SPECint
2000 benchmarks and a set of open source programs. Some
of them are large, such as 176.gcc, alpine, and vim. Three
SPECint programs, 252.eon, 254.gap and 253.perlbmk are
not included because CIL failed to compile them due to their
use of C++ or unsupported types. For each program, the
table also details lines of code (LOC), the number of nodes
in the call graph (CG nodes), the number of edges in the
call graph (CG edges), the number of recursive calls or back
edges in the call graph (recursions), the number of func-
tion pointer invocations, and the maximum ID required in
the call graph under the original BL numbering scheme (BL
max ID) and our scheme (our max ID).

We can observe that most programs make use of recursion
and function pointers. In particular, 176.gcc has 1800 re-
cursive invocations and uses function pointers at 128 places.
We are able to encode the contexts of all programs smaller
than 100K LOC in a 32-bit ID. For the larger programs,
overflows are observed and selective reduction (Section 7) is
performed to reduce encoding pressure and fit the ID into
32 bits. The numbers below the table show the number
of nodes on which selective reduction is performed for each
large programs. Observe, the maximum ID for the original
BL encoding scheme is often a few times larger than ours.

Fig. 8 illustrates the runtime overhead of our encoding al-
gorithms. We use reference inputs for SPEC programs and
random inputs for the rest. In particular, we use training
inputs to profile SPEC programs. The runtime for alpine

2.0 cannot be accurately measured as it is an interactive
program. The slow down is not humanly observable though.
The times for vim were collected in batch mode. We normal-
ize the runtime of two encoding algorithms: one is the basic
algorithm that handles recursion and the other the hybrid
algorithm. From the figure, we observe that our technique
is very efficient, the average overheads are 3.64% and 1.89%
for the two respective algorithms. The hybrid algorithm
improves over the basic algorithm by 48.1%. 176.gcc and
255.vortex have relatively higher overhead due to the extra
pushes and pops caused by selective reduction.

Table 2 presents the dynamic properties. The second
and third columns compare our encoding stack depth (ours)
to the plain calling stack depth (plain), i.e., the call path
length. The third and fourth columns show the stack size
needed to cover 90% of contexts at runtime. The last column
presents the number of unique contexts encountered. We ob-
serve that our maximum encoding stacks are substantially
shorter than the corresponding maximum plain stacks. For
most utility programs, the encoding stack is empty, mean-
ing the contexts can be encoded into one ID without using
the stack. We also observe that some programs need maxi-
mum encoding stacks with a non-trivial depth, e.g. 176.gcc,
181.mcf, 186.crafty and 197.parser. However, when we
look at the 90% cutoffs, 176.gcc and 181.mcf require en-

programs
Max Depth 90% Depth dynamic
ours plain ours plain contexts

cmp 2.8.7 0 3 0 3 9
diff 2.8.7 0 7 0 5 34
sdiff 2.8.7 0 5 0 4 44
find 4.4.0 2 12 1 12 186
locate 4.4.0 0 9 0 9 65
grep 2.5.4 0 11 0 8 117
tar 1.16 3 40 2 31 1346
make-3.80 6 82 3 43 1789
alpine 2.0 11 29 6 18 7575
vim 6.0 10 31 5 10 3226

164.gzip 0 9 0 7 258
175.vpr 0 9 0 6 1553
176.gcc 19 136 2 15 169090
181.mcf 14 42 0 2 12920
186.crafty 34 41 10 23 27103471
197.parser 36 73 11 28 3023011
255.vortex 7 43 2 12 205004
256.bzip2 1 8 0 8 96
300.twolf 4 11 0 5 971

Average 8.78 39.22 2.17 13.72 1795292

Table 2: Dynamic context characteristics.

coding stacks of depth 2 and 0, respectively. To precisely
evaluate our technique, we also contrast the full frequency
distributions for our encoding stacks and the correspond-
ing plain stacks. Due to space limit, we only present some
of the results in Fig. 9. Each diagram corresponds to one
of the benchmarks considered. The x-axis corresponds to
stack depth and y-axis shows the cumulative percentage of
dynamic context instances during execution that can be rep-
resented in a given stack depth. Thus, if a curve ascends
to 100% very quickly, it means that most contexts for that
benchmark could be stored with a small encoding stack, pos-
sibly even size zero. The graph for 164.gzip is very typical
for medium sized programs. Our stack is always empty while
the plain stack gradually ascends. Observe the diagram of
176.gcc. Even though the maximum encoding stack has the
size of 19, our curve quickly ascends over the 90% bar with
the stack depth 2. The diagrams for other large programs
such as 255.vortex, vim and alpine 2.0 are similar. Fi-
nally, the diagram of 197.parser shows that our technique
is relatively less effective. The reason is that parser im-
plements a recursive descent parsing engine [2] that makes
intensive recursive calls based on the syntactic structure of
input. The recursion is mostly irregular, so our simple com-
pression does not help much. 186.crafty is similar.

