Error Detection and Correction

 \longrightarrow recall: reliable transmission over noisy channel

Key problem:

- sender wishes to send a; transmits code word w_a
- receiver receives w
- due to noise, w may, or may not, be equal to w_a
 - \rightarrow would like to detect error has occurred
 - \longrightarrow would like to correct error

Error detection problem:

- determine if w is a valid code word
 - \rightarrow i.e., for some symbol $c \in \Sigma$, F(c) = w
- e.g., parity bit in ASCII transmission
 - \rightarrow odd or even parity
 - \rightarrow limitation?

Error correction problem:

- even if $w \neq w_a$, recover symbol *a* from scrambled *w* \rightarrow correction is tougher than detection
- how to correct single errors for ASCII transmission?
 - \rightarrow e.g., assume 21 bits available
 - \rightarrow what about 14 bits?

Conceptual approach to detection & correction:

Error detection:

- valid/legal code word set $S = \{w_a : a \in \Sigma\}$
- \bullet can detect k-bit errors if

 \rightarrow corrupted w does not belong to S

 \rightarrow for all k-bit error patterns

 \longrightarrow flipped code word cannot impersonate as valid

What kind of S can satisfy these properties?

 \longrightarrow e.g., ASCII with 1-bit, 2-bit, ..., k-bit flips

 \longrightarrow intuition?

- \longrightarrow valid code words should not look alike
- \longrightarrow well-separatedness
- \longrightarrow "distance" between two binary strings?

Error correction:

- suppose w_a has turned into w under k-bit errors
- for all $b \in \Sigma$, calculate $d(w_b, w)$

 \rightarrow use Hamming distance

 \rightarrow e.g., d(1011, 1101) = 2

• pick $c \in \Sigma$ with smallest $d(w_c, w)$ as answer

Ex.: $0 \mapsto 000$ and $1 \mapsto 111$

- \longrightarrow want to send 0, hence send 000
- \longrightarrow 010 arrives: d(010, 000) = 1 & d(010, 111) = 2
- \longrightarrow conclude 000 was corrupted into 010
- \longrightarrow original data bit: 0

Obviously not fool-proof ...

- \longrightarrow the larger k, the more distant the code words
- \longrightarrow need a roomier playing area
- \longrightarrow imbed valid/legal code words

Pictorially: "ball" of radius r centered at w_a

$$\longrightarrow B_r(w_a) = \{w : d(w_a, w) \le r\}$$

 \longrightarrow well-separated code word set S layout

If k bit flips, sufficient conditions for error detection and correction in terms of $d(w_a, w_b)$ for all $a, b \in \Sigma$?

Network protocol context: different approach to detection vs. correction

- \longrightarrow error detection: use checksum and CRC codes
- \longrightarrow error correction: use retransmission
- \longrightarrow humans?
- \longrightarrow can also use FEC; for real-time data

Internet checksum: group message into 16-bit words; calculate their sum in one's complement; append "checksum" to message.

 \longrightarrow problem?

Cyclic redundancy check (CRC): polynomial arithmetic over finite field.

View *n*-bit string $a_{n-1}a_{n-2}\cdots a_0$ as a polynomial of degree n-1:

$$M(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x + a_0.$$

Ex.: 1011 is interpreted as $1 \cdot x^3 + 0 \cdot x^2 + 1 \cdot x^1 + 1 \cdot x^0 = x^3 + x + 1$ $\longrightarrow M(x)$: data or message to be sent

Some facts about polynomial arithmetic:

- how do we add/subtract polynomials
 - \rightarrow component-wise addition/subtraction
 - \rightarrow "mod 2" when binary coefficients
- how do we multiply/divide polynomials?

Set-up: fix some generator polynomial G(x) of degree k.

- \longrightarrow G(x) "generates" (i.e., divides) code words
- like prime number \longrightarrow
- \longrightarrow choice of G(x) important

Encode: Two steps

(1) Let R(x) be the remainder of $x^k M(x)/G(x)$.

- \longrightarrow note: $x^k M(x)$ is k-bit left shift operation
- like adding redundancy (k extra bits) \longrightarrow
- \longrightarrow total length: n + k
- \longrightarrow e.g., Ethernet

(2) Set
$$T(x) = x^k M(x) - R(x)$$
.
 $\longrightarrow T(x)$ is the code word
 \longrightarrow why subtract $R(x)^2$

$$\rightarrow$$
 why subtract $R(x)$?

Transmit: T(x)

Noise:

- $\longrightarrow T(x) + E(x)$ arrives at receiver
- $\longrightarrow E(x)$ represents the bit flips
- \longrightarrow degree of E(x)?

$$\longrightarrow M(x) = a, T(x) = w_a, T(x) + E(x) = w$$

Decode: i.e., detect bit flip

- if E(x) = 0 then (T(x) + E(x))/G(x): remainder = 0 \rightarrow no errors
- if $E(x) \neq 0$ then (T(x) + E(x))/G(x): remainder $\neq 0$ \rightarrow error has occured

Is the decision rule sufficient?

Choice of G(x) depends on allowed noise vector (i.e., polynomial) E(x)

Single bit flip:

- we have $E(x) = x^i$, $0 \le i \le n + k 1$ (i.e., a single error at position i)
- if G(x) contains at least two terms, G(x) will not divide E(x): $G(x) = x^k + 1$

Two bit flips:

- $E(x) = x^i + x^j \ (i > j)$ \rightarrow write $E(x) = x^j(x^{i-j} + 1)$
- assuming x does not divide G(x), it is sufficient that G(x) not divide $x^{i-j} + 1$
- fact: $G(x) = x^{15} + x^{14} + 1$ will not divide $x^r + 1$ for r < 32768

 \rightarrow pretty long messages: meaning of r?

Burst (i.e., consecutive) errors

 \longrightarrow additional analysis

Ex.: commonly used CRC generator polynomials

- CRC-32: $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$
 - \rightarrow e.g., FDDI, Ethernet, WLAN
 - \rightarrow also used in compression
- CRC-CCITT: $x^{16} + x^{12} + x^5 + 1$ (HDLC)
- CRC-8: $x^8 + x^2 + x + 1$ (ATM)
 - \longrightarrow guaranteed: single, double, k-burst errors
 - \longrightarrow typically: other error patterns