Long Distance Wireless Communication

Principally satellite communication:

- LOS (line of sight) communication
 - \rightarrow satellite base station is relay
- Effective for broadcast
- Limited bandwidth for multi-access
 - \rightarrow not scalable

- FDM + TDMA: dominant
 - \longrightarrow broadband
 - \longrightarrow GSM cellular
- CDMA: e.g., GPS and defense related systems
 - \longrightarrow CDMA cellular (Qualcomm)
- CSMA/CA: impractical due to large RTT
 - \longrightarrow low utilization/throughput

Long-distance wireless communication: effective when broadcasting

- \longrightarrow special applications
- $\longrightarrow\,$ e.g., TV, GPS, digital radio, atomic clock

Short Distance Wireless Communication

- very short: wireless PAN
- short: wireless LAN
- medium: wireless MAN

- \longrightarrow TDMA, FDMA, CDMA, polling
- \longrightarrow contention-based multiple access w/o priority

Cellular telephony: frequency & time division

FDD & TDMA

Ex.: GSM (U.S. IS-136) with 25 MHz frequency band

- uplink: 890–915 MHz
- \bullet downlink: 935–960 MHz
- 125 channels 200 kHz wide each (= $25000 \div 200$)
 - \rightarrow separation needed due to cross-carrier interference
 - \rightarrow FDM portion

- 8 time slots within each channel
 - \rightarrow TDM portion
- \bullet total of 1000 possible user channels

 $\rightarrow 125 \times 8 \ (124 \times 8 \ realized)$

- codec/vocoder: 13.4 kb/s
- compare with T1 standard
 - $\rightarrow 24$ users at 64 kb/s data rate each

Dedicated channels workable because data traffic is speech:

- Low bit rate & approximately CBR (constant bit rate)
 - \rightarrow flat
 - \rightarrow good/bad?
- Not so for:
 - \rightarrow different for compressed video (e.g., MPEG, H.261)
 - \rightarrow cf. Terminator video
 - \rightarrow VBR (variable bit rate)
 - \rightarrow data files?

Cellular telephony: code division multiplexing

 \rightarrow same frequency band; different codes

Ex.: IS-95 CDMA with 25 MHz frequency band

- uplink: 824–849 MHz; downlink: 869–894 MHz
 - \rightarrow downlink: prepared; uplink: physical diversity
 - \rightarrow capture effect: closer station has advantage
- codec: 9.6 kb/s

Packet radio: ALOHA

- \longrightarrow downlink broadcast channel F1
- \longrightarrow shared uplink channel F1'
- \longrightarrow both baseband

Ex.: ALOHANET

- \bullet data network over radio
- Univ. of Hawaii, 1970; 4 islands, 7 campuses

- Norm Abramson
 - \rightarrow precursor to Ethernet (Bob Metcalfe)
 - \rightarrow pioneering Internet technology
 - \rightarrow parallel to packet switching technology
- FM radio carrier frequency
 - \rightarrow uplink: 407.35 MHz; downlink: 413.475 MHz
- \bullet bit rate: 9.6 kb/s
- \bullet contention-based multiple access: MA
 - \rightarrow plain and simple
 - \rightarrow needs explicit ACK frames
 - \rightarrow ALOHA

ALOHA protocol:

- send frame (no carrier sense)
- wait for ACK

 \rightarrow collision detection through explicit ACK

- \bullet if time out, retry with probability p
 - \longrightarrow looks familiar...
 - \longrightarrow pure vs. slotted ALOHA

Wireless LAN (WLAN): infrastructure mode

WLAN: Infrastructure Network

- \longrightarrow shared uplink & downlink channel F1
- \rightarrow single baseband channel
- basic service set (BSS)
- base station: access point (AP)
- mobile stations must communicate through AP

WLAN: ad hoc mode

WLAN: Ad Hoc Network

- \longrightarrow homogeneous: no base station
- \longrightarrow everyone is the same
- \longrightarrow share forwarding responsibility
- independent basic service set (IBSS)
- mobile stations communicate peer-to-peer
 - \rightarrow also called peer-to-peer mode

WLAN: internetworking

WLAN: Extended Service Set

- \longrightarrow internetworking between BSS's through APs
- \longrightarrow mobility and handoff
- extended service set (ESS)
- APs are connected by distribution system (DS)

• DS: wireline or wireless

 \rightarrow common: Ethernet switch

- How do APs and Ethernet switches know where to forward frames?
 - \rightarrow bridge: link layer forwarding device
 - \rightarrow i.e., switch using MAC address relay
 - \rightarrow learning bridge: source address discovery
 - \rightarrow spanning tree: IEEE 802.1 (Perlman's algorithm)
 - \rightarrow distributed ST & leader election

Additional headache: mobility

- \longrightarrow how to perform handoff
- \longrightarrow mobility management at MAC
- \longrightarrow mobility management at IP (Mobile IP)

Mobility between BSSes in an ESS

- association
 - \rightarrow registration process
 - \rightarrow mobile station (MS) associates with one AP
- disassociation
 - \rightarrow upon permanent departure: notification
- reassociation
 - \rightarrow movement of MS from one AP to another
 - \rightarrow inform new AP of old AP
 - \rightarrow forwarding of buffered frames

Association, disassociation, reassociation provides necessary information for distribution service within ESS

 \longrightarrow distribution service implemented in AP

Compatibility with non-802.11 devices in ESS:

- \longrightarrow integration service: portal abstraction
- \longrightarrow translation service

Complicated 802.11 frame format

- \longrightarrow 30-byte MAC header
- \longrightarrow four 48-bit address fields
- \longrightarrow 16-bit frame control field: 11 fields
- \longrightarrow e.g., version, type, subtype, to DS, from DS, ...
- \longrightarrow type (2-bit): mgt (00), control (01), data (10)
- \longrightarrow subtype (4-bit): association (mgt), ACK (ctl)
- \longrightarrow payload: 0–2313 bytes

WLAN spectrum 2.4–2.4835 GHz:

- \longrightarrow 11 channels (U.S.)
- \longrightarrow 2.412 GHz, 2.417 GHz, ..., 2.462 GHz

Non-interference specification:

- \bullet each channel has 22 MHz bandwidth
- \bullet require 25 MHz channel separation
 - \longrightarrow thus, only 3 concurrent channels possible
 - \longrightarrow e.g., channels 1, 6 and 11
 - \longrightarrow 3-coloring...

Examples:

Purdue Univ.: IEEE 802.11b (11 Mbps) WLAN network

- \longrightarrow PAL (Purdue Air Link)
- \longrightarrow partial mobility: MAC roaming (within ESS)
- \longrightarrow no mobile IP
- \longrightarrow but football scores at Ross-Ade through PDAs

Dartmouth College: IEEE 802.11b WLAN (500 + APs)

- \longrightarrow full VoIP
- \longrightarrow free long distance

Seattle, SF, San Diego, Boston, etc.: WiFi communities

- \longrightarrow free Internet access
- \longrightarrow roof-top mesh networks
- $\longrightarrow~$ cable & DSL companies don't like it

Graffiti: warchalking

- \longrightarrow some cities
- \longrightarrow benevolent kids with lots of free time

Soon: integrated WLAN + cellular phones

- \longrightarrow use VoIP when near WLAN network
- \longrightarrow use cellular when outside WLAN coverage
- \longrightarrow automatic switch-over