Error Detection and Correction

\longrightarrow recall: reliable transmission over noisy channel

Key problem:

- sender wishes to send a; transmits code word w_{a}
- receiver receives w
- due to noise, w may, or may not, be equal to w_{a}
$\longrightarrow \quad$ would like to detect error has occurred
\longrightarrow would like to correct error

Error detection problem:

- determine if w is a valid code word
\rightarrow i.e., for some symbol $c \in \Sigma, F(c)=w$
- e.g., parity bit in ASCII transmission
\rightarrow odd or even parity
\rightarrow limitation?

Error correction problem:

- even if $w \neq w_{a}$, recover symbol a from scrambled w
\rightarrow correction is tougher than detection
- how to correct single errors for ASCII transmission?
\rightarrow e.g., assume 21 bits available
\rightarrow what about 14 bits?

Conceptual approach to detection \& correction:

Error detection:

- valid/legal code word set $S=\left\{w_{a}: a \in \Sigma\right\}$
- can detect k-bit errors if
\rightarrow corrupted w does not belong to S
\rightarrow for all k-bit error patterns
\longrightarrow flipped code word cannot impersonate as valid

What kind of S can satisfy these properties?
\longrightarrow e.g., ASCII with 1-bit, 2-bit, ..., k-bit flips
\longrightarrow intuition?

Key idea:
\longrightarrow valid code words should not look alike
\longrightarrow well-separatedness
\longrightarrow "distance" between two binary strings?

Error correction:

- suppose w_{a} has turned into w under k-bit errors
- for all $b \in \Sigma$, calculate $d\left(w_{b}, w\right)$
\rightarrow use Hamming distance
\rightarrow e.g., $d(1011,1101)=2$
- pick $c \in \Sigma$ with smallest $d\left(w_{c}, w\right)$ as answer

Ex.: $0 \mapsto 000$ and $1 \mapsto 111$
$\longrightarrow \quad$ want to send 0 , hence send 000
$\longrightarrow 010$ arrives: $d(010,000)=1 \& d(010,111)=2$
\longrightarrow conclude 000 was corrupted into 010
\longrightarrow original data bit: 0

Obviously not fool-proof . . .
\longrightarrow the larger k, the more distant the code words
\longrightarrow need a roomier playing area
\longrightarrow imbed valid/legal code words

Pictorially: "ball" of radius r centered at w_{a}

$$
\begin{array}{ll}
\longrightarrow & B_{r}\left(w_{a}\right)=\left\{w: d\left(w_{a}, w\right) \leq r\right\} \\
\longrightarrow & \text { well-separated code word set } S \text { layout }
\end{array}
$$

If k bit flips, sufficient conditions for error detection and correction in terms of $d\left(w_{a}, w_{b}\right)$ for all $a, b \in \Sigma$?

Network protocol context: different approach to detection vs. correction
\longrightarrow error detection: use checksum and CRC codes
\longrightarrow error correction: use retransmission
\longrightarrow humans?
\longrightarrow can also use FEC; for real-time data

Internet checksum: group message into 16-bit words; calculate their sum in one's complement; append "checksum" to message.

$$
\longrightarrow \text { problem? }
$$

Cyclic redundancy check (CRC): polynomial arithmetic over finite field.

View n-bit string $a_{n-1} a_{n-2} \cdots a_{0}$ as a polynomial of degree $n-1$:

$$
M(x)=a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0}
$$

Ex.: 1011 is interpreted as

$$
1 \cdot x^{3}+0 \cdot x^{2}+1 \cdot x^{1}+1 \cdot x^{0}=x^{3}+x+1
$$

$\longrightarrow M(x)$: data or message to be sent

Some facts about polynomial arithmetic:

- how do we add/subtract polynomials
\rightarrow component-wise addition/subtraction
\rightarrow "mod 2" when binary coefficients
- how do we multiply/divide polynomials?

Goal: detect multiple bit flips
Set-up: fix some generator polynomial $G(x)$ of degree k.
$\longrightarrow G(x)$ "generates" (i.e., divides) code words
\longrightarrow like prime number
\longrightarrow choice of $G(x)$ important
Encode: Two steps
(1) Let $R(x)$ be the remainder of $x^{k} M(x) / G(x)$.
\longrightarrow note: $x^{k} M(x)$ is k-bit left shift operation
\longrightarrow like adding redundancy (k extra bits)
\longrightarrow total length: $n+k$
\longrightarrow e.g., Ethernet
(2) Set $T(x)=x^{k} M(x)-R(x)$.
$\longrightarrow T(x)$ is the code word
\longrightarrow why subtract $R(x)$?

Transmit: $T(x)$

Noise:

$$
\begin{aligned}
& \longrightarrow T(x)+E(x) \text { arrives at receiver } \\
& \longrightarrow E(x) \text { represents the bit flips } \\
& \longrightarrow \text { degree of } E(x) ? \\
& \longrightarrow M(x)=a, T(x)=w_{a}, T(x)+E(x)=w
\end{aligned}
$$

Decode: i.e., detect bit flip

- if $E(x)=0$ then $(T(x)+E(x)) / G(x):$ remainder $=0$ \rightarrow no errors
- if $E(x) \neq 0$ then $(T(x)+E(x)) / G(x):$ remainder $\neq 0$ \rightarrow error has occured

Is the decision rule sufficient?

Choice of $G(x)$ depends on allowed noise vector (i.e., polynomial) $E(x)$

Single bit flip:

- we have $E(x)=x^{i}, 0 \leq i \leq n+k-1$ (i.e., a single error at position i)
- if $G(x)$ contains at least two terms, $G(x)$ will not divide $E(x): G(x)=x^{k}+1$

Two bit flips:

- $E(x)=x^{i}+x^{j}(i>j)$
\rightarrow write $E(x)=x^{j}\left(x^{i-j}+1\right)$
- assuming x does not divide $G(x)$, it is sufficient that $G(x)$ not divide $x^{i-j}+1$
- fact: $G(x)=x^{15}+x^{14}+1$ will not divide $x^{r}+1$ for $r<32768$
\rightarrow pretty long messages: meaning of r ?

Burst (i.e., consecutive) errors
\longrightarrow additional analysis

Ex.: commonly used CRC generator polynomials

- CRC-32: $x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+$ $x^{10}+x^{8}+x^{7}+x^{5}+x^{4}+x^{2}+x+1$
\rightarrow e.g., FDDI, Ethernet, WLAN
\rightarrow also used in compression
- CRC-CCITT: $x^{16}+x^{12}+x^{5}+1$ (HDLC)
- CRC-8: $x^{8}+x^{2}+x+1$ (ATM)
\longrightarrow guaranteed: single, double, k-burst errors
\longrightarrow typically: other error patterns