9. RELATED WORK
Explicit context encoding. The most direct approach

to identifying calling contexts is to explicitly record the en-
tire call stack. There are two main approaches for doing
so. Stack walking involves explicitly traversing the program
stack whenever a context is requested in order to construct
the full identifier for the context [15]. Compared to our ap-
proach, stack walking is more expensive and hence less de-
sirable. Maintaining the calling context tree [17, 19] involves
explicitly unfolding a CG into a tree at runtime, with each
tree path representing a context. Tree nodes are allocated
and maintained on the fly. The current position in the tree is
maintained by a traversal action at each call site. While call
trees are very useful in profiling, our technique is more gen-
eral as it provides more succinct representation of contexts

Table 1: Static program characteristics.
programs LOC CG nodes CG edges recursions fun pointers our max ID BL max ID

cmp 2.8.7 6681 68 162 0 5 44 156
diff 2.8.7 15835 147 465 6 8 645 3140
sdiff 2.8.7 7428 90 281 0 5 242 684
find 4.4.0 39531 567 1362 28 33 1682 5020
locate 4.4.0 28393 320 688 3 19 251 1029
grep 2.5.4 26821 193 665 17 10 17437 44558
tar 1.16 58301 791 2697 19 46 1865752 4033519
make 3.80 29882 271 1294 61 7 551654 1543113
alpine 2.0 556283 2880 26315 302 1570 4294967295* 4.5e+18
vim 6.0 154450 2365 15822 1124 27 4291329441* 8.7e+18

164.gzip 11121 154 426 0 2 536 1283
175.vpr 29807 327 1328 0 2 1848 13047
176.gcc 340501 2255 22982 1801 128 4294938599* 9.1e+18
181.mcf 4820 93 208 2 0 6 96
186.crafty 42203 179 1533 17 0 188589 650779
197.parser 27371 381 1676 125 0 2734 14066
255.vortex 102987 980 7697 41 15 4294966803* 1.5e+13
256.bzip2 8014 133 396 0 0 131 609
300.twolf 49372 240 1386 9 0 1051 3766

*Selective reduction is applied to 288 nodes in alpine 2.0, 300 in 176.gcc, 33 in 255.vortex, and 877 in vim.

Figure 8: Normalized runtime comparison of benchmarks with no instrumentation, basic encoding instrumentation, and the
hybrid encoding instrumentation. Times are normalized against the native runtime.

and has less overhead. Moreover, our encoding technique is
complementary to call trees because a compressed tree can
be constructed using encoding by denoting tree sub-paths
as individual nodes.

Path encoding. In [4], Ball and Larus developed an algo-
rithm to encode control flow paths. Our technique is inspired
from theirs. In comparison, our algorithm is more efficient
for context encoding as it encodes in a different (backward)
direction. The BL algorithm breaks loop paths at control
flow back edges and our algorithm similarly separates recur-
sive contexts into acyclic subsequences and encode indepen-
dently. However, due to the characteristics of contexts, our
recursive encoding relies on a stack. Furthermore, we safely
leverage stack offset to remove unnecessary encodings. In
[12], the BL algorithm was extended to encode control flow
paths across function boundaries. In [20], it was first pro-
posed that the BL algorithm can be extended to encode
calling contexts. However, the approach was not fully de-
veloped. It does not encode/decode recursive contexts. No
empirical results were reported.

In [8], edge profiles are used to avoid considering cold
paths and to infer paths without numbering where possible.
If only a subset of paths are known to be of interest, [18] uses
this information to construct minimal identifiers for the in-

teresting paths, while allowing uninteresting paths to share
identifiers when advantageous. Similar to these approaches,
our technique uses profiling to guide instrumentation, im-
prove efficiency and reduce encoding space pressure. If it
were known that only a subset of calling contexts were of
interest, we could further reduce both our instrumentation
and identifier size, but we leave this open as future work.

Probabilistic contexts. It may be acceptable that con-
text identifiers are not unique. That is, some arbitrary
contexts may be merged with low probability. In such sce-
narios, probabilistic calling contexts can be used to very ef-
ficiently identify calling contexts with high probability of
unique identifiers. In [5], calling contexts are hashed to nu-
meric identifiers via hashes computed at each function call.
Decoding is not supported in this technique. More recently,
[13] uses the height of the call stack to identify calling con-
texts and mutates the size of stack frames to differentiate
conflicting stack heights with empirically high probability.
Our approach also uses the height of the call stack to dis-
ambiguate calling contexts, but in contrast, we only use it to
eliminate instrumentation and path numbering where it can
be shown that it is safe to do so. Their decoding is achieved
by offline dictionary lookup. The dictionary is generated
through training, and hence the actual calling contexts can-

Figure 9: Context encoding stack size distributions

not always be decoded. In contrast, our approach guaran-
tees safety and easy decoding. Furthermore, their approach
is unsafe with stack allocation.

