
CS 536 Park

Error Detection and Correction

−→ recall: reliable transmission over noisy channel

Key problem:

• sender wishes to send a; transmits code word wa

• receiver receives w

• due to noise, w may, or may not, be equal to wa

−→ would like to detect error has occurred

−→ would like to correct error



CS 536 Park

Error detection problem:

• determine if w is a valid code word

→ i.e., for some symbol c ∈ Σ, F (c) = w

• e.g., parity bit in ASCII transmission

→ odd or even parity

→ limitation?

Error correction problem:

• even if w 6= wa, recover symbol a from scrambled w

→ correction is tougher than detection

• how to correct single errors for ASCII transmission?

→ e.g., assume 21 bits available

→ what about 14 bits?



CS 536 Park

Conceptual approach to detection & correction:

Error detection:

• valid/legal code word set S = {wa : a ∈ Σ}
• can detect k-bit errors if

→ corrupted w does not belong to S

→ for all k-bit error patterns

−→ flipped code word cannot impersonate as valid

What kind of S can satisfy these properties?

−→ e.g., ASCII with 1-bit, 2-bit, . . ., k-bit flips

−→ intuition?



CS 536 Park

Key idea:

−→ valid code words should not look alike

−→ well-separatedness

−→ “distance” between two binary strings?

Error correction:

• suppose wa has turned into w under k-bit errors

• for all b ∈ Σ, calculate d(wb, w)

→ use Hamming distance

→ e.g., d(1011, 1101) = 2

• pick c ∈ Σ with smallest d(wc, w) as answer



CS 536 Park

Ex.: 0 7→ 000 and 1 7→ 111

−→ want to send 0, hence send 000

−→ 010 arrives: d(010, 000) = 1 & d(010, 111) = 2

−→ conclude 000 was corrupted into 010

−→ original data bit: 0

Obviously not fool-proof . . .

−→ the larger k, the more distant the code words

−→ need a roomier playing area

−→ imbed valid/legal code words



CS 536 Park

Pictorially: “ball” of radius r centered at wa

−→ Br(wa) = {w : d(wa, w) ≤ r}
−→ well-separated code word set S layout

If k bit flips, sufficient conditions for error detection and

correction in terms of d(wa, wb) for all a, b ∈ Σ?



CS 536 Park

Network protocol context: different approach to detection

vs. correction

−→ error detection: use checksum and CRC codes

−→ error correction: use retransmission

−→ humans?

−→ can also use FEC; for real-time data

Internet checksum: group message into 16-bit words; cal-

culate their sum in one’s complement; append “check-

sum” to message.

−→ problem?



CS 536 Park

Cyclic redundancy check (CRC): polynomial arithmetic

over finite field.

View n-bit string an−1an−2 · · · a0 as a polynomial of de-

gree n− 1:

M(x) = an−1x
n−1 + an−2x

n−2 + · · · + a1x + a0.

Ex.: 1011 is interpreted as

1 · x3 + 0 · x2 + 1 · x1 + 1 · x0 = x3 + x + 1

−→ M(x): data or message to be sent

Some facts about polynomial arithmetic:

• how do we add/subtract polynomials

→ component-wise addition/subtraction

→ “mod 2” when binary coefficients

• how do we multiply/divide polynomials?



CS 536 Park

Goal: detect multiple bit flips

Set-up: fix some generator polynomial G(x) of degree k.

−→ G(x) “generates” (i.e., divides) code words

−→ like prime number

−→ choice of G(x) important

Encode: Two steps

(1) Let R(x) be the remainder of xkM(x)/G(x).

−→ note: xkM(x) is k-bit left shift operation

−→ like adding redundancy (k extra bits)

−→ total length: n + k

−→ e.g., Ethernet

(2) Set T (x) = xkM(x)−R(x).

−→ T (x) is the code word

−→ why subtract R(x)?



CS 536 Park

Transmit: T (x)

Noise:

−→ T (x) + E(x) arrives at receiver

−→ E(x) represents the bit flips

−→ degree of E(x)?

−→ M(x) = a, T (x) = wa, T (x) + E(x) = w

Decode: i.e., detect bit flip

• if E(x) = 0 then (T (x)+E(x))/G(x): remainder = 0

→ no errors

• if E(x) 6= 0 then (T (x)+E(x))/G(x): remainder 6= 0

→ error has occured

Is the decision rule sufficient?



CS 536 Park

Choice of G(x) depends on allowed noise vector (i.e., poly-

nomial) E(x)

Single bit flip:

• we have E(x) = xi, 0 ≤ i ≤ n + k − 1 (i.e., a single

error at position i)

• if G(x) contains at least two terms, G(x) will not

divide E(x): G(x) = xk + 1

Two bit flips:

• E(x) = xi + xj (i > j)

→ write E(x) = xj(xi−j + 1)

• assuming x does not divide G(x), it is sufficient that

G(x) not divide xi−j + 1

• fact: G(x) = x15 + x14 + 1 will not divide xr + 1 for

r < 32768

→ pretty long messages: meaning of r?



CS 536 Park

Burst (i.e., consecutive) errors

−→ additional analysis

Ex.: commonly used CRC generator polynomials

• CRC-32: x32 + x26 + x23 + x22 + x16 + x12 + x11 +

x10 + x8 + x7 + x5 + x4 + x2 + x + 1

→ e.g., FDDI, Ethernet, WLAN

→ also used in compression

• CRC-CCITT: x16 + x12 + x5 + 1 (HDLC)

• CRC-8: x8 + x2 + x + 1 (ATM)

−→ guaranteed: single, double, k-burst errors

−→ typically: other error patterns