Sampling based profiling. In [23], adaptive sampling
is used to guide context sensitive profiling, thus reducing
the number of times contexts are even needed. While this
is useful when performing hot-context profiling, it does not
generalize to other uses of contexts where coverage guaran-
tees are important.

10. CONCLUSIONS
We propose a technique that encodes the current calling

context at any point during execution. It encodes an acyclic
call path into a number and divides a recursive path into
sub-sequences to encode them independently. It leverages
stack depth to remove unnecessary encoding. The technique
guarantees different contexts have different IDs and a con-
text can be decoded from its ID. Our results show that the
technique is highly efficient, with 1.89% overhead on aver-
age. It is also highly effective, encoding contexts of most
medium-sized programs into just one number and those of
large programs in a few numbers in most cases.

11. REFERENCES
[1] http://www.cs.purdue.edu/~wsumner/research/cc.
[2] A. Aho, R. Sethi, and J. Ullman. Compilers: Princiles,

Techniques, and Tools. Addison-Wesley, 1986.
[3] G. Ammons, T. Ball, and J. Larus. Exploiting

hardware performance counters with flow and context
sensitive profiling. In PLDI, 1997.

[4] T. Ball and J. Larus. Efficient path profiling. In
MICRO-29, December 1996.

[5] M. D. Bond and K. S. McKinley. Probabilistic calling
context. In OOPSLA, 2007.

[6] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and
K. Vaswani. Holmes: Effective statistical debugging
via efficient path profiling. In ICSE, 2009.

[7] R. Jones and C. Ryder. A study of java object
demographics. In ISMM, 2008.

[8] R. Joshi, M. D. Bond, and C. Zilles. Targeted path
profiling: Lower overhead path profiling for staged

dynamic optimization systems. In CGO, 2004.
[9] Z. Lai, S. C. Cheung, and W. K. Chan. Inter-context

control-flow and data-flow test adequacy criteria for
nesc applications. In FSE, 2008.

[10] James R. Larus. Whole program paths. In PLDI, 1999.
[11] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic

protocol format reverse engineering through
context-aware monitored execution. In NDSS, 2008.

[12] D. Melski and T. Reps. Interprocedural path profiling.
In CC, 1999.

[13] T. Mytkowicz, D. Coughlin, and A. Diwan. Inferred
call path profiling. In OOPSLA (To appear), 2009.

[14] G.C. Necula, S. McPeak, S.P. Rahul, and W. Weimer.
Cil: Intermediate language and tools for analysis and
transformation of c programs. In CC, 2002.

[15] N. Nethercote and J. Seward. Valgrind: A framework
for heavyweight dynamic binary instrumentation. In
PLDI, 2007.

[16] T. Reps, T. Ball, M. Das, and J. Larus. The use of
program profiling for software maintenance with
applications to the year 2000 problem. In FSE, 1997.

[17] J. M. Spivey. Fast, accurate call graph profiling. Softw.
Pract. Exper., 34(3):249–264, 2004.

[18] K. Vaswani, A.V. Nori, and T.M. Chilimbi.
Preferential path profiling: compactly numbering
interesting paths. In POPL, 2007.

[19] A. Villazon, W. Binder, and P. Moret. Flexible calling
context reification for aspect-oriented programming.
In AOSD, 2009.

[20] B. Wiedermann. Know your place: Selectively
executing statements based on context. Technical
Report TR-07-38, University of Texas at Austin, 2007.

[21] X. Zhang, A. Navabi, and S. Jagannathan. Alchemist:
A transparent dependence distance profiling
infrastructure. In CGO, 2009.

[22] X. Zhang, S. Tallam, and R. Gupta. Dynamic slicing
long running programs through execution fast
forwarding. In FSE, 2006.

[23] X. Zhuang, M. Serrano, H. Cain, and J. Choi.
Accurate, efficient, and adaptive calling context
profiling. In PLDI, 2006.

http://www.cs.purdue.edu/~wsumner/research/cc

	Introduction
	Motivation
	Definitions
	Encoding Acyclic Graphs
	Encoding with Recursion
	Safe Hybrid Encoding Leveraging Stack Offsets
	Handling Practical Issues
	Evaluation
	Related Work
	Conclusions
	References

